Aufgabenblatt Nr. 4 inf12 26.01.2021

10.

11.

12.

Die Hofstadter-Funktion ist rekursiv definiert (n natirliche Zahl):

Rekursionsanfang: hof(1) =1
hof(2) = 1

Rekursionsvorschrift: hof(n) = hof[n — hof(n - 1)] + hof[n — hof(nh - 2)], n>2

Formuliert man den Algorithmus zur Berechnung der Hofstadter-Funktion als
Python-Programm mit rekursivem Funktionsaufruf, haben wir die Erfahrung
gemacht, daB die Rechenzeit flir groBe Werte von n sehr schnell wachst; der
Grund ist die mit n sehr schnell wachsende Anzahl gleichzeitig aktiver Aufrufe
der Funktion hof.

Dieses unglinstige Laufzeitverhalten 1aBt sich umgehen, indem man den
Algorithmus zur Berechnung der Hofstader-Funktion iterativ formuliert.

Vorschlag zur iterativen Formulierung:

Definiere ein array a mit den Komponenten a[0], a[1], a[2], . . .. .. und
setze a[0] = hof(1) = 1, a[1] = hof(2) = 1.

Den weiteren Komponenten a[2], a[3], . . . werden in dieser Reihenfolge die
Werte hof(3), hof(4), .. .. zugewiesen.

Konzipiere und teste das iterativ formulierte Python-Programm!

Zusatzaufgabe:

Die Fibonacci-Folge {a;} ist wie folgt definiert:
a; = a, = 1

Qn = ap1 + ap> firn=3

Schreibe und teste ein Python-Programm zur Berechnung der Fibonacci-
Folge.

Der als Python-Programm formulierte Algorithmus
sorting_by_direct_selection.py.txt auf
https://kalle2k.lima-city.de/computerscience/Informatik 12/sorting/
sortiert ein array von Zufallszahlen aufsteigend, d. h. die sortierte Liste
beginnt mit dem kleinsten Element.

Modifiziere das Programm so, daB3 das Sortieren absteigend erfolgt.



Lésungen Aufgabenblatt Nr. 4 vom 26.01.2021

Nr. 10 (Hofstadter-Folge)

rekursiv:
def hof (x):
global z
z+=1
i = —
return 1
ellif x ==
return 1
elif x > 2
return hof(x ~ hof(x ~ 1}) + hof{z - hof{x = 2})
endwert = int (input ('Endwert n = '))
n=1

while n <= endwert:
z =0
v = hof(n)
printii*mofl®, n."y =", v}
print ('# Aufrufe =',z)

print ()
1 B e |
iterativ:

# Hofstadter iteratiwv

n = int({input('Endwert n = "))
print ()
y = list(range(l, n+2))

yi11=1
y[2]=1

Primt 'hOE(*,1.%) = 2 wiil)
print (*hofil”.2:%) =Y. viZl}

for 1 1n range(3,n+l):
yiil = YIi-y[1-111 * ¥[i —~ ¥[1+-2]]
print [("BoEl'.i. ')} = *



Nr. 11 (Fibonacchi-Folge)

rekursiv:
n = -dnk{input ("n = Y})

def fib(n):
global z
z +=1
i B« 2:
return n
else:

return fib(n-1) + fib(n-2)

for 1 in range(n+l):
z =1
Prins (P01, ") = Y, Fibli))
print ('# Aufrufe: ', z)

print ()}
iterativ:
n = int{input('n = "}}
a = list(range(0,n+1))
a[o] =0
a[l] =1
print{*tibonacci(';0;"} = Y,alb]]
prinf ("*ribomacci (", 1,") = Y, ajf1}]

for i in range(2,n+1}:
alil] = al[i-1] + a[1i-2]
print (' fibonacci(”,; i, ") = Y,alil)

[0 1; 1l £y 3 o 8x 13 21, 34 bhy B0 144, 233 «39; ali;
587, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368]



Sortieren durch Mischen ("MergeSort")

Aufgabe:

Gegeben ist eine Liste L = {a[0], a[2], a[3],...., a[n-1]}
von n Datenelementen, flr die die Ordnungsrelationen <, >, <, > erklart
sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daB gilt:
a[0] =a[2] =..... < a[n-1].
Wir fassen die Elemente der Liste auf als Komponenten eines arrays a.

