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10. Die Hofstadter-Funktion ist rekursiv definiert (n natürliche Zahl): 
 
 Rekursionsanfang:     hof(1) = 1 
  hof(2) = 1 
 

 Rekursionsvorschrift:  hof(n) = hof[n  hof(n  1)] + hof[n  hof(n  2)],  n>2 
 
 Formuliert man den Algorithmus zur Berechnung der Hofstadter-Funktion als 

Python-Programm mit rekursivem Funktionsaufruf, haben wir die Erfahrung 
gemacht, daß die Rechenzeit für große Werte von n sehr schnell wächst; der 
Grund ist die mit n sehr schnell wachsende Anzahl gleichzeitig aktiver Aufrufe 
der Funktion hof.  

 
 Dieses ungünstige Laufzeitverhalten läßt sich umgehen, indem man den 

Algorithmus zur Berechnung der Hofstader-Funktion iterativ formuliert. 
 
 Vorschlag zur iterativen Formulierung: 
 Definiere ein array a mit den Komponenten a[0], a[1], a[2], . . . . . .  und 

setze a[0] = hof(1) = 1, a[1] = hof(2) = 1.  
Den weiteren Komponenten a[2], a[3], . . .  werden in dieser Reihenfolge die 
Werte hof(3), hof(4), . . . .   zugewiesen. 

 
 Konzipiere und teste das iterativ formulierte Python-Programm!  
 
 
 
 

11. Zusatzaufgabe:  
 
 Die Fibonacci-Folge {ai} ist wie folgt definiert: 
 
 a1  =   a2  =  1 
    
 an  =  an-1  +  an-2    für n  3 
 
 Schreibe und teste ein Python-Programm zur Berechnung der Fibonacci-

Folge. 
 
 
 
12. Der als Python-Programm formulierte Algorithmus 

sorting_by_direct_selection.py.txt auf  
https://kalle2k.lima-city.de/computerscience/Informatik_12/sorting/  
sortiert ein array von Zufallszahlen aufsteigend, d. h. die sortierte Liste 
beginnt mit dem kleinsten Element. 

 
 Modifiziere das Programm so, daß das Sortieren absteigend erfolgt. 
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Sortieren durch Mischen ("MergeSort")  
 
Aufgabe:  
 
Gegeben ist eine Liste L = {a[0], a[2], a[3], . . . . , a[n-1]}  

von n Datenelementen, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt  

sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daß gilt:  

a[0] ≤ a[2] ≤. . . . . ≤ a[n-1] . 

Wir fassen die Elemente der Liste auf als Komponenten eines arrays a. 

 
 
Strategie: "Divide et impera"  
 
Eine Liste, die nur ein einziges Element enthält, ist bereits sortiert. 
 
Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, läßt sich in 4 Schritten 
bewältigen:  
 

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten  
 

2). Sortiere die erste Teilliste gemäß den Schritten 1). - 4).  
 

3). Sortiere die zweite Teilliste gemäß den Schritten 1). - 4).  
 

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste 
 
 
Falls left < right wahr ist, sortiert die rekursiv definierte Funktion 
 

sort(array, left, right)  
 

die Liste  
 

array[left], . . . . , array[right] 
 

unter Verwendung der Funktion merge. 
 

Die Funktion 
  

merge(array, left, middle, right) 
 

mischt die sortierten Teillisten  
 

array[left], . . . . , array[middle] 
 

und 
 

array[middle+1], . . . . , array[right] 
 

zu der sortierten Gesamtliste 
 

array[left], . . . . , array[right] . 
 
Quellcode der Funktion sort in Python: 
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def sort(array, left, right):   
     if left >= right:   
          return   
     middle = (left + right)//2   
     sort(array, left, middle)   
     sort(array, middle + 1, right)   
     merge(array, left, middle, right) 
 
 
Aufruf zum Sortieren der aus den n Komponenten  
 

 a[0], a[2], a[3], . . . . , a[n-1] 
 

bestehenden Liste a: 
 

 sort(a, 0, len(a)-1) 
 
 
 
Aufwandsbetrachtung: 
 

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie 
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus 
n Komponenten bestehende Liste zu sortieren. 
 

