Arbeitsblatt infl11 06.01.2021
Die range-Anweisung definiert einen Bereich ganzer Zahlen.

range (10) definiert den Bereich 0,1, ..., 9

range (4,21) definiert den Bereich 4, 5, . .., 20

range (4,21,3) definiert den Bereich 4, 7, 10, ..., 16, 19
range (-4, 3) definiert den Bereich -4, -3, -2,-1,0,1, 2

Allgemein gilt:

range (start, stop)
definiert den Bereich start, ..... , stop-1 ganzer Zahlen,

range (start, stop, step)
definiert den Bereich start, ... mit der Schrittweite step, wobei die Zahl
stop nicht mehr enthalten ist.

Erstellen einer Liste ganzer Zahlen

a = list(range(4,13)) erzeugt die Liste

[4, 5, 6, 7, 8, 9, 10, 11, 12];

die (in diesem Fall 9) Elemente dieser Liste heiBen auch Komponenten, auf die
man mit a[0], a[1], - . ., a[8] zugreifen kann.

Bemerkung: Unter einem Feld oder einem array verstehen wir eine Folge von
Variablen gleichen Typs; mit vorstehendem Beispiel haben wir also
ein array a ganzer Zahlen erzeugt mit den Komponenten

aloj, af1], ..., a[8].

Python-Quelltext:

l:-'u liste.py - F\Informatilk_20...

File Edit Format Run Options Window Help

|a = list(range{4,13}) ~
| print {a)
|
Ep:’i:‘.t('aji': = ', al[0])
|princ('a[7] = ',a[7])
w

Lm:5 CokO

Ausgabe:

B Python 3.8.6 Shell

File Edit Shell Debug Options Window Help

DE4)] on win32
Type "help™, "copyright™, "credits™ or "license ()" for more information.

=========—= RESTART: F:\Informatik 2020\GE inf 2020-21\MSS1l\liste.py ==========
[4; Si &; Ty 8 9; 10 13 12




For-Schleife

Das Python-Programm

n = int(input('n = "))

for i in range(1l,n):

print (i)
gibt nach Eingabe der nattrlichen Zahl n die Zahlen 1, 2, . . ., n-1 aus; probiert
es aus!
Algorithmus zur Bestimmung der Summe der Zahlen 1, . . . ., n mit Verwendung

einer for-Schleife:

l}. Summe_for-loop.py - F/Informatik_2020/GK_inf_2020-21/M...

File Edit Format Run  Options Window Help

# Summe 1 + . . . . + 1
# for-Schleife

n = int{input({'n = "})
sum = 0 # Initialisierung der Summe
for i in range(l,n+l}):
sum = sum + i
print ('Summe der Zahlen 1, . . . ,',n,'" = ',sum)

Lm: 13 Cok 0

Arbeitsauftrage:

1. Schreibe und teste ein Python-Programm, um die ersten 20 Zahlen der
Siebener-Reihe auszugeben (also die Zahlen 7, 14, 21, .. .).

2. Erstelle gemaB dem vorstehenden screenshot den Python-Programmtext zur
Berechnung der Summe 1 + . . . + n und teste das Programm mit
unterschiedlichen Eingaben.

3. Formuliere und teste ein Python-Programm, welches nach Eingabe der
natlrlichen Zahl k die Summe der ersten k ungeraden natirlichen Zahlen
bestimmt, und zwar mit Verwendung einer for-Schleife.

4. Formuliere und teste ein Python-Programm, welches nach Eingabe der
natdrlichen Zahl n das Produkt der Zahlen 1, . . ., n zu berechnet (for-
Schleifel).



Informatik 11

14.01.2021

Wir kennen bereits die numerischen Datentypen float und integer.

