
Aufgabenblatt Nr. 4 inf12 26.01.2021

10. Die Hofstadter-Funktion ist rekursiv definiert (n natürliche Zahl):

 Rekursionsanfang: hof(1) = 1
 hof(2) = 1

 Rekursionsvorschrift: hof(n) = hof[n  hof(n  1)] + hof[n  hof(n  2)], n>2

 Formuliert man den Algorithmus zur Berechnung der Hofstadter-Funktion als

Python-Programm mit rekursivem Funktionsaufruf, haben wir die Erfahrung
gemacht, daß die Rechenzeit für große Werte von n sehr schnell wächst; der
Grund ist die mit n sehr schnell wachsende Anzahl gleichzeitig aktiver Aufrufe
der Funktion hof.

 Dieses ungünstige Laufzeitverhalten läßt sich umgehen, indem man den

Algorithmus zur Berechnung der Hofstader-Funktion iterativ formuliert.

 Vorschlag zur iterativen Formulierung:
 Definiere ein array a mit den Komponenten a[0], a[1], a[2], und

setze a[0] = hof(1) = 1, a[1] = hof(2) = 1.
Den weiteren Komponenten a[2], a[3], . . . werden in dieser Reihenfolge die
Werte hof(3), hof(4), zugewiesen.

 Konzipiere und teste das iterativ formulierte Python-Programm!

11. Zusatzaufgabe:

 Die Fibonacci-Folge {ai} ist wie folgt definiert:

 a1 = a2 = 1

 an = an-1 + an-2 für n  3

 Schreibe und teste ein Python-Programm zur Berechnung der Fibonacci-

Folge.

12. Der als Python-Programm formulierte Algorithmus

sorting_by_direct_selection.py.txt auf
https://kalle2k.lima-city.de/computerscience/Informatik_12/sorting/
sortiert ein array von Zufallszahlen aufsteigend, d. h. die sortierte Liste
beginnt mit dem kleinsten Element.

 Modifiziere das Programm so, daß das Sortieren absteigend erfolgt.

Lösungen Aufgabenblatt Nr. 4 vom 26.01.2021

Nr. 10 (Hofstadter-Folge)

rekursiv:

iterativ:

Nr. 11 (Fibonacchi-Folge)

rekursiv:

iterativ:

Sortieren durch Mischen ("MergeSort")

Aufgabe:

Gegeben ist eine Liste L = {a[0], a[2], a[3], , a[n-1]}

von n Datenelementen, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt

sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daß gilt:

a[0] ≤ a[2] ≤. ≤ a[n-1] .

Wir fassen die Elemente der Liste auf als Komponenten eines arrays a.

Strategie: "Divide et impera"

Eine Liste, die nur ein einziges Element enthält, ist bereits sortiert.

Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, läßt sich in 4 Schritten
bewältigen:

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten

2). Sortiere die erste Teilliste gemäß den Schritten 1). - 4).

3). Sortiere die zweite Teilliste gemäß den Schritten 1). - 4).

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste

Falls left < right wahr ist, sortiert die rekursiv definierte Funktion

sort(array, left, right)

die Liste

array[left], , array[right]

unter Verwendung der Funktion merge.

Die Funktion

merge(array, left, middle, right)

mischt die sortierten Teillisten

array[left], , array[middle]

und

array[middle+1], , array[right]

zu der sortierten Gesamtliste

array[left], , array[right] .

Quellcode der Funktion sort in Python:

 2

def sort(array, left, right):
 if left >= right:
 return
 middle = (left + right)//2
 sort(array, left, middle)
 sort(array, middle + 1, right)
 merge(array, left, middle, right)

Aufruf zum Sortieren der aus den n Komponenten

 a[0], a[2], a[3], , a[n-1]

bestehenden Liste a:

 sort(a, 0, len(a)-1)

Aufwandsbetrachtung:

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus
n Komponenten bestehende Liste zu sortieren.