Dann gilt: 
 

A(n)  =  2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen  
+ Aufwand zum Mischen zweier sortierter Teillisten 

 

A(n)  =  A(n/2) + A(n/2)  
+ Aufwand zum Mischen zweier sortierter Teillisten 

 

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wächst linear mit der Anzahl n der zu sortierenden Datenelemente; somit 
erhalten wir für den Funktionsterm A(n) die Funktionalgleichung (c = Konstante 
= Proportionalitätsfaktor) 
 

(*)  A(n)  = A(n/2) + A(n/2) + c  n   mit der Bedingung 
(**)  A(1)  = 0 . 

 

Behauptung: Die Funktion  
 

A(n) = c  n  log2(n) 
 

ist Lösung der Funktionalgleichung (*) mit der Anfangsbedingung (**). 
 
Beweis: 
 
A(n/2) + A(n/2) + c  n   =  2  A(n/2) + c  n   

=  2  c  n/2  log2(n/2) + c  n  
=  c  n  (log2(n)   log2(2)) + c  n 
=  c  n  (log2(n)   1) + c  n 
=  c  n  log2(n)  
=  A(n)  
 

Damit ist (*) erfüllt; wegen log2(1) = 0 genügt A(n) auch der Bedingung (**). 
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Bemerkung: Mit Methoden der Analysis läßt sich die Eindeutigkeit der Lösung des 
Problems (*), (**) zeigen, somit ist mit A(n) = c  n  log2(n) die einzige Lösung 
der Funktionalgleichung gefunden. 
 
Allgemein läßt sich beweisen, daß der Aufwand zum Sortieren von n Datensätzen 
grundsätzlich mindestens von der Ordnung n  log2(n) wächst. In diesem Sinne 
kann das Sortierverfahren „MergeSort“ als optimales Vefahren gelten.  
 
 
Ergänzende Betrachtung zum Speicherplatzbedarf:  
 

Nachdem wir festgestellt haben, daß der Aufwand zum Sortieren von n 
Datenelementen von der Ordnung n  log2(n) wächst und damit ein Optimum 
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber 
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn 
rekursive Algorithmen haben grundsätzlich den Nachteil, daß sie während der 
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. Daß dieser Effekt bei 
MergeSort nicht oder nur unwesentlich ins Gewicht fällt, zeigt folgende 
Überlegung:  
 

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion 
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.  
 

O. B. d. A. sei n eine Zweierpotenz, d. h.  n=2k,  k{0, 1, 2, 3, . . . . . . }.  
 
Bemerkung: Der Pfeil                    bedeutet: „ruft auf“ 
 
n = 1:                              sort(a,0,0)                                       1 Aufruf 
 
 
n = 2:                              sort(a,0,1) 
 
 
 
                             sort(a,0,0)        sort(a,1,1)                          
 
                                                                            1 + 2  1 = 3 Aufrufe 
 
 
 
n = 4:                                 sort(a,0,3) 
 
 
 
                          sort(a,0,1)                  sort(a,2,3)                       
 
 
 
 
         sort(a,0,0)        sort(a,1,1)         sort(a,2,2)       sort(a,3,3) 
 
                                                                             1 + 2  3 = 7 Aufrufe 
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n = 8:                                          sort(0,7) 
 
 
 
                                sort(0,3)                                           sort(4,7)                       
 
 
 
 
                  sort(0,1)                sort(2,3)                    sort(4,5)                   sort(6,7) 
 
 
 
   sort(0,0)     sort(1,1)    sort(2,2)   sort(3,3)       sort(4,4)    sort(5,5)     sort(6,6)     sort(7,7) 
 
 
                                                                             1 + 2  7 = 15 Aufrufe 
 
 
 
f(1)  = 1  =   1  =  2  1  – 1  

f(2)  = 1 + 2  1  =   3  =  2  2  – 1  

f(4)  = 1 + 2  3  =   7  =  2  4  – 1  

f(8)  = 1 + 2  7  =  15  =  2  8  – 1  

f(16) = 1 + 2  15 =  31  =  2  16 – 1  

f(32) = 1 + 2  31  =  63  =  2  32 – 1  

 
allgemein:  
 
f(n) = 2  n – 1  
 
Offensichtlich ist f(n) Lösung der rekursiv definierten Funktionalgleichung  

 f(n) = 1 + 2  f(n/2)  

mit der Anfangsbedingung  f(1) = 1 .  

