
Beschreibung des Ladevorgangs bei einer Induktivität 
 
Schaltung:  An eine Serienschaltung eines Widerstandes R und einer Induktivität L wird 

zum Zeitpunkt t=0 die Spannung U0 gelegt (vgl. Heft). 
 

 Beachte:  
R ist die Summe aus einem Widerstand R1, der zur  Spule tatsächlich in Serie 
geschaltet wird, und aus dem Widerstand RSpule der Spule selbst; nur bei ei-
ner „idealen“ Spule (z. B. aus Supraleitern aufgebaut) ist RSpule = 0. 

 
Der Gesamtstrom I(t) in diesem Stromkreis setzt sich additiv zusammen aus dem Strom 
I0, der sich ausbildet, nachdem sich nach einer längeren Zeitspanne das Magnetfeld in 
der Spule aufgebaut hat und sich nicht mehr ändert, und aus dem nach der Lenzschen 
Regel entgegengesetzt zu I0 fließenden Induktionsstrom Iind: 
 

I(t) = I0 + Iind(t) 
 
Da nach dem Einschalten Iind(t) entgegengesetzt zu I0 fließt, ist Iind(t) negativ, falls wir 
die Richtung von I0 als positiv definieren; man muß also I0 um |Iind(t)| vermindern, um 
den resultierenden Gesamtstrom I(t) zu erhalten. 
 
Spezialfälle:  

- t=0:  Iind(0) = -I0, somit ist I(0) = 0 
- nach „langer“ Zeit t:  Iind(t) ≈ 0, genauer: lim I(t) = I0  für t → ∞  

 
I0 ist nach dem Ohmschen Gesetz durch U0 und R gegeben: U0 = R⋅I0  
 
Vereinbarungen: 
UR  = Spannung über R 
UL  = Uind = Spannung über L  
U0  = Spannung über der Serienschaltung aus R und L 
 
Vom Ohmschen Widerstand R aus gesehen liegen die Spannungen UL und U0 in Reihe; 
bei einer Reihenschaltung addieren sich die Spannungen: 
 
(1) UR = U0  +  UL  
 

Beachte: UL hat negatives Vorzeichen, falls wir U0  als positiv definieren.  
 
(2) U0 = R ⋅ I0  
 
(3) UR = R ⋅ I(t)     (Ohmsches Gesetz) 
 
(4) UL = Uind = - L ⋅ I’(t) 
  

Beachte: - L ⋅ I’(t) < 0, denn I’(t) > 0, da I nach dem Einschalten streng monoton wächst 
 
Setzen wir (2), (3) und (4) in (1) ein, folgt: 
 

R ⋅ I(t) =  R ⋅ I0  −  L ⋅ I’(t)      ⇔      L ⋅ I’(t) = R ⋅ [I0  − I(t)] 
 
Die Funktion I(t) erfüllt somit die Differentialgleichung 
 
 
(∗) I’(t) = (R/L) ⋅ [I0  −  I(t)] 
 
mit der Anfangsbedingung 
 
(∗∗) I(0)  = 0 
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Wir suchen eine Funktion I(t), welche die Anfangswertaufgabe  (∗), (∗∗) löst. Es läßt sich 
beweisen, daß die Lösung der Gleichungen (∗), (∗∗) eindeutig bestimmt ist; mit einer 
(selbst durch Raten) gefundenen Lösung ist damit klar, daß es eine weitere Lösung nicht 
gibt. 
 
Behauptung: 
 
Die Funktion 
 

R
L- t

0I(t) = I (1 - e )⋅  
 

erfüllt die Gleichungen (∗), (∗∗) und ist nach dem Eindeutigkeitssatz die einzige Lösung.  
 
Beweis:  
 

a) 0
0 0I(0) = I (1 - e ) = I (1 - 1) = 0⋅ ⋅                     (∗∗) ist erfüllt! 