Strategie: "Divide et impera”
Eine Liste, die nur ein einziges Element enthalt, ist bereits sortiert.

Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, laBt sich in 4 Schritten
bewaltigen:

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten
2). Sortiere die erste Teilliste gemaB den Schritten 1). - 4).
3). Sortiere die zweite Teilliste geman den Schritten 1). - 4).

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste

Falls left < right wahr ist, sortiert die rekursiv definierte Funktion
sort (array, left, right)

die Liste

array[left], . . . . , array[right]

unter Verwendung der Funktion merge.

Die Funktion

merge (array, left, middle, right)

mischt die sortierten Teillisten

array[left], . . . . , array[middle]
und
array[middle+l], . . . . , array[right]

zu der sortierten Gesamtliste

array[left], . . . . , array[right]

Quellcode der Funktion sort in Python:



def sort(array, left, right):
if left >= right:
return
middle = (left + right)//2
sort (array, left, middle)
sort (array, middle + 1, right)
merge (array, left, middle, right)

Aufruf zum Sortieren der aus den n Komponenten

a[0], a[2], al3]1, . . . . , a[n-1]
bestehenden Liste a:

sort(a, 0, len(a)-1)

Aufwandsbetrachtung:

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus
n Komponenten bestehende Liste zu sortieren.

Dann gilt:

A(n) = 2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen
+ Aufwand zum Mischen zweier sortierter Teillisten

A(n) = A(n/2) + A(n/2)
+ Aufwand zum Mischen zweier sortierter Teillisten

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wachst linear mit der Anzahl n der zu sortierenden Datenelemente; somit
erhalten wir fir den Funktionsterm A(n) die Funktionalgleichung (c = Konstante
= Proportionalitatsfaktor)

(*Y A(n) =A(n/2) + A(n/2) + c- n mit der Bedingung
(**) A(1) =0.

Behauptung: Die Funktion
A(n) = c-n-log,(n)

ist Losung der Funktionalgleichung (*) mit der Anfangsbedingung (**).

Beweis:
A(n/2) + A(n/2) + c-n = 2-A(nh/2) +c-n
= 2-.-¢c-n/2-logx(n/2) + c-n
= c-n-(logz(n) — logx(2)) + c-n
= c-n-(logz(n)— 1) +c-n
= C-n-logx(n)
= A(n)

Damit ist (*) erfullt; wegen log,(1) = 0 genlgt A(n) auch der Bedingung (**).



Bemerkung: Mit Methoden der Analysis 148t sich die Eindeutigkeit der Lésung des
Problems (*), (**) zeigen, somit ist mit A(n) = ¢ - n -log,(n) die einzige Lésung
der Funktionalgleichung gefunden.

Allgemein 1aBt sich beweisen, daB der Aufwand zum Sortieren von n Datensatzen
grundsatzlich mindestens von der Ordnung n - log,(n) wachst. In diesem Sinne
kann das Sortierverfahren ,MergeSort" als optimales Vefahren gelten.

Erganzende Betrachtung zum Speicherplatzbedarf:

Nachdem wir festgestellt haben, daB der Aufwand zum Sortieren von n
Datenelementen von der Ordnung n - log,(n) wachst und damit ein Optimum
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn
rekursive Algorithmen haben grundsatzlich den Nachteil, daB sie wahrend der
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. DaB3 dieser Effekt bei
MergeSort nicht oder nur unwesentlich ins Gewicht fallt, zeigt folgende
Uberlegung:

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.