 
Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der 
Speicherplatzbedarf während der Laufzeit wächst somit linear mit n, also 
wesentlich schwächer als die Anzahl A(n) elementarer Rechenoperationen. 
 
 
 
Die rekursiv veranlaßten Aufrufe der Funktion sort zerlegen die zu sortierende 
Liste in Teillisten jeweils der Länge 1, die als ein-elementige Listen bereits 
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils 
einer sortierten Liste gemäß folgendem Diagramm: 
 
 
Bemerkung: Der Pfeil                    bedeutet: „wird gemischt“ 
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                                                                   merge(0,3,7) 
  

                                            a[0]   a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]       
 

 
Für die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar: 

 
g(1) = 0 
g(n) = 1 + 2  g(n/2)      falls   n = 2k,  k > 1 
 
Lösung der vorstehenden Funktionalgleichung: 
 
g(n) = n  1 

 
 
Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe 
der Funktion merge wachsen jeweils linear mit n. 

 
 

Februar 2021 
 
 
 

 
Bemerkung:  
Für den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten 
wir bei 
 

- SelectionSort:  A(n)  n2 
- MergeSort:        A(n)  n  log2(n) 
- Fibonacchi-Folge:  A(n)  2n  (bei rekursiver Berechnung) 
- BinarySearch: A(n)  log2(n) 

 
 
Entsprechend haben 
 

- SelectionSort quadratische Komplexität, 
- MergeSort linear-logarithmische Komplexität, 
- die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexität, 
- BinarySearch logarithmische Komplexität. 

 
Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar. 
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13. MergeSort 
 
 Gegeben ist das aus den acht Komponenten a[0], a[1], . . . . , a[7] 

bestehende array a, die gemäß beigefügtem Arbeitsblatt mit ganzen Zahlen 
belegt sind; das array soll schrittweise gemäß dem Algorithmus MergeSort 
aufsteigend sortiert werden. 

 
 Bemerkung:  

Im folgenden schreiben wir sort(left,right) statt sort(a,left,right) und 
merge(left,middle,right) statt merge(a,left,middle,right). 
 

 Mit dem Aufruf sort(a,0,7) bzw. sort(0,7) wird der Vorgang zum Sortieren 
des aus 8 Komponenten bestehenden arrays a eingeleitet; dabei veranlaßt 
die rekursiv formulierte Funktion sort weitere Aufrufe von sich selbst gemäß 
folgendem Baumdiagramm: 

 

 
 
 Diese Baumstruktur ist auf der Seite 1 des beigefügten Arbeitsblatts 

nachempfunden. Nachdem das array a in Teillisten jeweils der Länge 1 zerlegt 
wurde (eine aus 1 Element bestehende Liste ist bereits sortiert), werden 
jeweils 2 sortierten Teillisten mit merge zu 1 sortierten Liste gemischt (Seite 
2). 

 
 Aufgabe: In der beigefügten Übersicht MergeSort_Arbeitsblatt.doc wird der 

Sortiervorgang zum Sortieren eines aus 8 Komponenten bestehenden arrays 
schrittweise vollzogen; ergänze alle fehlenden Einträge in  
MergeSort_Arbeitsblatt.doc (oder handschriftlich in der ausgedruckten 
Version MergeSort_Arbeitsblatt.pdf). 

