
Der Logarithmus als Integralfunktion 
 

Gegeben ist die Funktion f(t) = 1/t für t>0. Wir untersuchen die Integralfunktion (Funktion der oberen 
Grenze eines Integrals) L(x), die für x>0 wie folgt definiert ist: 
 

∫ ∫
x x

1 1

1
tL(x)= f(t) dt=  dt  

 
Charakteristische Eigenschaften: 
 
Eigenschaft 1:  L ist differenzierbar 

 Beweis: Nach dem Hauptsatz der Integralrechnung ist ∫
x

1

L(x)= f(t) dt  stets differenzierbar, 

wenn f stetig ist, und es gilt: L’(x) = f(x) = 1/x. Insbesondere ist L stetig. 
 
 
Eigenschaft 2:  L ist streng monoton wachsend   

 Beweis: Nach Eigenschaft 1 ist L differenzierbar mit L’(x) = 1/x > 0 für alle x. Dies impliziert, daß L 
streng monoton wächst. 

 
 
Eigenschaft 3:  L(1)=0 
 

 Beweis: ∫
1

1

L(1)= f(t) dt=0  

 
 
Eigenschaft 4:  L(ab) = L(a) + L(b)  mit a>0 und b>0 
 

 Beweis: Betrachte L(ax). Nach der Kettenregel gilt: [L(ax)]’ = L’(ax) ⋅ a = a ⋅ 1/(ax) = 1/x, 
 folglich ist  
            [L(ax)]’  = L’(x) 
 ⇔    [L(ax)]’ − L’(x)  = 0 
 ⇔    [L(ax) − L(x)]’  = 0 
 ⇒      L(ax) − L(x) = const für alle x>0 
  
 Um diese Konstante zu berechnen, wählen wir x=1 und erhalten: 
             L(a) − L(1) = const 
 ⇒                const = L(a)   wegen Eigenschaft 3 
  
 Ersetzen wir in der Gleichung         L(ax) − L(x) =  L(a) die Variable x durch b, folgt 
 
                                                                    L(ab) = L(a) + L(b)    

                             
    

 
Eigenschaft 5:  L(a/b) = L(a) − L(b)  mit a>0 und b>0 
 

 Beweis: Ersetze in der Gleichung aus Eigenschaft 4 die Variable a durch den Quotienten a/b. 
 
Eigenschaft 6:  L(an) = n ⋅ L(a)   mit a>0, n natürliche Zahl   

 Beweis (Phillip Linke): Sei x eine positive reelle Zahl (unabhängige Variable); dann gilt: 
                    [L(xn)]’  =  L’(xn) ⋅ n xn-1    (Kettenregel)  
 ⇒                [L(xn)]’ =  1/xn ⋅ n xn-1      (Eigenschaft 1) 
 ⇒                [L(xn)]’ =  n/x 
 ⇒       [L(xn)]’ − n/x =   0 
 ⇒   [L(xn)]’ − n⋅L’(x) =   0                     (Eigenschaft 1) 
 ⇒   [L(xn) − n⋅L(x)]’ =   0 
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 ⇒   L(xn) − n⋅L(x) =   const 
 wähle x:=1, damit folgt:               L(1n) − n⋅L(1) =   const 
  ⇒                  const =   0   wegen L(1) = 0 
  ⇒                  L(xn)  =   n⋅L(x)      
 ersetze x durch a ⇒                  L(an)  =   n⋅L(a)      qed 
 
    
Eigenschaft 6’:  L(a−m) = − m ⋅ L(a)   mit a>0, m natürliche Zahl 
 

 Hinweis zum Beweis: Verifiziere zunächst L(am) + L(a−m) = 0 
 
 
Eigenschaft 6’’:  L(ax) = x ⋅ L(a)   mit a>0, x ist rational 
 

 Hinweis zum Beweis: Schreibe x=p/q mit natürlichen Zahlen p und q, q≠0; verwende bereits be-
wiesene Eigenschaften. 

 
 
Eigenschaft 6’’’:  L(ax) = x ⋅ L(a)   mit a>0, x ist reell 
 

 Beweisidee: Jede reelle Zahl läßt sich als Grenzwert einer Folge aus rationalen Zahlen schreiben. 
 
 
Eigenschaft 7:  L(e) = 1 
 

 Die Eulersche Zahl e ist definiert als Grenzwert: 
n

n
:=lim (1 1/n) 2,7182818.....e

→∞
+ =   

 Bemerkung: e ist nicht nur irrational, sondern auch transzendent, d. h., es gibt keine algebraische 
Gleichung n-ten Grades der Form 

n
i

i
i=0

a x =0⋅∑ , 

die die Zahl e als Lösung hat. Dagegen sind die irrationalen Zahlen 2  und 1 3−  nicht trans-
zendent, da sie Lösung der Gleichung 

x2 = 2     bzw.     x2 − 2x − 2 = 0    sind. 
 