Dann gilt:

A(n) = 2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen
+ Aufwand zum Mischen zweier sortierter Teillisten

A(n) = A(n/2) + A(n/2)
+ Aufwand zum Mischen zweier sortierter Teillisten

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wächst linear mit der Anzahl n der zu sortierenden Datenelemente; somit
erhalten wir für den Funktionsterm A(n) die Funktionalgleichung (c = Konstante
= Proportionalitätsfaktor)

(*) A(n) = A(n/2) + A(n/2) + c  n mit der Bedingung
(**) A(1) = 0 .

Behauptung: Die Funktion

A(n) = c  n  log2(n)

ist Lösung der Funktionalgleichung (*) mit der Anfangsbedingung (**).

Beweis:

A(n/2) + A(n/2) + c  n = 2  A(n/2) + c  n

= 2  c  n/2  log2(n/2) + c  n
= c  n  (log2(n)  log2(2)) + c  n
= c  n  (log2(n)  1) + c  n
= c  n  log2(n)
= A(n)

Damit ist (*) erfüllt; wegen log2(1) = 0 genügt A(n) auch der Bedingung (**).

 3

Bemerkung: Mit Methoden der Analysis läßt sich die Eindeutigkeit der Lösung des
Problems (*), (**) zeigen, somit ist mit A(n) = c  n  log2(n) die einzige Lösung
der Funktionalgleichung gefunden.

Allgemein läßt sich beweisen, daß der Aufwand zum Sortieren von n Datensätzen
grundsätzlich mindestens von der Ordnung n  log2(n) wächst. In diesem Sinne
kann das Sortierverfahren „MergeSort“ als optimales Vefahren gelten.

Ergänzende Betrachtung zum Speicherplatzbedarf:

Nachdem wir festgestellt haben, daß der Aufwand zum Sortieren von n
Datenelementen von der Ordnung n  log2(n) wächst und damit ein Optimum
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn
rekursive Algorithmen haben grundsätzlich den Nachteil, daß sie während der
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. Daß dieser Effekt bei
MergeSort nicht oder nur unwesentlich ins Gewicht fällt, zeigt folgende
Überlegung:

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.

O. B. d. A. sei n eine Zweierpotenz, d. h. n=2k, k{0, 1, 2, 3, }.

Bemerkung: Der Pfeil bedeutet: „ruft auf“

n = 1: sort(a,0,0) 1 Aufruf

n = 2: sort(a,0,1)

 sort(a,0,0) sort(a,1,1)

 1 + 2  1 = 3 Aufrufe

n = 4: sort(a,0,3)

 sort(a,0,1) sort(a,2,3)

 sort(a,0,0) sort(a,1,1) sort(a,2,2) sort(a,3,3)

 1 + 2  3 = 7 Aufrufe

 4

n = 8: sort(0,7)

 sort(0,3) sort(4,7)

 sort(0,1) sort(2,3) sort(4,5) sort(6,7)

 sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

 1 + 2  7 = 15 Aufrufe

f(1) = 1 = 1 = 2  1 – 1

f(2) = 1 + 2  1 = 3 = 2  2 – 1

f(4) = 1 + 2  3 = 7 = 2  4 – 1

f(8) = 1 + 2  7 = 15 = 2  8 – 1

f(16) = 1 + 2  15 = 31 = 2  16 – 1

f(32) = 1 + 2  31 = 63 = 2  32 – 1

allgemein:

f(n) = 2  n – 1

Offensichtlich ist f(n) Lösung der rekursiv definierten Funktionalgleichung

 f(n) = 1 + 2  f(n/2)

mit der Anfangsbedingung f(1) = 1 .

Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der
Speicherplatzbedarf während der Laufzeit wächst somit linear mit n, also
wesentlich schwächer als die Anzahl A(n) elementarer Rechenoperationen.