 
 
 
14. SelectionSort 
 
 Der Algorithmus sorting_by_direct_selection.py 
 hat noch Optimierungspotential hinsichtlich des Zeitbedarfs zum Sortieren 

einer als array gegebenen Liste. Hierzu läßt sich die Funktion min(x,j) in 
geeigneter Weise modifizieren; ergreife diese Möglichkeit! 
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15. MergeSort 
 

 In dem paper MergeSort_final.pdf (08.03.2021) wurde die Funktion f(n) 
hergeleitet, welche in Abhängigkeit von n die Anzahl der Aufrufe der Funktion 
sort angibt; wegen f(n) = 2n  1 wächst f(n) linear mit n und daher 
erheblich schwächer als der Aufwand A(n). 

 

 Aufgabe: Finde in entsprechender Weise einen Funktionsterm für die 
Funktion g(n), welche die Anzahl der Aufrufe der Funktion merge in 
Abhängigkeit von n bestimmt. 

 

 Hinweis: Auch hier beschränke man sich auf Werte von n, die sich als 
Zweierpotenz schreiben lassen (n = 1, 2, 4, 8, . . . . . ). Fertige für n = 2 und 
n = 8 jeweils eine Baumstruktur an gemäß folgendem Beispiel (n = 4): 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
 
  
 
  
 

Die Pfeile bedeuten hier: „wird gemischt“; z. B. werden die sortierten 
Teillisten {a[0], a[1]} und  {a[2], a[3]} vermöge merge(0,1,3) zur sortierten 
Liste {a[0], a[1], a[2], a[3]} gemischt. 

 
 
 
16. Implementiere in dem in Python geschriebenen Quelltext mergesort.py 

Zählvariablen z und y, welche zur Laufzeit des Algorithmus die Anzahl der 
Aufrufe der Funktion sort und der Funktion merge ermitteln; bestätige auf 
diese Weise die Ergebnisse, die für f(n) und g(n) gefunden wurden. 

 
 
 
 
Bemerkung:  
Bei MergeSort hat der Rechenaufwand A(n), um eine Liste mit n Komponenten zu 
sortieren,  wegen A(n)  n  log2(n) eine linear-logarithmische Komplexität; da die 
Anzahl der rekursiven Funktionsaufrufe linear mit n wächst, hat der zur Laufzeit 
des Algorithmus benötigte Speicher lineare Komplexität. 



Binäre Suche 
 
Gegeben: Ein sortiertes Array a mit n Komponenten a[0], . . . . , a[n-1]  
Aufgabe: Entscheide, ob ein zur Laufzeit für die Variable value eingegebener Wert im Array a vorkommt. 
 
Beispiel 
 
value = 13 
n = len(a) = 10 
 
Suche value in der Liste a[0], . . . , a[9]; diese Liste und value übergeben wir der Booleschen Funktion 
binarysearch, welche a[0], . . . , a[9] als lokale Liste array[0], . . . , array[9] verarbeitet. 
 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

3 4 5 5 7 8 11 13 19 21 

 

array[0] array [1] array [2] array [3] array [4] array [5] array [6] array [7] array [8] array [9] 

3 4 5 5 7 8 11 13 19 21 

 
 
1. Schritt: 
Wir bestimmen den mittleren Index des Arrays array:     len(array)//2 = 5 
 
2. Schritt: 
midvalue = array[len(array)//2] = array[10//2] = array[5] = 8 



Wir vergleichen value mit midvalue: 
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden! 
Falls value < midvalue: suche in der Liste a[0], . . . , a[4] links von a[5] 
Falls value > midvalue: suche in der Liste a[6], . . . , a[9] rechts von a[5] 
 
hier: wegen 13 > 8 suchen wir in der Liste a[6], . . . , a[9]  
 
 
Suche value in der Liste a[6], . . . , a[9] 
 
 

a[6] a[7] a[8] a[9] 

11 13 19 21 

 
Diese Liste a[6], .  . , a[9] und value übergeben wir der Booleschen Funktion binarysearch,  
welche a[6], . . , a[9] als lokale Liste array[0], . . . , array[3] verarbeitet. 
 

array[0] array[1] array[2] array[3] 

11 13 19 21 

 
 