Beispiele:

>>> print (11 / 6)
1.8333333333333333

>>> print (2 ** 0.5)
1.4142135623730951

>>> print (27 / 4)

6.75

>>> print (27 // 4)

6

>>> print (27

3

4)

>>> print (7 * 12)

84

>>> print (0.8 *

-6.0

Datentyp boolean

(=7.5))

Wurzel aus 2

ganzzahliger Quotient

Produkt ganzer Zahlen

Quotient zweier ganzer Zahlen

Quotient zweier ganzer Zahlen

(27 : 4

Rest bei ganzzahliger Division

Produkt zweier Kommazahlen

6 Rest 3)

Eine Boolesche Variable oder ein Boolescher Ausdruck (Term) nimmt nur zwei Werte an:

True oder False

(oder abkiirzend: 1 oder 0; in Python sind True oder False zu verwenden)

Insbesondere sind folgende Terme Boolesche Ausdriicke, deren Wert sich auch einer
Variablen zuweisen |aBt:

8>5
7 ==
71=28
X
X

hat den Wert True
hat den Wert False
hat den Wert True
hat den Wert True

nach der Wertzuweisung x = 7 < 12
hat den Wert False nach der Wertzuweisung x = (0 == 6)

Wir definieren die Verknipfungen and und or sowie die Operation not jeweils liber eine

Wahrheitstafel:

a b aorb a b a and b a not a
False | False False False False False False True
False True True False True False True False
True False True True False False
True True True True True True




Aufgabenblatt Nr. 3 infl11 18.01.2021
Hinweis:

Wiederholungen kénnen wahlweise als while- oder for-Schleife formuliert werden.

7. Der Algorithmus SCHALTIAHR verlangt als Eingabe eine Jahreszahl und gibt aus, ob
das eingegebene Jahr ein Schaltjahr ist.

Regeln:
Jahreszahl
- nicht durch 4 teilbar: kein Schaltjahr
- durch 4 teilbar: Schaltjahr
- durch 100 teilbar: kein Schaltjahr
- durch 400 teilbar: Schaltjahr

Formuliere den Algorithmus als Struktogramm und als Python-Programm.

8. Erstelle ein Python-Programm, welches nach Eingabe einer natlrlichen Zahl n die
Summe sum mit

sum=1+1/2+1/3+1/4+....... + 1/n berechnet, und teste das
Programm flr unterschiedliche Eingaben.

9. Ein Algorithmus, der die natiirlichen Zahlen a und b als Eingabe verlangt und als Er-
gebnis die Zahl z ausgibt, ist durch folgendes Struktogramm gegeben:

Eingabe a

Eingabe b

X=a

y=h

z=10

whilex > 0
+ X ungerade —
Z=Z+Y
=20 2
Visulk

Ausgabe z

Schreibe diesen Algorithmus als Python-Programm und teste ihn mit unterschiedli-
chen Eingaben; was bewirkt der Algorithmus vermutlich?

Hinweise: Unter x // 2 verstehen wir den ganzzahligen Quotient bei der
Division von x durch 2.

Eine Zahl x ist genau dann gerade, wenn sie durch 2 ohne Rest teilbar
ist, d. h. wenn gilt: x % 2 = 0.



Aufgabenblatt Nr. 4 infl11 26.01.2021

10.

11.

Der Algorithmus PRIMZAHLTEST

Definition: Eine natlirliche Zahl n heiBt Primzahl genau dann, wenn sie nur
durch 1 und durch sich selbst jeweils ohne Rest teilbar ist.

Aufgabe: Konzipiere einen Algorithmus (als Struktogramm und als Python-
Programm), der nach Eingabe einer natlrlichen Zahl n entscheidet, ob n die Prim-
zahleigenschaft hat.

Hinweis: Teste fiir alle in Frage kommenden Teiler (Divisoren) t, ob n % t gleich 0 ist.

BOOLESCHE VARIABLE oder BOOLESCHE TERME kdnnen nur zwei Werte annehmen:
True oder False.

Die Verknlipfungen and und or sowie die Operation not werden bekanntlich jeweils
Uber eine Wahrheitstafel definiert.

Wir verwenden folgende abklrzende Schreibweisen (a, b, c sind Boolesche Variable):

aand b = a:-b = ab
aorb = a+b
not a = - a

Dabei gelte auch die aus der Algebra bekannte Vereinbarung: “Punkt vor Strich”, d. h.
a+ (b:-c) =a+b-c=a+bc

Eine Auswahl von Rechenregeln flir Boolesche Variable:

Kommutativgesetze
(1) a+b=Db + a (1’) a-b=D>b - a
Assoziativgesetze

(2) a+ (b+c) = (a+Db) +c (2’) a-:- (b:-c) = (a‘b) -c

Distributivgesetze
(3) a-(b+c)=a-+b + a-c (3) a+b:c=(a+Db)(a+ c)

Beweis von (3):

a(b + c) ab + ac

V)]
Q
V)]
0

I—‘l—‘OOOOOOg‘

RlR|R|lolrr|r|lol+

Rl |R|lolo|lo|lo
Rl |lololr|rlololb!