Die rekursiv veranlaßten Aufrufe der Funktion sort zerlegen die zu sortierende
Liste in Teillisten jeweils der Länge 1, die als ein-elementige Listen bereits
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils
einer sortierten Liste gemäß folgendem Diagramm:

Bemerkung: Der Pfeil bedeutet: „wird gemischt“

 5

 merge(0,3,7)

 a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Für die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar:

g(1) = 0
g(n) = 1 + 2  g(n/2) falls n = 2k, k > 1

Lösung der vorstehenden Funktionalgleichung:

g(n) = n  1

Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe
der Funktion merge wachsen jeweils linear mit n.

Februar 2021

Bemerkung:
Für den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten
wir bei

- SelectionSort: A(n)  n2
- MergeSort: A(n)  n  log2(n)
- Fibonacchi-Folge: A(n)  2n (bei rekursiver Berechnung)
- BinarySearch: A(n)  log2(n)

Entsprechend haben

- SelectionSort quadratische Komplexität,
- MergeSort linear-logarithmische Komplexität,
- die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexität,
- BinarySearch logarithmische Komplexität.

Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar.

Aufgabenblatt Nr. 5 inf12 25.02.2021

13. MergeSort

 Gegeben ist das aus den acht Komponenten a[0], a[1], , a[7]

bestehende array a, die gemäß beigefügtem Arbeitsblatt mit ganzen Zahlen
belegt sind; das array soll schrittweise gemäß dem Algorithmus MergeSort
aufsteigend sortiert werden.

 Bemerkung:

Im folgenden schreiben wir sort(left,right) statt sort(a,left,right) und
merge(left,middle,right) statt merge(a,left,middle,right).

 Mit dem Aufruf sort(a,0,7) bzw. sort(0,7) wird der Vorgang zum Sortieren
des aus 8 Komponenten bestehenden arrays a eingeleitet; dabei veranlaßt
die rekursiv formulierte Funktion sort weitere Aufrufe von sich selbst gemäß
folgendem Baumdiagramm:

 Diese Baumstruktur ist auf der Seite 1 des beigefügten Arbeitsblatts

nachempfunden. Nachdem das array a in Teillisten jeweils der Länge 1 zerlegt
wurde (eine aus 1 Element bestehende Liste ist bereits sortiert), werden
jeweils 2 sortierten Teillisten mit merge zu 1 sortierten Liste gemischt (Seite
2).

 Aufgabe: In der beigefügten Übersicht MergeSort_Arbeitsblatt.doc wird der

Sortiervorgang zum Sortieren eines aus 8 Komponenten bestehenden arrays
schrittweise vollzogen; ergänze alle fehlenden Einträge in
MergeSort_Arbeitsblatt.doc (oder handschriftlich in der ausgedruckten
Version MergeSort_Arbeitsblatt.pdf).

14. SelectionSort

 Der Algorithmus sorting_by_direct_selection.py
 hat noch Optimierungspotential hinsichtlich des Zeitbedarfs zum Sortieren

einer als array gegebenen Liste. Hierzu läßt sich die Funktion min(x,j) in
geeigneter Weise modifizieren; ergreife diese Möglichkeit!

Aufgabenblatt Nr. 6 inf12 10.03.2021

15. MergeSort

 In dem paper MergeSort_final.pdf (08.03.2021) wurde die Funktion f(n)
hergeleitet, welche in Abhängigkeit von n die Anzahl der Aufrufe der Funktion
sort angibt; wegen f(n) = 2n  1 wächst f(n) linear mit n und daher
erheblich schwächer als der Aufwand A(n).

 Aufgabe: Finde in entsprechender Weise einen Funktionsterm für die
Funktion g(n), welche die Anzahl der Aufrufe der Funktion merge in
Abhängigkeit von n bestimmt.

 Hinweis: Auch hier beschränke man sich auf Werte von n, die sich als
Zweierpotenz schreiben lassen (n = 1, 2, 4, 8,). Fertige für n = 2 und
n = 8 jeweils eine Baumstruktur an gemäß folgendem Beispiel (n = 4):

Die Pfeile bedeuten hier: „wird gemischt“; z. B. werden die sortierten
Teillisten {a[0], a[1]} und {a[2], a[3]} vermöge merge(0,1,3) zur sortierten
Liste {a[0], a[1], a[2], a[3]} gemischt.