1. Schritt: 
Wir bestimmen den mittleren Index des Arrays array:     len(array)//2 = 4//2 = 2 
 
2. Schritt: 
midvalue = array[len(array)//2] = array[4//2] = array[2] = 19 



Wir vergleichen value mit midvalue: 
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden! 
Falls value < midvalue: suche in der Liste array[0], . . . , array[1]  links von array[2] 
Falls value > midvalue: suche in der Liste array[3] rechts von array[2] 
 
hier: wegen 13 < 19 suchen wir in der Liste array[0], . . . , array[1] 
 
Suche value in der Liste array[0], . . . , array[1] 
 

array[0] array[1] 

11 13 

 
Diese Liste array[0], . . . , array[1] und value übergeben wir der Booleschen Funktion binarysearch,  
welche array[0], . . . , array[1] als lokale Liste array[0], . . . , array[1] verarbeitet. 
 
1. Schritt: 
Wir bestimmen den mittleren Index des Arrays array:     len(array)//2 = 2//2 = 1 
 
2. Schritt: 
midvalue = array[len(array)//2] = array[2//2] = array[1] = 13 
Wir vergleichen value mit midvalue: 
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden! 
Falls value < midvalue: suche in der Liste array[0] links von array[1] 
Falls value > midvalue: suche in der leeren Liste [] rechts von array[1],  dann:  binarysearch gibt den Wert False 

zurück; nicht gefunden! 
 
hier: wegen 13 = value = midvalue = 13: gefunden! 
 



Listen in Python                                                       13.04.2021 
 
Definition:  Unter einem Array verstehen wir eine Folge von 

Variablen gleichen Typs. 
 
Bemerkung:  In Python läßt sich ein Array z. B. als Liste realisieren; es 

gibt Programmiersprachen (z. B. Pascal), bei denen ‚array’ 
Schlüsselwort für eine Datenstruktur ist. 

 
 

 
Bemerkung: Der Operator ‚ : ’ heißt auch slice-Operator. 
 
Die folgende Liste ist kein array im engeren Sinne, da Komponenten 
unterschiedlichen Typs (integer und string) vorkommen: 
 

 
 
 
 
Bei dem zweiten der beiden folgenden Python-Programme wird die 
aus 7 Komponenten bestehende Teilliste a[3], . . . . , a[9] von a der 
Funktion test übergeben, welche diese Komponenten quadriert; 
innerhalb der Funktion test wird die aus 7 Komponenten bestehende 
Liste b mit 0, 1, . . . . . , 6 indiziert. 
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Binäre Suche (BinarySearch)  
 
Als Datenstruktur legen wir das aus den n Komponenten a[0], . . . . , a[n-1] 
bestehende Array a zugrunde, für dessen Komponenten die Ordnungsrelationen <, >, ≤, ≥, = 
definiert sind. 
Nach Zuweisung eines Wertes an die Variable value werden das sortierte Array a und value der 
Funktion binarysearch übergeben; binarysearch entscheidet, ob es in der sortierten Liste 
mit a[0] ≤ . . . . ≤ a[n-1] einen Index i gibt mit a[i] = value; falls dies zutrifft, 
liefert  binarysearch den Booleschen Wert True, andernfalls den Wert False. 
 
Python-Quelltext: 
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Durchführung des Algorithmus für ein aus 32 Zufallszahlen bestehendes Array a: 
 
n = len(a) = Anzahl der Datenelemente = 32 
 
Quelliste: 
 
[77, 26, 19, 54, 29, 20, 38, 38, 1, 94, 83, 53, 90, 17, 66, 79, 43, 36, 11, 57, 52, 99, 68, 20, 32, 27, 7, 46, 91, 75, 54, 78] 
 

a[0] a[1] a[2] a[3] …. …. …. …. …. …. a[30] a[31] 

77 26 19 54 …. …. …. …. …. …. 54 78 
  
 
sortierte Liste a: 
 
[1, 7, 11, 17, 19, 20, 20, 26, 27, 29, 32, 36, 38, 38, 43, 46, 52, 53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99] 
 

a[0] a[1] a[2] …. …. a[15] a[16] a[17] a[18] …. a[30] a[31] 

1 7 11 …. …. 46 52 53 54 …. 94 99 
 
Bemerkung: Jede Teilliste der Liste a ist ebenfalls sortiert. 
  
gesuchter Wert: value = 76 
 
 
1. Aufruf der Funktion binarysearch 
 

Die sortierte Liste a und value werden mit dem Aufruf binarysearch(a,value) der Funktion 
binarysearch übergeben; binarysearch übernimmt das Array a als lokales Array array. 
 
