Binare Suche

Gegeben: Ein sortiertes Array a mit den n Komponenten a[0], . . .

Aufgabe:

Beispiel
value = 13

Informatik 12

., a[n-1]

Januar 2022

Entscheide, ob ein flir die Variable value eingegebener Wert als Wert einer Komponente des Arrays a

vorkommt.

n = len(a) = 10

Wir Ubergeben value und die Liste a[0], . . .

welche a[0], . . ., a[9] als lokale Liste array[0], . ..

, a[9] der Booleschen Funktion binarysearch,
, array[9] fortfUhrt.

a[0] a[1] a[2] a[3] af4] a[5] a[6] al7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21
array[0] | array [1] | array [2] | array [3] | array [4] | array [5] | array [6] | array [7] | array [8] | array [9]
3 4 5 5 7 8 11 13 19 21

1. Schritt:

Wir bestimmen den mittleren Index des Arrays array:

2. Schritt:

len(array)//2 =5

midvalue = array[len(array)//2] = array[10//2] = array[5] = 8
Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurick; gefunden!

Falls value < midvalue: suche in der Liste a[0], . . ., a[4] links von a[5]
Falls value > midvalue: suche in der Liste a[6], . . ., a[9] rechts von a[5]
hier: wegen 13 > 8 suchen wir in der Liste a[6], . . ., a[9]
Suche value in der Liste a[6], - . ., a[9]

a[6] al7] a[8] al[9]

11 13 19 21

Diese Liste a[6], - ., a[9] und value Ubergeben wir der Booleschen Funktion binarysearch,
welche a[6], . . , a[9] als lokale Liste array[0], . . . , array[3] fortflhrt.

array[0] array[1] array[2] array[3]

11 13 19 21
1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 4//2 = 2
2. Schritt:

midvalue = array[len(array)//2] = array[4//2] = array[2] = 19
Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurick; gefunden!

Falls value < midvalue: suche in der Liste array[0], . . ., array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suchen wir in der Liste array[0], . . ., array[1]

Suche value in der Liste array[0], . . ., array[1]

array[0] array[1]

11 13

Diese Liste array[0], . . . , array[1] und value Ubergeben wir der Booleschen Funktion binarysearch,
welche array[0], . . ., array[1] als lokale Liste array[0], - . ., array[1] fortflhrt.

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 2//2 =1

2. Schritt:

midvalue = array[len(array)//2] = array[2//2] = array[1] = 13

Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zuriick; gefunden!

Falls value < midvalue: suche in der Liste array[0] links von array[1]

Falls value > midvalue: suche in der leeren Liste [] rechts von array[1], dann: binarysearch gibt den Wert
False zurlick; nicht gefunden!

hier: wegen 13 = value = midvalue = 13: binarysearch gibt den Wert True zurlck; gefunden!

Der Booleschen Funktion binarysearch werden das aus n Komponenten bestehende
sortierte Feld a (in Python: Liste) und der zu suchende Wert value lbergeben;
binarysearch liefert den Wert True, falls eine Komponente von a mit value
Ubereinstimmt, andernfalls den Wert False.

Die Variable z ermittelt die Anzahl der Aufrufe von binarysearch.

Quelltext in Python:

def binarysearch (array,value):
global z
z += 1
print (array)
if array == [] or (len(array) == 1 and array[0] !'= wvalue):
return False
else:
midvalue = array[len(array)//2]
if midvalue == value:
return True
elif value < midvalue:
return binarysearch (array|[:len(array)//2],value)
else:
return binarysearch (array[len(array)//2 + 1:],value)

Aufruf der Funktion binarysearch:

binarysearch (a,value)

Komplexitat des Algorithmus binarysearch:

Die Komplexitat und damit der Rechenaufwand A(n) wird wesentlich bestimmt durch die
Anzahl z der Aufrufe der rekursiv definierten Funktion binarysearch; o. B. d. A.sein
eine Potenzvon 2,d. h.n=2mitk=0,1,2,3,.....