0. B. d. A. sei n eine Zweierpotenz, d. h. n=2%, ke{0,1,2,3,...... ¥.
Bemerkung: Der Pfeil ——— bedeutet: ,ruft auf"

n=1: sort(a,0,0) 1 Aufruf

n=2: sort(a,0,1)

SN

sort(a,0,0) sort(a,1,1)

1+ 2.1 = 3 Aufrufe

n=4: sort(a,0,3)
sort(a,0,1) sort(a,2,3)
sort(a,0,0) sort(a,1,1) sort(a,2,2) sort(a,3,3)

1+ 2.3 =7 Aufrufe



n = 8: sort(0,7)
sort(0,3) sort(4,7)
sort(0,1) sort(2,3) sort(4,5) sort(6,7)

SN /N SN N

sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

1+ 2.7 =15 Aufrufe

f(1) =1 =1 =2.1-1
f2) =1+2-1 = 3 =2.2 -1
f(4) =1+2.3 = 7 =2.4 -1
f(8) =1+4+2.7 =15 = 2.8 -1
f(16)=1+2-15= 31 = 2.16-1
f(32)=1+2-31 =63 =2-32-1

allgemein:
f(n)=2.n-1

Offensichtlich ist f(n) Losung der rekursiv definierten Funktionalgleichung
f(n) =1+ 2.f(n/2)
mit der Anfangsbedingung f(1)=1.

Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der
Speicherplatzbedarf wahrend der Laufzeit wachst somit linear mit n, also
wesentlich schwacher als die Anzahl A(n) elementarer Rechenoperationen.

Die rekursiv veranlaBten Aufrufe der Funktion sort zerlegen die zu sortierende
Liste in Teillisten jeweils der Lange 1, die als ein-elementige Listen bereits
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils
einer sortierten Liste gemaB folgendem Diagramm:

Bemerkung: Der Pfeili —— bedeutet: ,wird gemischt"



al0] al1] al2] al3] al4] als] ale] al7]
merge(0,0,1) merge(2,2,3) merge(4,4,5) merge(6,6,7)
alo] a[1l al2] a[3] al4] a[s] a[6] a[7]
merge(0,1,3) merge(4,5,7)
alo] al1] al2] a[3) al4] a[5] al6] al7]

\./

merge(0,3,7)
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Fir die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar:

g(1) =0
g(n)=1+4+2.g(n/2) falls n=2% k>1

Lésung der vorstehenden Funktionalgleichung:

g(n)=n-1

Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe
der Funktion merge wachsen jeweils linear mit n.

Februar 2021
Bemerkung:

Fiar den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten
wir bei

- SelectionSort: A(n) ~ n?

- MergeSort: A(n) ~n - logy(n)

- Fibonacchi-Folge: A(n) ~ 2" (bei rekursiver Berechnung)
- BinarySearch: A(n) ~ logy(n)

Entsprechend haben

- SelectionSort quadratische Komplexitat,

MergeSort linear-logarithmische Komplexitat,

die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexitdt,
BinarySearch logarithmische Komplexitat.

Algorithmen mit exponentieller Komplexitdt erweisen sich in der Praxis als unbrauchbar.



T4 (1124 0ed 0ee 0Te 0o¢ OeT 08T 0LT 09T 0sT 0FT 0eT 0<tT 01T 00T

06

08

0L

09

0%

0¥

113

0Z

0T

wnisydepr sadJeauL|

x=A

(x)bo| #x=A

wnisysepm saydsLwyiLaeho|—aesauL|

wnaisys>em ssydsiiedpenb

00T

00z

00t

00t

00s

009

004

008

006

000T

00TT

00T

00ET

00+T

00ST

009T

004T

008T

006T




Aufgabenblatt Nr. 5 inf12 25.02.2021

13.

MergeSort

Gegeben ist das aus den acht Komponenten a[0], a[1], .- .., a[7]
bestehende array a, die gemaB beigefligtem Arbeitsblatt mit ganzen Zahlen
belegt sind; das array soll schrittweise gemaB dem Algorithmus MergeSort
aufsteigend sortiert werden.