1. Schritt:  
BinarySearch bestimmt den mittleren Index des Arrays:  len(a)//2 = 32//2 = 16 
 
2. Schritt: 
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[16] = 52 
Wegen 76 > 52 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche 
in der aus 15 Komponenten bestehenden Teilliste „rechts“ von a[16] fortzusetzen, also in der Liste 
 

[53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99] 
 

a[17] a[18] …. …. …. a[30] a[31] 

53 54 …. …. …. 94 99 
 
 
 
2. Aufruf der Funktion binarysearch 
 

Mit dem rekursiven Aufruf  
binarysearch(array[len(array)//2 + 1:],value)  
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value 

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit 
den Indices 0, 1, . . . . , 14: 
 

a[0] a[1] …. a[6] a[7] a[8] …. a[13] a[14] 

53 54 …. 75 77 78 …. 94 99 
 
1. Schritt:  
BinarySearch bestimmt den mittleren Index des Arrays:  len(a)//2 = 15//2 = 7 
 
2. Schritt: 
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[7] = 77 
Wegen 76 < 77 nimmt der Boolesche Term value < midvalue den Wert True an; folglich ist die Suche in 
der aus 7 Komponenten bestehenden Teilliste „links“ von a[7] fortzusetzen, also in der Liste 
 

[53, 54, 54, 57, 66, 68, 75] 
 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] 

53 54 54 57 66 68 75 
 
 
 
3. Aufruf der Funktion binarysearch 
 

Mit dem rekursiven Aufruf  
binarysearch(array[:len(array)//2],value)  
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(beachte: (value < midvalue)hat den Wert True) werden die vorstehende Teilliste und value 

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit 
den Indices 0, 1, . . . . , 6: 
 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] 

53 54 54 57 66 68 75 
 
1. Schritt:  
BinarySearch bestimmt den mittleren Index des Arrays:  len(a)//2 = 7//2 = 3 
 
2. Schritt: 
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[3] = 57 
Wegen 76 > 57 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche 
in der aus 3 Komponenten bestehenden Teilliste „rechts“ von a[3] fortzusetzen, also in der Liste 
 

[66, 68, 75] 
 

a[4] a[5] a[6] 

66 68 75 
 
 
 
4. Aufruf der Funktion binarysearch 
 

Mit dem rekursiven Aufruf  
binarysearch(array[len(array)//2 + 1:],value)  
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value 

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit 
den Indices 0, 1, 2: 
 

a[0] a[1] a[2] 

66 68 75 
 
1. Schritt:  
BinarySearch bestimmt den mittleren Index des Arrays:  len(a)//2 = 3//2 = 1 
 
2. Schritt: 
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[1] = 68 
Wegen 76 > 68 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche 
in der aus 1 Komponente bestehenden Teilliste „rechts“ von a[1] fortzusetzen, also in der Liste 
 

[75] 
 

a[2] 

75 
 
 
 
5. Aufruf der Funktion binarysearch 
 
Mit dem rekursiven Aufruf  
binarysearch(array[len(array)//2 + 1:],value)  
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value 

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit 
dem Index 0: 
 

a[0] 

75 
 
Da wegen 75 ≠ 76 der Boolesche Term array[0] != value den Wert True annimmt und da die Länge 
des übergebenen Arrays den Wert 1 hat, erhält die Boolesche Konjunktion 
 

len(array) == 1  and  array[0] !=  value   
 

den Wert True; folglich liefert die Funktion binarysearch den Wert False, und der Algorithmus bricht 
ab mit der Ausgabe: „76 wurde nicht gefunden“. 
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Aufwandsbetrachtung: 
 
Die erfolglose Suche (wie im oben durchgeführten Beispiel) in einem aus n Komponenten 
bestehenden Array erfordert eine maximale Anzahl von Aufrufen der Funktion binarysearch; 
dagegen endet eine erfolgreiche Suche, sobald der Boolesche Term   midvalue == value   den 
Wert  True  annimmt. 
 