16. Implementiere in dem in Python geschriebenen Quelltext mergesort.py

Zählvariablen z und y, welche zur Laufzeit des Algorithmus die Anzahl der
Aufrufe der Funktion sort und der Funktion merge ermitteln; bestätige auf
diese Weise die Ergebnisse, die für f(n) und g(n) gefunden wurden.

Bemerkung:
Bei MergeSort hat der Rechenaufwand A(n), um eine Liste mit n Komponenten zu
sortieren, wegen A(n)  n  log2(n) eine linear-logarithmische Komplexität; da die
Anzahl der rekursiven Funktionsaufrufe linear mit n wächst, hat der zur Laufzeit
des Algorithmus benötigte Speicher lineare Komplexität.

Binäre Suche

Gegeben: Ein sortiertes Array a mit n Komponenten a[0], , a[n-1]
Aufgabe: Entscheide, ob ein zur Laufzeit für die Variable value eingegebener Wert im Array a vorkommt.

Beispiel

value = 13
n = len(a) = 10

Suche value in der Liste a[0], . . . , a[9]; diese Liste und value übergeben wir der Booleschen Funktion
binarysearch, welche a[0], . . . , a[9] als lokale Liste array[0], . . . , array[9] verarbeitet.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21

array[0] array [1] array [2] array [3] array [4] array [5] array [6] array [7] array [8] array [9]

3 4 5 5 7 8 11 13 19 21

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 5

2. Schritt:
midvalue = array[len(array)//2] = array[10//2] = array[5] = 8

Wir vergleichen value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste a[0], . . . , a[4] links von a[5]
Falls value > midvalue: suche in der Liste a[6], . . . , a[9] rechts von a[5]

hier: wegen 13 > 8 suchen wir in der Liste a[6], . . . , a[9]

Suche value in der Liste a[6], . . . , a[9]

a[6] a[7] a[8] a[9]

11 13 19 21

Diese Liste a[6], . . , a[9] und value übergeben wir der Booleschen Funktion binarysearch,
welche a[6], . . , a[9] als lokale Liste array[0], . . . , array[3] verarbeitet.

array[0] array[1] array[2] array[3]

11 13 19 21

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 4//2 = 2

2. Schritt:
midvalue = array[len(array)//2] = array[4//2] = array[2] = 19

Wir vergleichen value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0], . . . , array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suchen wir in der Liste array[0], . . . , array[1]

Suche value in der Liste array[0], . . . , array[1]

array[0] array[1]

11 13

Diese Liste array[0], . . . , array[1] und value übergeben wir der Booleschen Funktion binarysearch,
welche array[0], . . . , array[1] als lokale Liste array[0], . . . , array[1] verarbeitet.

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 2//2 = 1

2. Schritt:
midvalue = array[len(array)//2] = array[2//2] = array[1] = 13
Wir vergleichen value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0] links von array[1]
Falls value > midvalue: suche in der leeren Liste [] rechts von array[1], dann: binarysearch gibt den Wert False

zurück; nicht gefunden!

hier: wegen 13 = value = midvalue = 13: gefunden!

Listen in Python 13.04.2021

Definition: Unter einem Array verstehen wir eine Folge von

Variablen gleichen Typs.

Bemerkung: In Python läßt sich ein Array z. B. als Liste realisieren; es

gibt Programmiersprachen (z. B. Pascal), bei denen ‚array’
Schlüsselwort für eine Datenstruktur ist.

Bemerkung: Der Operator ‚ : ’ heißt auch slice-Operator.

Die folgende Liste ist kein array im engeren Sinne, da Komponenten
unterschiedlichen Typs (integer und string) vorkommen:

Bei dem zweiten der beiden folgenden Python-Programme wird die
aus 7 Komponenten bestehende Teilliste a[3], , a[9] von a der
Funktion test übergeben, welche diese Komponenten quadriert;
innerhalb der Funktion test wird die aus 7 Komponenten bestehende
Liste b mit 0, 1, , 6 indiziert.