 Beweis der Eigenschaft 7: 

 L(e) = L[ n

n
lim (1 1/n)
→∞

+ ]  = n

n
lim L[(1 1/n) ]
→∞

+    wegen der Stetigkeit von L (Eigenschaft 1). 

  = ( )
n
lim n L(1 1/n)
→∞

⋅ +    wegen Eigenschaft 6 
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 Den Term L(1 1/n)+  können wir nach gemäß der Zeichnung nach unten und nach oben wie folgt 

abschätzen: 
           1 1

n+1 n<L(1 1/n)<+              

  ⇒ n
n+1 n L(1 1/n) 1< ⋅ + <  

 
 mit dem Grenzübergang für n →∞  folgt: 
 
  ⇒         n

n+1n n
lim lim  [n L(1 1/n)] 1
→∞ →∞

≤ ⋅ + ≤  

  ⇒ 
n

1 lim [n L(1 1/n)] 1
→∞

≤ ⋅ + ≤  

  ⇒ 
n
lim [n L(1 1/n)]=1
→∞

⋅ +                   qed 

 
Aus den Eigenschaften 6’’’ und 7 ergibt sich:  L(ex) = x⋅L(e) = x; folglich ist L(x) die Umkehr-
funktion zur Exponentialfunktion  
 
                                                         f(x) = ex 
 
und L(x) der Logarithmus von x zur Basis e: 
                                                              
                                                           L(x) = loge x = ln x   (logarithmus naturalis) 
 
Insbesondere ist   F(x) = ln x  +  C    Stammfunktion zu f(x) = 1/x . 
 
Die Graphen der Exponentialfunktion f(x) = ex = exp(x)  
und der Logarithmus-Funktion g(x) = f -1(x) = ln x = log(x): 
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Die Exponentialfunktion 
 

Die Exponentialfunktion f(x) = ex ergibt sich als Umkehrfunktion einer Integralfunktion g(x) = L(x), die 
folglich die Logarithmusfunktion zur Basis e ist: 
 
      f :    ℜ   →    ℜ+                          g :    ℜ+    →    ℜ                              
  x   →    ex                    x →    ln x 
 
Bemerkungen:  a) Die Umkehrfunktion zu einer Funktion f wird auch mit f -1 bezeichnet.  

b) Sind f und g Umkehrfunktionen voneinander, gilt stets: 
 
 f [g(x)]  =  g [f(x)]  = x    oder    f [f -1(x)]  =  f -1[f(x)]  = x     
 
 c) Schreibweise:  f [g(x)]  = f ) g (x)   (lies: „f nach g von x“) 
 
 
Folgender Satz erlaubt, die Ermittlung der Ableitung einer Umkehrfunktion f -1 auf die Berechnung der 
Ableitung der Funktion f’ zurückzuführen: 
 
 
Satz:  Gegeben sind die bijektive differenzierbare Funktion f(x) und ihre Umkehrfunktion f -1(x). 

Falls f’[ f -1(x)] ≠ 0,  ist die Umkehrfunktion f -1(x) von f(x) ebenfalls differenzierbar, und es 
gilt: 

-1
-1
1(f )'(x)=

f'[f (x)]
  . 

 
 Beweis:                     f ) f -1(x)     =   x 
 

  ⇒ [ f ) f -1 ]’(x)    =   1 
 

  ⇒     f’ [f -1(x)] ⋅ (f -1)’(x) =   1         (Kettenregel) 
 

  ⇒                 (f -1)’(x)   =   1 / f’ [f -1(x)]            qed 
 
 
 
Mit Hilfe dieses Satzes läßt sich die Ableitung der Exponentialfunktion g(x) = ex ermitteln: 
 
Für f(x) = ln x ist  f -1(x) =  ex; daher folgt wegen f’(x) = 1/x : 
 

 
x

x -1 x
-1 x 1

e

1 1 1(e )'=(f )'(x)= e
f'[f (x)] f'[e ]

= = =     

 
Die Exponentialfunktion f(x) = ex hat also die bemerkenswerte Eigenschaft, daß sie gleich ihrer Ablei-
tung ist!  
 
 
Jede Exponentialfunktion y = ax mit a reell, a>0, läßt sich als Exponentialfunktion mit der Grundzahl e 
schreiben, genauer: es gibt eine reelle Zahl k, k reell, so daß gilt: 
 

ax = ek⋅x 

 

 
Beweis:                     x ln a x x ln a kxa (e ) e e⋅= = =     mit   k = ln a     
 
Daher genügt es, wenn der Taschenrechner lediglich die Exponential- und Logarithmus-Funktionen 
zur Basis e oder zur Basis 10 bereitstellt. 
 
         

   