Bemerkung:
Im folgenden schreiben wir sort(left,right) statt sort(a,left,right) und
merge(left,middle,right) statt merge(a,left,middle,right).

Mit dem Aufruf sort(a,0,7) bzw. sort(0,7) wird der Vorgang zum Sortieren
des aus 8 Komponenten bestehenden arrays a eingeleitet; dabei veranlaBt
die rekursiv formulierte Funktion sort weitere Aufrufe von sich selbst geman
folgendem Baumdiagramm:

n=8: sort(0,7)

2 g

sort(0,3) sort(4,7)
sort(0,1) sort(2,3) sort(4,5) sort(6,7)

SN /N SN /N

sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

14.

Diese Baumstruktur ist auf der Seite 1 des beigefligten Arbeitsblatts
nachempfunden. Nachdem das array a in Teillisten jeweils der Lange 1 zerlegt
wurde (eine aus 1 Element bestehende Liste ist bereits sortiert), werden
jeweils 2 sortierten Teillisten mit merge zu 1 sortierten Liste gemischt (Seite
2).

Aufgabe: In der beigefiigten Ubersicht MergeSort_Arbeitsblatt.doc wird der
Sortiervorgang zum Sortieren eines aus 8 Komponenten bestehenden arrays
schrittweise vollzogen; erganze alle fehlenden Eintrage in
MergeSort_Arbeitsblatt.doc (oder handschriftlich in der ausgedruckten
Version MergeSort_Arbeitsblatt.pdf).

SelectionSort

Der Algorithmus sorting_by_direct_selection.py
hat noch Optimierungspotential hinsichtlich des Zeitbedarfs zum Sortieren
einer als array gegebenen Liste. Hierzu 1aBt sich die Funktion min (x,j) in

geeigneter Weise modifizieren; ergreife diese Mdglichkeit!



sort(0,7)

a[0] a[1] a[2] a[3] af4] a[5] a[6] a[7]
7 6 8 2 9 3 8 5
sort(0,3) sort(4,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] al7]
7 6 8 2 9 3 8 5
sort(0,1) sort(2,3) sort(4,5) sort(6,7 )

a[0] a[1] a[2] a[3] a[4] a[5] a[6é] a[7]
7 6 8 2 9 3 8 5
sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6 ) sort(7,7)
a[0] a[1] a[2] a[3] al4] a[5] a[6] a[7]
7 6 8 2 9 3 8 5
a[0] a[1] a[2] a[3] a[4] a[5] a[é] a[7]
7 6 8 2 9 3 8 5

merge(0,0,1)

merge(2,2,3)

merge(4,4,5)

merge(6,6,7 )

a[0] a[1] a[2] a[3] af4] a[5] a[6] al7]
6 7 2 8 3 9 5 8
merge(0,1,3) merge(4,5,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[é] a[71]
2 6 7 8 3 5 8 9
merge(0,3,7)

a[0] a[1] a[2] a[3] af4] a[5] a[é] a[7]
2 3 5 6 7 8 8 9

Lukas Pleis




Aufgabenblatt Nr. 6 inf12 10.03.2021

15. MergeSort

16.

In dem paper MergeSort_final.pdf (08.03.2021) wurde die Funktion f(n)
hergeleitet, welche in Abhdangigkeit von n die Anzahl der Aufrufe der Funktion
sort angibt; wegen f(n) = 2n - 1 wachst f(n) linear mit n und daher

erheblich schwacher als der Aufwand A(n).

Aufgabe: Finde in entsprechender Weise einen Funktionsterm fir die
Funktion g(n), welche die Anzahl der Aufrufe der Funktion merge in
Abhangigkeit von n bestimmt.

