1
Die Tiirme von Hanoi

Nach einer Legende standen einmal drei goldene Sdulen vor einem Tempel in Hanoi; auf die
erste waren 100 Scheiben geschichtet, stets eine kleinere Scheibe auf einer grofieren. Ein alter
Monch erhielt die Aufgabe, den Turm aus Scheiben von Sédule 1 nach Sdule 2 zu
transportieren unter folgenden Bedingungen:

- es darf stets jeweils nur die oberste Scheibe abgenommen werden,
- es darf niemals eine grofiere Scheibe auf einer kleineren liegen.

Wenn die Arbeit vollendet sei, so die Legende weiter, sei das Ende der Welt gekommen.

Der kluge Monch erkannte bald, daf$ zur Losung der Aufgabe die dritte Sdule benétigt wiirde, und tiberlegte
sich folgenden Algorithmus:

Sein dltester Schiiler solle die Aufgabe erledigen, den Turm aus den 99 obersten Scheiben von Séule 1 nach
Sédule 3 unter Verwendung von Séule 2 als Zwischenablage zu transportieren; dann wolle er selbst die letzte
und grofste Scheibe von Sdule 1 nach Saule 2 tragen; fiir den Transport der 99 Scheiben von Sdule 3 nach Saule
2 unter Verwendung von 1 werde wiederum der élteste Schiiler in Anspruch genommen.

Da der ilteste Schiiler seinem Meister an Gelehrsamkeit nicht nachstand, delegierte er einen Teil seines
Auftrags an den zweitiltesten Schiiler; dieser delegierte wiederum an den drittéltesten Schiiler usw.

Die Scheiben seien, beginnend mit der kleinsten, von 1 bis 100 (bzw. 1 bis n) durchnummeriert.

Die Anweisung "Transportiere den Turm von 100 Scheiben von Sdule 1 nach Siule 2 unter Verwendung von
Sdule 3" wird im folgenden mit TRANSPORT (100, 1, 2, 3), die Anweisung "Transportiere den Turm von n
Scheiben von Siule s1 nach Sidule s2 unter Verwendung von Sdule s3" mit TRANSPORT (n, s1, s2, s3)

bezeichnet.

Damit besteht der Auftrag TRANSPORT(100, 1, 2, 3) des alten Monchs aus drei Schritten:

1. TRANSPORT(99, 1, 3, 2) (delegiert an den éltesten Schiiler)
2. Transportiere Scheibe 100 von Sédule 1 nach Sdule 2 (Arbeit des Meisters)
3. TRANSPORT(99, 3, 2, 1) (delegiert an den éltesten Schiiler)

In gleicher Weise ruft TRANSPORT(99, 1, 3, 2) auf:

1. TRANSPORT(9S, 1, 2, 3) (delegiert an den zweitéltesten Schiiler)
2. Transportiere Scheibe 99 von Sidule 1 nach Sdule 3 (Arbeit des &dltesten Schiilers)
3. TRANSPORT(98, 2, 3, 1) (delegiert an den zweitéltesten Schiiler)

Allgemein veranlafit TRANSPORT(n, s1, s2, s3) folgende Anweisungen, falls n > 1 ist:
1. TRANSPORT(n- 1, s1, s3, s2)

2. Transportiere Scheibe n von Sdule s1 nach Saule s2
3. TRANSPORT(n- 1, s3, s2, s1)

Die Pascal-Prozedur uberrascht durch Einfachheit und Eleganz gleichermafen:

Procedure TRANSPORT (n, s1, s2, s3: integer);

begin
if n>1 then TRANSPORT(n-1, s1, s3, s2);
writeln(‘Transportiere Scheibe “,n:2,” von Sdule *,s1:2,” nach Sadule *,s2:2);
if n>1 then TRANSPORT(n-1, s3, s2, s1)

end;

Fur n Scheiben werden n Mdnche benétigt: der Meister transportiert die n-te, also die grofite, Scheibe
genau einmal von Sdule 1 nach S&ule 2; der 2. Mdnch (<ester Schiiler) ist fur den Transport der (n—
1)-ten, der zweitgréRten, Scheibe zusténdig, der 3. Monch (zweitéltester Schiler) transportiert die (n—
2)-te Scheibe, allgemein transportiert der i-te Monch die (n—i+1)-te Scheibe firi=1,2,....,n.