RO |O|FR|Oo|FR o]0
=l ol Hanll (@) &l f) Fe ) Ke]
RO O|O|IO(O|O
=l il sl K=l K=l @) K]

Da die Spalten zu a(b + ¢) und ab + ac Ubereinstimmen, gilt: a(b + ¢) = ab + ac .

Aufgaben: a) Beweise die Rechengesetze (2) und (3’).

b) Zeige: (a-b) + ¢ # a-(b+¢0¢)



Informatik 11 10.02.2021

Losungen zu den Aufgabenblattern Nr. 3 (18.01.2021) und Nr. 4 (26.01.2021)

Aufgabe 7 (Algorithmus Schaltjahrbestimmung)
Struktogramm I (Christian):

Fingabe a
¥ = False
e ath4==0 T —— -
—_ L s
tTue T ——— e —— false
¥ = True
— 3% 100==0 o
e e
true T— e false
X = False
— 2% 400==0 ,_//
T o
true TR, SRR false
x = True
T — X ==True —
o e T
true — e false
Ausgaba: a ist ein Schaltjahr Ausgabe: a st kein Schaltjahr

Python-Quelltext I:

4

= 5§ha;tjahrbeatimmung

a = int{input {"Jahreszahl = "})
X = False
F 5% 4. —"1():
if a & 100 = O
x = False
if a & 400 = O
X = True
f = True
print{a,' ist Schaltjahr')

print(a,"' ist kein Schaltjahr')

Struktogramm II (Marvin):

Emgabe Jahr

Jahr % 4 = 0) and (Jahr % 100 |=0) or
(Jahr % 400 =10

Ja Neim
Ausgabe Schaltjahr Ausgabe kemn Schaltjahr




Python-Quelltext II:

# Schaltjahresrechner
jahr = int{input('Geben Sie das Jahr an: '}}

if {jahr % 4 = 0} and {(jahr % 100 != E}}| or {jahr % 400 = 0):
print{jahr, "ist ein Schaltjahr')

print{jahr, 'ist kein Schaltjahr'}

Hinweis:
Zu Version II beachte unbedingt die Bemerkung innerhalb der Lésung zu Aufgabe
11.b)!

Aufgabe 8 (Harmonische Reihe)
Python-Quelltext (Max):

# KW 3 RAufgabe B8
# Eingabe

n = int {(input {('Geben Sie eine natiirlichen Zahl ein: "))

=

Berechnung

sum = 0

while {3 <= 1)z
sum = sum + (1/i)
=3 g3

# Rusgabe

PrInki®l F . onom e F R Dt =N mm)

# Max Yurchak

Aufgabe 9 (Algorithmus zur Multiplikation zweier natirlicher Zahlen a und b)
Python-Quelltext (Marvin):

|

-
L
—

= int{input{‘a =
int{input{'k = "))



Aufgabe 10 (Algorithmus Primzahltest)

Struktogramm I (Marvin): Python-Quelltext I (Laura):
Emgabe n # Laura primzahltest
- n = int{input{'n = '
prun = True {npus ’)
for 1 m range(2, n) prim =
n%i=0 i
Ja Memn . .--dI:lQ'EI{E_;H:I
- n % ==
prun = False :
prim =
prim = True
Ja Nem| &% ST == L@ |
Ausgabe: Ist eme Ausgabe: Ist keine print('primzahl’)
Primzahl Primzahl ' ) s
print{"'keine primzahl')
Anmerkung: Statt if prim == True: schreibe kurzer: if prim:

Python-Quelltext II

Die Laufzeit des Algorithmus kénnen wir optimieren (insbesondere bei groBen Zahlen
n), indem die zu prifende Zahl n nur durch solche Divisoren i ganzzahlig geteilt wird,
deren Quadrat nicht gréBer als n ist (die also nicht gréBer sind als die Wurzel aus n).