 

b) 
R R R R
L L L L- t - t - t - t

0 0 0 0 0 0R R R
L L L

[ [ + ]I'(t) = I (1- e )' = I -(- e )] = I e I e I I⋅ ⋅⋅ ⋅⋅ ⋅ = −              

R
L- t

0 0 0 0R R
L L

[ (  )] = [ I(t)]I I I e I⋅⋅ ⋅= − − −          (∗) ist erfüllt! 

 
 
Graph der Funktion I(t) für I0  = 5 A,  R = 100 Ω und L = 10 H: 
 
 

 
 

Fig. 1 
 
Wegen 
 

Uind(t) = - L ⋅ I’(t) 
 

erhalten wir für den zeitlichen Verlauf der Induktionsspannung: 
 

ind
R R R
L L L- t - t - t

0 0 0R
L

U (t) L R UI e I e e⋅ ⋅ ⋅⋅ ⋅= − ⋅ = − = −  
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Graph der Funktion Uind(t) für I0  = 5 A,  R = 100 Ω und L = 10 H, also U0 = 500 V: 
 

 
Fig. 2 

 
Zeitkonstante und Halbwertzeit einer LR-Serienschaltung 
 
Definition:  Unter der Halbwertzeit tH verstehen wir diejenige Zeitspanne seit dem Anle-

gen der Spannung U0 an die Serienschaltung von L und R, nach der der Ge-
samtstrom I(t) die Hälfte seines Maximalwertes I0 erreicht. 

 
Gemäß dieser Definition folgt 
 

I(tH) = ½ ⋅ I0         ⇔    
HR

L- t
0

I  = I (1 - e )⋅
0

2
 

 ⇔ 
HR

L- te = 1
2  

 ⇔ H
R

L
t ln ln⋅ = −− 1 2  

 ⇔ H
L

R
t ln⋅= 2  

 

Der Bruch L/R hat die Dimension einer Zeit (wird also in s gemessen) und heißt Zeitkon-
stante τ . 
 
Es gilt für 

- ein LR-Glied:  τ = L/R  
- ein RC-Glied:  τ = R⋅C 

 
siehe auch http://de.wikipedia.org/wiki/Zeitkonstante . 
 
Halbwertzeit: 

tH =  τ ⋅ ln2 
 

Für R = 100 Ω und L = 10 H folgt: τ = 0,1s und tH = 0,1s ⋅ ln2 ≈ 0,07 s (vgl. Fig. 1). 
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Energie Wmag des Magnetfeldes einer vom Strom I0 durchflossenen Induktivität L  

 
Vorbemerkung: Aus Leistung=Arbeit/Zeit bzw. P=W/t folgt: W=P⋅t, falls die Leistung 
zeitlich konstant ist; insbesondere können wir die Arbeit W (das Produkt P⋅t0), die in der 
Zeitspanne [0; t0] bei konstanter Leistung P verrichtet wird, als Fläche des Rechtecks mit 
der Länge t0 und der Höhe P verstehen. Falls die Leistung als Funktion der Zeit während 
der Zeitspanne [0; t0] nicht konstant ist, teilen wir das Intervall [0; t0] in n gleichlange 
Teile der Länge Δt=(t0 − 0)/n und nehmen über jedem dieser Teilintervalle der Länge Δt 
die Leistung als konstant an, so daß sich als Näherung der Funktion t→P(t) eine Treppen-
funktion ergibt, deren Graph mit der t-Achse eine aus n Teilrechtecken bestehende Trep-
penfigur einschließt. Der Flächeninhalt der sich aus n Rechtecken der Breite Δt und mit 
Inhalt Ai = P(i⋅Δt)⋅Δt, 0 ≤ i ≤ n-1, zusammensetzenden Treppenfigur ist wohldefiniert, und 
die Arbeit W, die im Zeitintervall [0; t0] verrichtet wird, erhalten wir als Integral (hier: 
Grenzwert der Untersumme): 
 

W = 
0t1

0 0

lim P(i t) t= P(t)dt
n

n
i

−

→∞ =
⋅ Δ ⋅Δ∑ ∫  

 
P(t) heißt auch Momentanleistung zum Zeitpunkt t. 
 