Beachte: die maximale Anzahl von Aufrufen (worst case) kann insbesondere dann
auftreten, falls die Suche ergebnislos ist.

k=0 < n=1; die Liste a hat die Komponente a[0].
Bufrufe binarysearch =1

k=3 < n=8; die Liste a hat die Komponenten a[0], a[1], , al7].
gesuchte Zahl: 79

[14, 50, 52, 70, 74, 80, 8%, 97]

[80, 89, 97]

[80]

79 wurde nicht gefunden

hufrufe binarysearch = 3

k=4 < n=16; die Liste a hat die Komponenten a[0], a[1],
gesuchte Zahl: 80

[13, 33, 42, 42, 44, 44, 45, 45, 47, 52, 57, 59, €2, 72, 92, 94]
[52, 57, 59, €2, 72, 92, 94]

[72, 92, 94]

[72]

80 wurde nicht gefunden

Aufrufe binarysearch = 4

gesuchte Zahl: 21

[20, 24, 31, 37, 38, 40, 44, 46, 48, 50, 52, 55, 89, 92, 94, 95]
[20, 24, 31, 37, 38, 40, 44, 4g]

[20, 24, 31, 37]

[20, 24]

[20]

21 wurde nicht gefunden

Aufrufe binarysearch = 5

Eine Verdopplung von n impliziert héchstens einen weiteren Aufruf von binarysearch !
Offensichtlich gilt:

z<k+1

Wegen n = 2¥ & k = log,(n) folgt:

z < 1+ log,(n)

Somit hat der Algorithmus binarysearch logarithmische Komplexitat:

A(n) ~ logz(n)

Modifikation des Algorithmus binarysearch:

Wie modifizieren die rekursive Funktion binarysearch wie folgt: binarysearch liefert
den booleschen Wert False, falls value in der Liste a nicht gefunden wird, andernfalls
den Index index derjenigen Komponente der Liste a, deren Inhalt mit demjenigen von
value Ubereinstimmt.

Die Gesamtliste a, der zu suchende Wert value sowie die Indices begin und end sind an
die Funktion binarysearch zu Ubergeben, so dal3 binarysearch

die Teilliste a[begin] , , a[end] durchsucht.

Beachte: index wird innerhalb des Funktionsrumpfs als globale Variable definiert.

z =0

def binarysearch(array, value, begin, end):
global index
global =z
z += 1
print (array[begin:end+1])
if begin > end: return False
middle = (begin + end) // 2
print('mittleres Element: a[',middle,'] = ', 6 array[middle])
if array[middle] == value:
index = middle
elif array[middle] < value:
return binarysearch (array, value, middle + 1, end)
else:
return binarysearch (array, value, begin, middle - 1)

Aufruf der Funktion binarysearch zur Suche von value in der sortierten Liste
a[o1], , a[n-1]:

binarysearch(a, value, 0, len(a)-1)

gesuchte Zahl: 521

[120, le2, 1€3, 181, 205, 392, 444, 521, 528, 557, 643, 663, €39, 810, 847, 899, 913, 992]
mittleres Element: a[8] = 528

[120, 1le2, 163, 181, 205, 392, 444, 521]

mittleres Element: al[3] = 161
[205, 392, 444, 521]

mittleres Element: a[5] = 392
[444, 5Z21]

mittleres Element: al[€] = 444
[521]

mittleres Element: al[7] = 521
521 wurde gefunden an der Stelle 7
a[71 = 521

Aufrufe binarysearch = 5

gesuchte Zahl: 241
[173, 183, 187, 243, 2&5, 307, 345, 376, 589, 622, B8€8, 97¢€]

mittleres Element: a[5] = 307
[173, 183, 187, 243, 265]
mittleres Element: a[2] = 187
[243, 2&5]

mittleres Element: a[3] = 243

[1
241 wurde nicht gefunden
Aufrufe binarysearch = 4