AuBerdem wird berilcksichtigt, da3 die Zahl 1 definitionsgemal keine Primzahl ist.

n = int{input('n = "))

n  i=—2~1~0
prim =
T g T |
prim:
printin.,' ist eine Primzahl')
printi{n, ' ist keine Primzahl"®)}

Aufgabe 11 (Boolesche Variable und Boolesche Terme)
Lésungen zu Teil a) (Rechengesetz (3"): Christian) und Teil b)



Lésung zu Aufgabe 11.a) von Aufgabenblatt Nr. 4

3
a b C b*c a+b*c (a+Db) (a+c) (a+b)(a+c)’7
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

Da die Spalten zu a + b * c und (a + b)(a + c) Ubereinstimmen, gilt: a+ b *c =(a + b)(a + ¢)


x
Text Box
Lösung zu Aufgabe 11.a)  von Aufgabenblatt Nr. 4 


Losung zu Aufgabe 11.b) von Aufgabenblatt Nr. 4

a b a and b (a and b) or c b or c a and (b or c)
0 0 0 0 0 0
0 0 0 1 1 0
0 1 0 0 1 0
0 1 0 1 1 0
1 0 0 0 0 0
1 0 0 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

(a and b) or ¢ # a and (b or c)

a and b

a .

or

b +

c # a and (b or c)

c # a -

(b + c)




Bemerkung zum Algorithmus ,Schaltjahr® (Nr. 7 Blatt 3):

j%d==
a

3%100!=0
b

§%400==
c

a and b

(a and b) or c b or c a and (b or c)

J
teilbar

nicht durch 4
durch 100
nicht durch 400

nicht durch 4
durch 100
durch 400

nicht durch 4

0 1 0 nicht durch 100

nicht durch 400

nicht durch 4
nicht durch 100
durch 400

durch 4

0 0 0 durch 100

nicht durch 400

durch 4

1 1 1 durch 100

durch 400

durch 4

1 1 1 nicht durch 100

nicht durch 400

durch 4
nicht durch 100
durch 400

Das Jahr j ist Schaltjahr genau dann,

wenn

gilt:

[( J%4==0 and j%100!'=0 ) or j%400==0 ] == True

Da nur die nicht kursiv geschriebenen Zeilen in Frage kommen konnen, gilt hier:

( 3%4==0 and j$100!=0 ) or j%400==

j%4==0 and ( j%100!'=0 or j%400==0 )




Aufgabenblatt Nr. 5 infl11 16.02.2021

12. Die Datenstruktur ,array" (siehe auch Arbeitsblatt vom 06.01.2021; unter einem
array verstehen wir eine Folge von Variablen gleichen Typs) 1&Bt sich in Python als
Liste erzeugen. Wiederhole durch selbstédndiges Uben:

,range“-Anweisung
- Vereinbaren eines arrays a mit der ,list"-Anweisung

- Zugriff (Ausgabe und Zuweisung von Werten) auf die Komponenten a[0], a[1], . .
des als Liste a definierten arrays

- ,append“-Anweisung
- Erzeugen von Zufallszahlen und deren Zuweisung an die Komponenten des arrays

Man orientiere sich an den screenshots der letzten BBB-Konferenz, die am
11.02.2021 gemailt wurden.

13. Die Algorithmen MinSuche und MaxSuche
Nach Eingabe einer natirlichen Zahl n werden den n Komponenten eines arrays a
Zufallszahlen aus dem Bereich (1,100000) zugewiesen; MinSuche bestimmt die
kleinste Zahl und gibt diese aus.

a) Erstelle und teste ein Python-Programm zu MinSuche!
Beispiel flir n = 10 (Benedikt):

random import randint
a = list(range(l,11)) Ausgabe:
a = [25, 70, 55, 7189, 48, 3&, 2, 23, 71, 371
- 1 in range(0,10): kleinstes Element = 2
a[i] = randint (1,100}
min = a[0]
Fod o range (1,10} :
min > af[i]
min = af[i]
print ( -y
print{'kleinstes Element =',min)

b) Erstelle und teste ein Python-Programm zu MaxSuche!

14. Der Algorithmus Zulassung ermittelt, ob jemand zur Jahrgangsstufe 12 zugelassen
wird (Bestimmungen: MSS-Broschire MSS_2022_G9_WEB.pdf, pp. 24 - 26).

a) Welche Daten sind zu erfassen?

b) Uberlege eine geeignete Datenstruktur fiir die zu erfassenden und auszuwerten-
den Daten.

c) Erstelle ein Struktogramm.
d) Schreibe und teste ein Python-Programm.