Hinweis: Auch hier beschrénke man sich auf Werte von n, die sich als
Zweierpotenz schreiben lassen (n =1, 2,4,8,..... ). Fertige fiirn = 2 und
n = 8 jeweils eine Baumstruktur an gemaB folgendem Beispiel (n = 4):

alo] a[1] alz] al3]
merge(0,0,1) merge(2,2,3)
al[o] a[1] al2] a[3]
merge{0,1,3)

al[0] af[1] a[2] a[Z]

Die Pfeile bedeuten hier: ,wird gemischt®; z. B. werden die sortierten
Teillisten {a[0], a[1]} und {a[2], a[3]} vermdge merge(0,1,3) zur sortierten
Liste {a[0], a[1], a[2], a[3]} gemischt.

Implementiere in dem in Python geschriebenen Quelltext mergesort.py
Zahlvariablen z und y, welche zur Laufzeit des Algorithmus die Anzahl der
Aufrufe der Funktion sort und der Funktion merge ermitteln; bestatige auf

diese Weise die Ergebnisse, die fur f(n) und g(n) gefunden wurden.

Bemerkung:

Bei MergeSort hat der Rechenaufwand A(n), um eine Liste mit n Komponenten zu
sortieren, wegen A(n) ~n -logx(n) eine linear-logarithmische Komplexitdt; da die
Anzahl der rekursiven Funktionsaufrufe linear mit n wéachst, hat der zur Laufzeit
des Algorithmus bendétigte Speicher lineare Komplexitét.



Binare Suche

Gegeben: Ein sortiertes Array a mit n Komponenten a[0], .. ..
Aufgabe: Entscheide, ob ein zur Laufzeit flr die Variable value eingegebener Wert im Array a vorkommt.

Beispiel

value = 13

n = len(a) = 10

Suche value in der Liste a[0], . .
binarysearch, welche a[0], . . .

, a[n-1]

. , a[9]; diese Liste und value lbergeben wir der Booleschen Funktion

, a[9] als lokale Liste array[0], . .

. , array[9] verarbeitet.

a[0] a[1] a[2] a[3] af4] a[5] a[6] al7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21
array[0] | array [1] | array [2] | array [3] | array [4] | array [5] | array [6] | array [7] | array [8] | array [9]
3 4 5 5 7 8 11 13 19 21

1. Schritt:

Wir bestimmen den mittleren Index des Arrays array:

2. Schritt:

len(array)//2 =5

midvalue = array[len(array)//2] = array[10//2] = array[5] = 8




Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurtck; gefunden!
Falls value < midvalue: suche in der Liste a[0], . . ., a[4] links von a[5]
Falls value > midvalue: suche in der Liste a[6], . . ., a[9] rechts von a[5]
hier: wegen 13 > 8 suchen wir in der Liste a[6], . . ., a[9]

Suche value in der Liste a[6], - . -, a[9]

a[6] al7] a[8] al9]

11 13 19 21

Diese Liste a[6], - ., a[9] und value Ubergeben wir der Booleschen Funktion binarysearch,
welche a[6], . ., a[9] als lokale Liste array[0], . . . , array[3] verarbeitet.

array[0] array[1] array[2] array[3]

11 13 19 21
1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 4//2 = 2
2. Schritt:

midvalue = array[len(array)//2] = array[4//2] = array[2] = 19



Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurtck; gefunden!

Falls value < midvalue: suche in der Liste array[0], . . ., array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suchen wir in der Liste array[0], . . ., array[1]

Suche value in der Liste array[0], . . ., array[1]

array[0] array[1]

11 13
Diese Liste array[0], . . . , array[1] und value Ubergeben wir der Booleschen Funktion binarysearch,
welche array[0], . . ., array[1] als lokale Liste array[0], . . ., array[1] verarbeitet.
1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 2//2 =1
2. Schritt:

midvalue = array[len(array)//2] = array[2//2] = array[1] = 13

Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurtck; gefunden!

Falls value < midvalue: suche in der Liste array[0] links von array[1]

Falls value > midvalue: suche in der leeren Liste [] rechts von array[1], dann: binarysearch gibt den Wert False
zurlick; nicht gefunden!

hier: wegen 13 = value = midvalue = 13: gefunden!