 2

Binäre Suche (BinarySearch)

Als Datenstruktur legen wir das aus den n Komponenten a[0], , a[n-1]
bestehende Array a zugrunde, für dessen Komponenten die Ordnungsrelationen <, >, ≤, ≥, =
definiert sind.
Nach Zuweisung eines Wertes an die Variable value werden das sortierte Array a und value der
Funktion binarysearch übergeben; binarysearch entscheidet, ob es in der sortierten Liste
mit a[0] ≤ ≤ a[n-1] einen Index i gibt mit a[i] = value; falls dies zutrifft,
liefert binarysearch den Booleschen Wert True, andernfalls den Wert False.

Python-Quelltext:

 2

Durchführung des Algorithmus für ein aus 32 Zufallszahlen bestehendes Array a:

n = len(a) = Anzahl der Datenelemente = 32

Quelliste:

[77, 26, 19, 54, 29, 20, 38, 38, 1, 94, 83, 53, 90, 17, 66, 79, 43, 36, 11, 57, 52, 99, 68, 20, 32, 27, 7, 46, 91, 75, 54, 78]

a[0] a[1] a[2] a[3] …. …. …. …. …. …. a[30] a[31]

77 26 19 54 …. …. …. …. …. …. 54 78

sortierte Liste a:

[1, 7, 11, 17, 19, 20, 20, 26, 27, 29, 32, 36, 38, 38, 43, 46, 52, 53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99]

a[0] a[1] a[2] …. …. a[15] a[16] a[17] a[18] …. a[30] a[31]

1 7 11 …. …. 46 52 53 54 …. 94 99

Bemerkung: Jede Teilliste der Liste a ist ebenfalls sortiert.

gesuchter Wert: value = 76

1. Aufruf der Funktion binarysearch

Die sortierte Liste a und value werden mit dem Aufruf binarysearch(a,value) der Funktion
binarysearch übergeben; binarysearch übernimmt das Array a als lokales Array array.

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 32//2 = 16

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[16] = 52
Wegen 76 > 52 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 15 Komponenten bestehenden Teilliste „rechts“ von a[16] fortzusetzen, also in der Liste

[53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99]

a[17] a[18] …. …. …. a[30] a[31]

53 54 …. …. …. 94 99

2. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch(array[len(array)//2 + 1:],value)
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0, 1, , 14:

a[0] a[1] …. a[6] a[7] a[8] …. a[13] a[14]

53 54 …. 75 77 78 …. 94 99

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 15//2 = 7

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[7] = 77
Wegen 76 < 77 nimmt der Boolesche Term value < midvalue den Wert True an; folglich ist die Suche in
der aus 7 Komponenten bestehenden Teilliste „links“ von a[7] fortzusetzen, also in der Liste

[53, 54, 54, 57, 66, 68, 75]

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

53 54 54 57 66 68 75

3. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch(array[:len(array)//2],value)

 3

(beachte: (value < midvalue)hat den Wert True) werden die vorstehende Teilliste und value

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0, 1, , 6:

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

53 54 54 57 66 68 75

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 7//2 = 3

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[3] = 57
Wegen 76 > 57 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 3 Komponenten bestehenden Teilliste „rechts“ von a[3] fortzusetzen, also in der Liste

[66, 68, 75]

a[4] a[5] a[6]

66 68 75

4. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch(array[len(array)//2 + 1:],value)
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0, 1, 2:

a[0] a[1] a[2]

66 68 75

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 3//2 = 1

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[1] = 68
Wegen 76 > 68 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 1 Komponente bestehenden Teilliste „rechts“ von a[1] fortzusetzen, also in der Liste

[75]

a[2]

75

5. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch(array[len(array)//2 + 1:],value)
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
dem Index 0:

a[0]

75

Da wegen 75 ≠ 76 der Boolesche Term array[0] != value den Wert True annimmt und da die Länge
des übergebenen Arrays den Wert 1 hat, erhält die Boolesche Konjunktion

len(array) == 1 and array[0] != value

den Wert True; folglich liefert die Funktion binarysearch den Wert False, und der Algorithmus bricht
ab mit der Ausgabe: „76 wurde nicht gefunden“.