Informatik 11 18.02.2021

Fir die folgenden Algorithmen MinSuche, MinSuche?2, SelectionSort gilt:

Nach Eingabe einer natlrlichen Zahl n werden den n Komponenten
a[oj, a[11, ... ... , a[n-1] einer Liste a Zufallszahlen zugewiesen.

Die Quelliste und die verarbeitete Liste werden jeweils ausgegeben.

Algorithmus MinSuche

Der Algorithmus MinSuche bestimmt das kleinste Element der Liste a und weist
es der Komponente a[0] zu.

Quelltext in Python:

#Eingabe
n = int (input ('Anzahl der Datenelemente = "))

# Erzeugen der Liste a mit
# den n Komponenten a[0], . . . , a[n-1]
a = list(range(l,n+1l))

# Zuweisung von Zufallszahlen
from random import randint
br 1 in range(0,n):

a[i] = randint (1,1000)

:

# Ausgabe der Quelliste
print (‘Quelliste: ')
print (a)

# Bestimmung des kleinsten Elements
min = a[0]
for i in range(l,n):
if a[1] < min:
min = a[i]
ali] = al[0]
al[0] = min

# Ausgabe
print ('verarbeitete Liste:')
print (a)

Beispiel fliir n = 10:

Anzahl der Datenelemente = 10

Cuelliste:

1285, 942 236, 304, 306, 40, 662, 621, 820, &36]
verarbeitete Liste:

A 92 285 30 Fle:, 2365 662y 621 B20s 36



Algorithmus MinSuche2

Der Algorithmus MinSuche?2 bestimmt die zwei kleinsten Elemente der Liste a

und weist diese den Komponenten a[0] und a[1] zu.
Quelltext in Python:

n = int (input ('Anzahl der Datenelemente =

a = list (range(l,n+1))

from random import randint
for 1 in range(0,n) :
ali] = randint(1,1000)

# Ausgabe der Quelliste
print ('Quelliste: ')
print (a)

# Bestimmung des kleinsten Elements
min = a[0]

for i in range(l, n):
if ali]l <« man:
min = a[i]
a[i] = a[0]
al0] = min

# Bestimmung des zweitkleinsten Elements
min = a[l]
for 1 in range(2,n):
it alil = wan:
min = a[i]
a[i] = a[1]
all] = min

# RAusgabe

print ('verarbeitete Liste:')
print (a)

Beispiel fliir n = 10:

Anzahl der Datenelemente = 10

Quelliste:

[587,; By, 234, 703, 131, 891, 2Zeai. 885, 940,
verarbeitete Liste:

81, 3V, 597, 703, 288, 891, 263, 288, 240,

=30

904]

904]



Algorithmus SelectionSort
(,Sortieren durch direkte Auswahl“)

Der Algorithmus SelectionSort bestimmt
- das kleinste Element der Liste a[0], a[1], . ... .. , a[n-1] und weist
dieses der Komponente a[0] zu,

- das kleinste Element der Liste a[1], . . . . .. , a[n-1] und weist dieses der

Komponente a[1] zu,

- das kleinste Element der Liste a[2], . . . . .. , a[n-1] und weist dieses der

Komponente a[2] zu,

- das kleinste Element der Liste a[n-2], . ... .. , a[n-1] und weist dieses
der Komponente a[n-2] zu.

Auf diese Weise gelingt es, die Komponenten der Liste a der GréBe nach zu
sortieren.

Quelltext in Python:

n = int{(input ('Anzahl der Datenelemente = "))
a = list(range(l,n+1l))

from random import randint

f i in range(0O,n):

ali] = randint (1,1000)
# Ausgabe der Quelliste
print ('Quelliste: ')

print (a)

# Sortieren

for j in range(0,n-1):
min = al[]j]
for i in range{j¥l,n) :
if a[i] < min:
min = af[i]
ali] = al[jl
alj]l] = min
# RAusgabe
print ('verarbeitete Liste:')
print (a)

Beispiel fliir n = 10:

Il
o
]

Anzahl der Datenelemente
Quelliste:

ol B35, 2. B8, 8, 5599, 26, &7, 2905, 131
verarbeitete Liste:

16, &, 72, I35, 84, 128, 237, 5399, Hi3. 90&])



# Sortieren wvon Namen (Zeichenketten)

# Erzeugen eines arrays mit dem Variablennamen a
# und der Komponente a[0]
a = list(range(0,1))

# Vereinbaren einer Booleschen Variabeln "condition"
# zum Steuern der Eingabe

# 1 = Indexvariable der Komponenten von a

condition = True

i=20

# Eingabe der zu sortierenden Namen
while condition:
name = input('Name: ')
if 1 ==
a[i] = name
glse:
a.append (name)
answer = input ('weiter? <y> <n> ')
condition = answer == 'y'
§ =1

# Ausgabe der eingegebenen Liste (Quelliste)
print()
print ('Eingegebene Liste:')
print ()
for 1 in range(0,len(a)):
print(a[i])

# Sortieren der Quelliste:

for j in range(0,len(a)-1):
min = aljl
for 1 in range(j+1l,1len(a)):
i nin > ajil:
min = a[i]
afi] = afjl
a[j] = min

# Ausgabe der sortierten Liste:

print()

print ('sortierte Liste:'")

print ()

for 1 in range(0,len(a)):
print(a[i])



Name: Sdren
weiter? <y> <n> y
Name: Maximilian
weiter? <y» <n> n

Eingegebene Liste:

Marvin
Nils

Nele
Philipp
Christian
Pascal
Noel
Benedikt
Laura

Jan

Kerem

Ivo

Laura
séren
Maximilian

sortierte Liste:

Benedikt
Christian
Ivo

Jan

Kerem
Laura
Laura
Marvin
Maximilian
Nele

Nils

Noel
Pascal
Philipp
Stren

Nach erfolgter, d. h. mit ,,Enter®
abgeschlossener Eingabe einer der

Variablen name zugewiesenen

Zeichenkette erfolgt jeweils die Abfrage,
ob die Datenerfassung fortgesetzt
werden soll; die Antwort wird als

character (Zeichen; hier: y oder n) in

der Variablen answer gespeichert.

Der Wert des Booleschen Terms
answer == 'y’ (True oder False)

wird der Booleschen Variablen
condition zu gewiesen; solange
condition den Wert True hat, wird

die Eingabe fortgesetzt (Schleifenrumpf
der while-Schleife), und der fir i>0

neu eingegebene, in der Variablen name

als Zeichenkette erfaBte Name wird mit

a.append (name) der Liste a

angeflgt.

Falls man als Antwort auf die Frage, ob
man weitermachen mdchte, nicht y
eingibt, nimmt answer == 'y’ den
Wert False an, die Eingabe wird

abgebrochen. Nach der Ausgabe der
eingegebenen Liste und dem Sortieren

erfolgt die Ausgabe der sortierten Liste.



Aufwandsbetrachtung ,Sortieren durch direkte Auswahl" (SelectionSort)

Wir formulieren einen Zusammenhang zwischen dem zeitlichen Aufwand, um eine Liste
von n Datenelementen (z. B. Zufallszahlen, Namen) der GroBe nach zu sortieren, und der
Anzahl n der Datenelemente.

Wertzuweisungen, Abfragen und Rechenoperationen sind elementare Anweisungen, die
eine bestimmte Rechenzeit erfordern; obwohl diese Rechenzeiten mit fortschreitender
Leistungsfahigkeit der Hardware immer klrzer werden, gerat man rasch an Grenzen der
praktischen Durchfiihrbarkeit eines Algorithmus, wenn die Anzahl der abzuarbeitenden
Anweisungen zu stark wachst.

Wesentlicher Baustein des Algorithmus , Sortieren durch direkte Auswahl" ist der
Schleifenrumpf der inneren for-Schleife (hier: rot gekennzeichnet), der das kleinste
Element innerhalb des arrays a[j], . . , a[n-1] ermittelt und dieses der Komponente
a[j] zuweist:

for j in range(0,n-1):
min = al[j]
for i in range(j+1,n):
if min > al[i]:

min = al[i]
ali] = al3j]
alj] = min

Dieser rot markierte Schleifenrumpf besteht aus 3 Wertzuweisungen und 1 Abfrage, die wir
gedanklich als ganzes zum Anweisungsblock A zusammenfassen:

for j in range(0,n-1):
min = al[j]
for i in range(j+1l,n):

A

Fir j=0 nimmt der Schleifenindex i der inneren Schleife alle Werte von 1 bis n-1 an,
folglich wird der Anweisungsblock A (n-1)-mal ausgefihrt.