Listen in Python 13.04.2021

Definition: Unter einem Array verstehen wir eine Folge von
Variablen gleichen Typs.

Bemerkung: In Python 4Bt sich ein Array z. B. als Liste realisieren; es
gibt Programmiersprachen (z. B. Pascal), bei denen ,array’
Schlisselwort fiir eine Datenstruktur ist.

>>> a=list(range(4,14))
>>> print(a)

i 4: D & 20 B
>>> print(a[0])
4

>>> print(a[9])
13

>>> print(al[3])
-

>»> printial:21)
4, 5, 6]

>x printial3:])
b H: 9. 10, 11, %2430

>>> a.append(87)

>>> print(a)

I8 S5: 6 9 8 B 18 11 18: 135:; B7)
>>> print(a[l0])

87

S>>

Bemerkung: Der Operator, : ' heiBBt auch slice-Operator.

e s 1% T 1o

Die folgende Liste ist kein array im engeren Sinne, da Komponenten
unterschiedlichen Typs (integer und string) vorkommen:

>»> a[l0]="fritz"
*>> printia)
4. & 6, 7. 8., 5. 16, ¥1_ 32. 13 V'Erigz*]

Bei dem zweiten der beiden folgenden Python-Programme wird die
aus 7 Komponenten bestehende Teilliste a[3], . . . ., a[9] von a der
Funktion test Gbergeben, welche diese Komponenten quadriert;
innerhalb der Funktion test wird die aus 7 Komponenten bestehende
Liste bmitO, 1, ..... , 6 indiziert.



a = list(range(4,14))
print ("Quelliste a:"'")
print(a)

del testi(b):
for 1 1n range(0,len(b)):
bl[i] = b[i]l*b[1i]
print (b)

print ()

# Aufruf der Funktion test
test(a)

test{al3:])

test{al:31)

Quelliste a:
[, 5, 6, Tp 0p 9. 19, 11, 12, 13i

[16, 25, 36, 49, 64, 81, 100, 121, 144,
[2401, 4096, €561, 10000, 14641, 20736,

[£58; 920 1298]

a = list(range(4,14))
print ('Quelliste a:'")
print (a)

def test(b):
for 1 in range(0,len(b)):
bli] = bI[i1*b][i]
print (b)
print (b[0])
print(b[é])

print ()
# Aufruf der Funktion test
test(a[3:])

Quelliste a:
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

[45, o4, 81, 100, 121, 144, 1&69]
49
1€9

169]
285¢61]



Binare Suche (BinarySearch)

Als Datenstruktur legen wir das aus den n Komponentena[0], . . . . , a[n-1]
bestehende Array a zugrunde, fiir dessen Komponenten die Ordnungsrelationen <, >, <, =, =
definiert sind.

Nach Zuweisung eines Wertes an die Variable value werden das sortierte Array a und value der
Funktion binarysearch lUbergeben; binarysearch entscheidet, ob es in der sortierten Liste
mita[0] £ . . . . £ a[n-1] einenIndex i gibt mita[i] = walue; falls dies zutrifft,
liefert binarysearch den Booleschen Wert True, andernfalls den Wert False.

Python-Quelltext:

from random import randint

=10
n = int {input ("Anzahl der Datenelemente = '})
a = list (range(l,n+l})

for i in range{0,n}:
a[i]l= randint (1,100}

print {('Quelliste: '}
print (a)

Sortieren

j in range (0,n-1}):

min = a[jl

£ in range{(j+1,n):
al[il] < min:

min = a[il

afi]l = al[Jjl
a[j] = min

Hh #H=

=

print {'sortierte Liste: ')

print (a)

print ()

value = int (input ('gesuchte Zahl: "} )

# binarysearch liefert den Wert True, falls wvalue als Inhalt einer Eomponente
# des Arrays array vorkommt,andernfalls liefert binarysearch den Wert False.