 
Wir leiten den Term für Wmag auf zwei Arten her, indem wir  
 

(1) die beim Ladevorgang zugeführte elektrische Energie, 
(2) die beim Entladevorgang freigesetzte elektrische Energie  
 

ermitteln; in beiden Fällen ergibt sich dasselbe Ergebnis. 
 
 
zu (1): 
  

Momentanleistung:  

P(t) = Uind(t) ⋅ Iind(t) = 
R R R
L L L2

0 0 0
- t - t -2 t(- ) = R-U e I e I e⋅ ⋅ ⋅⋅ ⋅   

 

 

 
Fig. 3 
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Magnetische Energie:  

Wmag = 
0 0

0 0 0 0

R R
L L

t t
2 2

0 0 0
t t t t

0 0

0-2 t -2 t t

0

L

2R
limW(t ) = lim P(t)dt = R lim dt R limI e I e |→∞ →∞ →∞ →∞

−
⎛ ⎞⋅ ⋅ = ⋅ ⋅ ⎜ ⎟
⎝ ⎠∫ ∫  

Wmag = 
0 0

0 0

R R
L L2 0 2 2

0 0 0
t t

-2 t -2 tL L

2R 2R

1

2
R lim R lim 1 LI e e I e I

→∞ →∞
− −
⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⋅ ⋅ − = ⋅ ⋅ − = ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

 

 
 
zu (2): 
 
Momentanleistung beim Entladevorgang, der zum Zeitpunkt t= 0 beginnt: 
 
P(t) = Uind(t) ⋅ Iind(t) = - L ⋅ Iind

’(t) ⋅ Iind(t) > 0, da Iind(t) fällt und Iind
’(t) folglich negativ ist.  

 
Die im Intervall [0; t0] verrichtete Arbeit Wmag berechnen wir als Integral: 
 

0 0 0t t t
' '

0 ind ind ind ind

0 0 0

1
2W(t ) = P(t)dt = L I (t) I (t)dt L 2 I (t) I (t)dt− ⋅ = − ⋅ ⋅⋅∫ ∫ ∫  

Die Funktion 2
indI (t)  ist nach der Kettenregel Stammfunktion zu  '

ind ind2 I (t) I (t)⋅ ⋅ :  

( ) ( )2 2 2 2 2
0 ind ind 0 ind ind 0 0

0
1 1 1
2 2 2

t

0
W(t ) = L I (t) L I (t )-I (0) = L I (t )-I|− ⋅ = − ⋅ − ⋅⋅ ⋅ ⋅  

 
Durch Grenzübergang t0 → ∞ erhalten wir 
 

Wmag  = ( ) ( )
0 0 0

2 2 2 2 2
0 ind 0 0 ind 0 0 0

1 1 1
2 2 2t t t

lim W(t )= lim L I (t )-I = L lim I (t )-I L I
→∞ →∞ →∞

− ⋅ − ⋅ = ⋅⋅ ⋅ ⋅  

 
Bemerkenswert ist − dies gilt auch für die Herleitung gemäß (1) − , daß wir den Funkti-
onsterm zu Iind(t) nicht kennen müssen, um das Integral auszuwerten; vielmehr genügt 
die Anwendung der Kettenregel, nach der gilt: 
 

[Iind
2(t)]’ = 2 ⋅ Iind(t) ⋅ Iind

’(t) 
 
Falls wir den Strom I0 mit Ierr oder I bezeichnen, erhalten wir  
 

Wmag = ½ ⋅ L ⋅ Ierr
2 = ½ ⋅ L ⋅ I2 

 
als Energie des magnetischen Feldes B einer vom Strom Ierr = I durchflossenen Induktivi-
tät. 
 
 
 
 
Übungsaufgabe 
 
Zeige:  
 

Wmag = ½ ⋅ H ⋅ B ⋅ V 
 
mit V = A ⋅ l = Volumen der Spule. 
 
Bemerkung: Unter der Energiedichte ρmag des magnetischen Feldes versteht man den 
Quotienten Wmag/V, somit folgt:   
 

ρmag =  ½ ⋅ H ⋅ B 