Fir j=1 nimmt der Schleifenindex i der inneren Schleife alle Werte von 2 bis n-1 an,
folglich wird Block A (n-2)-mal ausgefihrt.

Fir j=2 nimmt der Schleifenindex i der inneren Schleife alle Werte von 3 bis n-1 an,
folglich wird Block A (n-3)-mal ausgefihrt.

In der folgenden Tabelle notieren wir fir jeden Wert von j jeweils den Bereich, den i
durchlauft, und die daraus sich ergebende Anzahl z(j), die angibt, wie oft der
Anweisungsblock A durchlaufen wird:

Index j Index i z(J)
j =0 1 <i<n-1 -
Jj=1 2 <i < n- -
j =2 3<i<n- n-
J =3 4 <1 £ n- -
J =4 5<i<n-1 n-
J = n- -2 £ 1 £n-1 2
Jj = n- -1 <1 <n-1 1

Gesamtzahl z der Abarbeitungen von Anweisungsblock A:

z=z0)+z(1)+z(2)+z3)+......... + z(n-3) + z(n-2)
z=(n-1) +(n-2) +......... +2+1

z=%.-(n-1)-n

z=%.n’-%. n ~ % .n? fir groBe Werte von n

Ergebnis: Bei SelectionSort wachst der Rechenaufwand zum Sortieren einer aus
n Elementen bestehenden Liste quadratisch mit n.



# SelectionSort
# Aufwand proportional zu n"2

random import randint
import time
n = int (input ('Anzahl der Datenelemente = '))
r = int (input('Wieviele Elemente sollen angezeligt werden? '))

a = list({range(l,n+1))

for i in range(0,n):
a[i] = randint (1,1000000)

# RAusgabe der Quelliste:
for i in range(0,r):

print(a[i])

# Sortieren der Quelliste:

start = time.time ()
for j in range (0;n=1):
min = al[j]
for i in range(j+l,n):
if mim: > af[i]:
min = a[i]
alil = aljl
al[j] = min
end = time.time ()

# Ausgabe der sortierten Liste:

print ()
print ('sortierte Liste:')
for i in range(0,r):

print(a[i])

print ()

print ('Zeitaufwand zum Sortieren von',n, 'Elementen:

Anzahl der Datenelemente = 2000

Wieviele Elemente sollen angezeigt werden? 0

sortierte Liste:

Zeitaufwand zum Sortieren wvon 2000 Elementen:

>>>

{:7.3%t}) a'.format (end-start)

0.422 s

====== RESTART: F:/Informatik 2021/infoll/mail_27—03—2OZl/SelectionSort.py

Anzahl der Datenelemente = 4000

Wieviele Elemente sollen angezeigt werden? 0

sortierte Liste:

Zeitaufwand zum Sortieren von 4000 Elementen:

>>>

1.962 =5

====== RESTART: F:/Informatik 2021/infoll/mail 27-03-2021/SelectionSort.py

Anzahl der Datenelemente = 8000

Wieviele Elemente sollen angezeigt werden? 0

sortierte Liste:

Zeitaufwand zum Sortieren von 8000 Elementen:

6128 5



Aufgabenblatt Nr. 6 infl11 22.03.2021
mit Lésungen zu Nr. 15 - Nr. 18 aus der BBB-Konferenz vom 25.03.2021

15. BOOLESCHE TERME

Schreibweisen flr die Negation:
nota=-a=a

Wir erganzen die in Aufgabe 11 (Blatt 4, 26.01.2021) fiir Boolesche Variable formu-
lierten Rechenregeln

- Kommutativgesetze (1) und (1)

- Assoziativgesetze (2) und (2)

- Distributivgesetze (3) und (3")

um die beiden Gesetze von de Morgan:

4 a-b=a+b 4) a+b=a-b
Aufgabe: Beweise (4) (Hinweis: Wahrheitstafel!)