def binarysearch(array,value):
global =z
z += 1
print (array)
if array = [] or (len(array) = 1 and arrav[0] '= walue):

midvalue = arrav[leniarray)/ /2]
if midvalue = wvalue:

elif value < midvalue:
return binarysearch(array[:len({array)//2],value)

return binarysearch(array[len(array)//2 + 1:],values)

# hufruf der Funktion binarysearch zur Suche von wvalue im Array a

if binarysearch(a,value) == True:
print (value, "wurde gefun




Durchfiihrung des Algorithmus fiir ein aus 32 Zufallszahlen bestehendes Array a:
n = len (a) = Anzahl der Datenelemente = 32

Quelliste:

[77, 26, 19, 54, 29, 20, 38, 38, 1, 94, 83, 53, 90, 17, 66, 79, 43, 36, 11, 57, 52, 99, 68, 20, 32, 27, 7, 46, 91, 75, 54, 78]

a[o0] a[i] a[2] a[3] a[30] | a[31]
77 26 19 54 54 78

sortierte Liste a:

[1,7,11,17, 19, 20, 20, 26, 27, 29, 32, 36, 38, 38, 43, 46, 52, 53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99]

a[o0] a[i] a[2] a[15] a[16] a[17] | a[18] a[30] a[31]
1 7 11 46 52 53 54 94 99

Bemerkung: Jede Teilliste der Liste a ist ebenfalls sortiert.

gesuchter Wert: value =76

1. Aufruf der Funktion binarysearch

Die sortierte Liste a und value werden mit dem Aufruf binarysearch (a,value) der Funktion
binarysearch lbergeben; binarysearch lGbernimmt das Array a als lokales Array array.

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 32//2 = 16

2. Schritt:

Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[l6] = 52

Wegen 76 > 52 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 15 Komponenten bestehenden Teilliste ,rechts™ von a[16] fortzusetzen, also in der Liste

[53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99]

a[17] a[18] a[30] a[31]
53 54 94 99

2. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf

binarysearch (array[len(array)//2 + 1:],value)

(beachte: (value < midvalue) hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch lbergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0, 1, . ..., 14:

a[0] a[1] a[6] al7] a[8] a[13] al[14]
53 54 75 77 78 94 99

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 15//2 = 7

2. Schritt:

Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[7] = 77

Wegen 76 < 77 nimmt der Boolesche Term value < midwvalue den Wert True an; folglich ist die Suche in
der aus 7 Komponenten bestehenden Teilliste ,links" von a[7] fortzusetzen, also in der Liste

[53, 54, 54, 57, 66, 68, 75]

a[o] a[i1] a[2] a[3] a[4] a[s] a[é]
53 54 54 57 66 68 75

3. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch (array|[:1len(array)//2] ,value)



(beachte: (value < midvalue) hat den Wert True) werden die vorstehende Teilliste und value
der Funktion binarysearch lbergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0,1, ...., 6:

a[o] a[1] a[2] a[3] a[4] a[5] a[6é]
53 54 54 57 66 68 75

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 7//2

I
w

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[3] = 57

Wegen 76 > 57 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 3 Komponenten bestehenden Teilliste ,rechts" von a[3] fortzusetzen, also in der Liste

[66, 68, 75]
a[4] a[5] a[6]
66 68 75

4. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf

binarysearch (array[len(array)//2 + 1:],value)

(beachte: (value < midvalue) hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch ubergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices O, 1, 2:

a[0] a[1] a[2]
66 68 75
1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 3//2 =1
2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[l] = 68

Wegen 76 > 68 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 1 Komponente bestehenden Teilliste ,rechts" von a[1] fortzusetzen, also in der Liste

[75]

a[2]
75

5. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf

binarysearch (array[len(array)//2 + 1:],value)

(beachte: (value < midvalue) hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch ubergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
dem Index O:

a[0]
75

Da wegen 75 # 76 der Boolesche Term array[0] != value den Wert True annimmt und da die Lange
des Ubergebenen Arrays den Wert 1 hat, erhalt die Boolesche Konjunktion

len (array) == and array[0] != value

den Wert True; folglich liefert die Funktion binarysearch den Wert False, und der Algorithmus bricht
ab mit der Ausgabe: ,76 wurde nicht gefunden®.