Bei 3 Scheiben veranlaBt TRANSPORT(3, 1, 2, 3) folgende Aufrufe (Book antiqua) und
Anweisungen (Arial), wobei in der 1. Spalte die Nummer des Aufrufs steht:

1. TRANSPORT(3, 1, 2, 3)
2. TRANSPORT(2, 1, 3, 2)
3. TRANSPORT(1, 1, 2, 3)
transportiere Scheibe 1 von Saule 1 nach Saule 2
transportiere Scheibe 2 von Saule 1 nach Saule 3
4. TRANSPORT(Y, 2, 3, 1)
transportiere Scheibe 1 von Saule 2 nach Saule 3
transportiere Scheibe 3 von Saule 1 nach Saule 2
TRANSPORT(2, 3,2, 1)
6. TRANSPORT(Y, 3, 1, 2)
transportiere Scheibe 1 von Saule 3 nach Saule 1
transportiere Scheibe 2 von Saule 3 nach Saule 2
7. TRANSPORT(1, 1, 2, 3)
transportiere Scheibe 1 von Saule 1 nach Saule 2

o

Aufgaben:
a) Begriinde, dafd der Algorithmus terminiert!
b) Fertige wie oben eine Aufstellung der Aufrufe fiir n=4 an!

c) Welche Arbeit verrichtet der i-te Monch?
Losung zu c):

Der 1. Monch transportiert die n-te Scheibe 1-mal, der 2. Ménch die (n-1)-te Scheibe 2-mal, der 3. Monch die (n-
3+1)-te Scheibe 4-mal, also 2> 1-mal; der i-te Monch transportiert die (n-i+1)-te Scheibe 2 1-mal (strenger
Beweis: vollstindige Induktion tiber i).

Von 100 Ménchen plagt sich der jiingste an der 1. Scheibe 2 1001 = 2%= ¢ 34* 10%- mal!

d) Wie verhilt sich der Speicheraufwand in Abhéngigkeit von der Anzahl n der Scheiben?

Losung zu d):
Da TRANSPORT(n, s1, s2, s3) 272 yeitere TRANSPORT-Aufrufe veranlalt, umfafit TRANSPORT(n, s1, s2, s3)
insgesamt 2"! Aufrufe (strenger Beweis: vollstandige Induktion tiber n), deren Anzahl wichst folglich

3

exponentiell. Es sind allerdings stets hochstens n Aufrufe aktiv, wie folgende Uberlegung zeigt:

Fiir n=3 existieren hochstens 3 Aufrufe der Prozedur TRANSPORT gleichzeitig, wie man an obiger Aufstellung
sieht. Entsprechend mache man sich klar, dafs bei n Scheiben hichsten n Aufrufe der Prozedur TRANSPORT
gleichzeitig aktiv sind. Der Speicheraufwand wachst lediglich linear mit n, so daff keine Fehlermeldung wie
"Memory Overflow" oder "Stack Overflow" wihrend der Laufzeit zu erwarten ist!

e) Wie verhilt sich der Zeitaufwand in Abhéngigkeit von der Anzahl n der Scheiben?
Losung zu e):

Da der i-te Monch seine ihm zugewiesene Scheibe 21" ! -mal zu tragen hat, gibt es insgesamt 1 +2 + 4 + 24+ 1 +

21+ L. + 2™ 1 Transportvorginge bzw. writeln-Anweisungen; dies ist eine geometrische Reihe { s,} mita
=1,q=2:
- — -1 — n — 9N
s, =XZag=Xagq =(1-2"Y/(1-2)=2"-1
— 2100_1 - 30

Unterstellt man, dafs ein dufSerst leistungsfahiger Computer fiir einen Transportauftrag, also die Ausfithrung
der writeln-Anweisung, einen Zeitbedarf von 1 mikro-Sekunde hat, ergibt sich fiir das vollstindige
Umschichten von 100 Scheiben die Zeitspanne

t=1,268%10% s /106 = 1,268+10%4 s = 1,268+x1024/(3600%24* 365) a
= 4,02%101 a = 2.000.000 Weltalter,

wenn man das Alter des Weltalls zu 20 Milliarden Jahren annimmt!
Dieses Beispiel zeigt, daf8 die Ausfithrung eines Algorithmus an expontiell wachsendem Zeitbedarf in der
Praxis scheitert.

f) Ersetze die writeln-Anweisungen durch entsprechende Graphik-Routinen!

g) Hier das vollstindige Pascal-Programm (mit Eingabe von n):

program hanoi;

uses crt, printer;

var n: integer;

procedure transport(n, s1, s2, s3: integer);

begin
if n>1 then transport(n-1, s1, s3, s2);
writeln("Transportiere Scheibe ',n:2,' von Sdule ',s1:2,' nach Saule ',s2:2);
if n>1 then transport(n-1, s3, s2, s1)

end;

begin
clrscr;
write(' Wieviele Scheiben? ');
readIn(n);
transport(n,1,2,3);
while not keypressed do

end.