O. B. d. A. nehmen wir an, daß n eine Potenz von 2 ist, d. h. es gibt eine ganze nicht negative Zahl 
k mit n = 2k. 
 
Wir überlegen, wie viele Teilungen und damit wie viele Aufrufe von binarysearch im „worst case“ 
benötigt werden, bis man zu einem Array mit 1 Komponente gelangt: 
 

n k 
Maximale Anzahl der Aufrufe 

binarysearch 
1 0 1 
2 1 2 
4 2 3 
8 3 4 
16 4 5 
32 5 6 
64 6 7 
n log2(n) 1 + log2(n) 

 
Wegen n = 2k gilt k = log2(n); damit folgt für die maximale Anzahl A der Aufrufe von 
binarysearch: 
 

A = 1 + log2(n) 
 
 
Für große Werte von n kann man den Summand 1 vernachlässigen, so daß in guter Näherung gilt: 
 

A  log2(n) 
 

Da die Rechenzeit der Anzahl der benötigten Aufrufe der rekursiv formulierten Funktion 
binarysearch folgt, hat der Algorithmus „Binäre Suche“ logarithmische Komplexität. 
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binarysearch  
 
Quelliste: Liste von 50 Zufallszahlen  
 

gesuchtes Element: 80 
 
 
Quelliste:  
[67, 54, 59, 16, 60, 81, 47, 63, 31, 71, 20, 97, 31, 27, 86, 22, 92, 
78, 75, 95, 14, 87, 16, 88, 63, 72, 44, 21, 59, 55, 67, 60, 34, 27, 
54, 7, 58, 87, 21, 17, 14, 31, 67, 44, 75, 51, 47, 90, 68, 44] 
 
sortierte Liste:  
[7, 14, 14, 16, 16, 17, 20, 21, 21, 22, 27, 27, 31, 31, 31, 34, 44, 
44, 44, 47, 47, 51, 54, 54, 55, 58, 59, 59, 60, 60, 63, 63, 67, 67, 
67, 68, 71, 72, 75, 75, 78, 81, 86, 87, 87, 88, 90, 92, 95, 97] 
 
an binarysearch uebergebene Liste nach dem 1 . Aufruf: 
 
[7, 14, 14, 16, 16, 17, 20, 21, 21, 22, 27, 27, 31, 31, 31, 34, 44, 
44, 44, 47, 47, 51, 54, 54, 55, 58, 59, 59, 60, 60, 63, 63, 67, 67, 
67, 68, 71, 72, 75, 75, 78, 81, 86, 87, 87, 88, 90, 92, 95, 97] 
 
an binarysearch uebergebene Liste nach dem 2 . Aufruf: 
 
[59, 59, 60, 60, 63, 63, 67, 67, 67, 68, 71, 72, 75, 75, 78, 81, 86, 
87, 87, 88, 90, 92, 95, 97] 
 
an binarysearch uebergebene Liste nach dem 3 . Aufruf: 
 
[75, 78, 81, 86, 87, 87, 88, 90, 92, 95, 97] 
 
an binarysearch uebergebene Liste nach dem 4 . Aufruf: 
 
[75, 78, 81, 86, 87] 
 
an binarysearch uebergebene Liste nach dem 5 . Aufruf: 
 
[75, 78] 
 
an binarysearch uebergebene Liste nach dem 6 . Aufruf: 
 
[] 
 
 
80 wurde nicht gefunden 
 
Anzahl der Aufrufe der Routine binarysearch:  6 