Lésung (Nils):

a b a-b not(a-b) nota notb nota+ notb
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 o

Da die Spalten zu not (a - b) und not a + not b Uibereinstimmen, gilt:

not(a-b) = nota+ notb

16. Erstelle einen in Python geschriebenen Quelltext zu folgendem Struktogramm:

o=
s =0

while a < 5

s=s+a

a=a+1

Ausgabe s




17.

Lésung (Philipp):

a 1
3 0
ile a < 5:
5 =5 4% a ¥ oder: = 4= a
1L & > Jz
s = s-1

a=a-+ 1

print {s)

In der Zusammenfassung MinSuche_SelectionSort.pdf werden die Algorithmen
MinSuche, MinSuche2 und SelectionSort noch einmal erlautert.

Aufgabe: Formuliere bei

a) MinSuche die for-Schleife zur Bestimmung des kleinsten Elements,

b) SelectionSort die beiden for-Schleifen zum Sortieren

jeweils als while-Schleifen und Uberprife die so erhaltenen Python-Programme an-
hand von Testlaufen.

Lésung zu a) (Benedikt):

n = int (input ('Anzahl der Datenelemente = '))
a = list(range(l,n+1))

from random import randint

for i in range(0,n) :

ali] = randint(1,1000)

print ("Quelliste:')
print (a)

# Bestimmung des kleinsten Elements

min = al[0]

i=1

while i1 < n:

f aJi] < min:
min = a[i]
ali] = al[0]
al[0] = min
i=3i+1
# Rusgabe

print ('verarbeitete Liste:')
print (a)



18.

Lésung zu b) (Christian):

n = int (input ('Anzahl der Datenelemente = "))
a = listirangei{l.,n¥+l))

from random import randint

for i in range(0,n):

alJi] = randint {1, 1000)
# Ausgabe der Quelliste
print ("Quelliste:')
print (a)

# Sortieren

7 =0
while j < n — 1:
1= } & 1
min = al[]j]
hile 37 < 1:
if a[i] < min:
min = af[i]
ali] = a[j]
alj] = min
i =3 ¥ 1
3 = J «+ 3
# Ausgabe

print ('verarbeitete Liste:
print (a)

Testlauf (n = 20):

Anzahl der Datenelemente = 20
Quelliste:

726, 236, 827, 926, 294, 774, 431,
841, 344, 434, A1, 697, 301]
verarbeitete Liste:

[133, 167, 236, 294, 301, 310, 344,
697, 12, TFHd; B2, B4l; 926

")

133, 38346, 434, 480, 167, 310,

346, 411, 431, 434, 434, 480,

Erstelle jeweils ein Struktogramm zu MinSuche und SelectionSort (Hinweis: ver-
wende bevorzugt die Versionen mit while-Schleife, Aufgabe 17; flir die Zuweisung
von Zufallszahlen an die Komponenten des arrays a geniigt es zu schreiben: ,Zuwei-

sung von Zufallszahlen an a[0], . . ., a[n-1]%)

690,

690,



Struktogramme (Marvin):

Emngabe n

Liste a mit range(l, n+1)

Zuweisung von Zufallszahlen an af0], . . ., a[n-1]

Ausgabe Quellliste a

rn = af 0]
1=1
while 1 < n
a1 < min
Ja Nem
1 = a[1]
af1] = a[0]
a[0] = min
1+=1

Ausgabe verarbeitete Liste a




Emgabe: n

Liste a mut range(l, n+1)

for 110 range(0, n)

Zuweisung von Zufallszahlen an a[0],

.., an-1]

Ausgabe Quelliste a

=0

while j < n-1

min = a[j]

=i+

wlhile 1 < n

af1] < min
Ja

min = afi]
af1] = afj]

afj] = mun

1+=1

=

Ausgabe sortierte Liste a

19. Freiwillige Aufgabe:

Der Algorithmus SelectionSort (Quelltext: SelectionSort_04-03-2021.py) vertauscht
die Inhalte der Speicherplatze a[j] und a[i], j < i < n, immer dann, wenn ein kleine-
res a[i] als a[j] gefunden wurde; hier gibt es noch Optimierungspotential, um die Re-
chenzeit insgesamt zu verkilirzen. Ergreife diese Méglichkeit und teste! (Die Laufzeit

zum Sortieren 1aBt sich fir groBe Werte von n etwa halbieren.)