Aufwandsbetrachtung:

Die erfolglose Suche (wie im oben durchgefiihrten Beispiel) in einem aus n Komponenten
bestehenden Array erfordert eine maximale Anzahl von Aufrufen der Funktion binarysearch;
dagegen endet eine erfolgreiche Suche, sobald der Boolesche Term midvalue == value den

Wert True annimmt.

0. B. d. A. nehmen wir an, daB n eine Potenz von 2 ist, d. h. es gibt eine ganze nicht negative Zahl
k mit n = 2%

Wir Uberlegen, wie viele Teilungen und damit wie viele Aufrufe von binarysearch im ,worst case®
bendtigt werden, bis man zu einem Array mit 1 Komponente gelangt:

Maximale Anzahl der Aufrufe
binarysearch

[Ny
o |® AINR| D

32
64
n log,(n) 1 + logy(n)

alunfhlw|NR|IO| X
N [PRWIN |-

Wegen n = 2¥ gilt k = log,(n); damit folgt fiir die maximale Anzahl A der Aufrufe von
binarysearch:

A =1 + log,(n)

Fir groBe Werte von n kann man den Summand 1 vernachlassigen, so daB in guter Naherung gilt:
A =~ log,(n)

Da die Rechenzeit der Anzahl der benétigten Aufrufe der rekursiv formulierten Funktion
binarysearch folgt, hat der Algorithmus ,Bindre Suche" logarithmische Komplexitat.

19
18
17
16
o Tineares Wachstum
14
13
12

1

logarithmisches Wachstum

> v o N =

400 800 1200 1600 2000 2400 2800 3200 3600

12.04.2021



binarysearch

Quelliste: Liste von 50 Zufallszahlen
gesuchtes Element: 80

Quelliste:

[67, 54, 59, 16, 60, 81, 47, 63, 31, 71, 20, 97, 31, 27, 86, 22, 92,
78, 75, 95, 14, 87, 16, 88, 63, 72, 44, 21, 59, 55, 67, 60, 34, 27,
54,7,58,87, 21,17, 14, 31, 67, 44, 75, 51, 47, 90, 68, 44]
sortierte Liste:

[7, 14, 14, 16, 16, 17, 20, 21, 21, 22, 27, 27, 31, 31, 31, 34, 44,
44, 44, 47, 47, 51, 54, 54, 55, 58, 59, 59, 60, 60, 63, 63, 67, 67,
67,68, 71,72,75,75, 78, 81, 86, 87, 87, 88, 90, 92, 95, 97]

an binarysearch uebergebene Liste nach dem 1 . Aufruf:

[7, 14, 14, 16, 16, 17, 20, 21, 21, 22, 27, 27, 31, 31, 31, 34, 44,
44, 44, 47, 47, 51, 54, 54, 55, 58, 59, 59, 60, 60, 63, 63, 67, 67,
67,68, 71,72,75,75, 78, 81, 86, 87, 87, 88, 90, 92, 95, 97]

an binarysearch uebergebene Liste nach dem 2 . Aufruf:

[59, 59, 60, 60, 63, 63, 67, 67, 67,68, 71,72,75,75, 78, 81, 86,
87, 87, 88, 90, 92, 95, 97]

an binarysearch uebergebene Liste nach dem 3 . Aufruf:
[75, 78, 81, 86, 87, 87, 88, 90, 92, 95, 97]

an binarysearch uebergebene Liste nach dem 4 . Aufruf:
[75, 78, 81, 86, 87]

an binarysearch uebergebene Liste nach dem 5 . Aufruf:
[75, 78]

an binarysearch uebergebene Liste nach dem 6 . Aufruf:

[]

80 wurde nicht gefunden

Anzahl der Aufrufe der Routine binarysearch: 6