 4

Aufwandsbetrachtung:

Die erfolglose Suche (wie im oben durchgeführten Beispiel) in einem aus n Komponenten
bestehenden Array erfordert eine maximale Anzahl von Aufrufen der Funktion binarysearch;
dagegen endet eine erfolgreiche Suche, sobald der Boolesche Term midvalue == value den
Wert True annimmt.

O. B. d. A. nehmen wir an, daß n eine Potenz von 2 ist, d. h. es gibt eine ganze nicht negative Zahl
k mit n = 2k.

Wir überlegen, wie viele Teilungen und damit wie viele Aufrufe von binarysearch im „worst case“
benötigt werden, bis man zu einem Array mit 1 Komponente gelangt:

n k
Maximale Anzahl der Aufrufe

binarysearch
1 0 1
2 1 2
4 2 3
8 3 4
16 4 5
32 5 6
64 6 7
n log2(n) 1 + log2(n)

Wegen n = 2k gilt k = log2(n); damit folgt für die maximale Anzahl A der Aufrufe von
binarysearch:

A = 1 + log2(n)

Für große Werte von n kann man den Summand 1 vernachlässigen, so daß in guter Näherung gilt:

A  log2(n)

Da die Rechenzeit der Anzahl der benötigten Aufrufe der rekursiv formulierten Funktion
binarysearch folgt, hat der Algorithmus „Binäre Suche“ logarithmische Komplexität.

12.04.2021

binarysearch

Quelliste: Liste von 50 Zufallszahlen

gesuchtes Element: 80

Quelliste:
[67, 54, 59, 16, 60, 81, 47, 63, 31, 71, 20, 97, 31, 27, 86, 22, 92,
78, 75, 95, 14, 87, 16, 88, 63, 72, 44, 21, 59, 55, 67, 60, 34, 27,
54, 7, 58, 87, 21, 17, 14, 31, 67, 44, 75, 51, 47, 90, 68, 44]

sortierte Liste:
[7, 14, 14, 16, 16, 17, 20, 21, 21, 22, 27, 27, 31, 31, 31, 34, 44,
44, 44, 47, 47, 51, 54, 54, 55, 58, 59, 59, 60, 60, 63, 63, 67, 67,
67, 68, 71, 72, 75, 75, 78, 81, 86, 87, 87, 88, 90, 92, 95, 97]

an binarysearch uebergebene Liste nach dem 1 . Aufruf:

[7, 14, 14, 16, 16, 17, 20, 21, 21, 22, 27, 27, 31, 31, 31, 34, 44,
44, 44, 47, 47, 51, 54, 54, 55, 58, 59, 59, 60, 60, 63, 63, 67, 67,
67, 68, 71, 72, 75, 75, 78, 81, 86, 87, 87, 88, 90, 92, 95, 97]

an binarysearch uebergebene Liste nach dem 2 . Aufruf:

[59, 59, 60, 60, 63, 63, 67, 67, 67, 68, 71, 72, 75, 75, 78, 81, 86,
87, 87, 88, 90, 92, 95, 97]

an binarysearch uebergebene Liste nach dem 3 . Aufruf:

[75, 78, 81, 86, 87, 87, 88, 90, 92, 95, 97]

an binarysearch uebergebene Liste nach dem 4 . Aufruf:

[75, 78, 81, 86, 87]

an binarysearch uebergebene Liste nach dem 5 . Aufruf:

[75, 78]

an binarysearch uebergebene Liste nach dem 6 . Aufruf:

[]

80 wurde nicht gefunden

Anzahl der Aufrufe der Routine binarysearch: 6

