
Informatik
inf11 06.02.2023

Definition:

Unter einem Algorithmus verstehen wir ein aus endlich vielen Anweisun-
gen bestehendes allgemeines Verfahren, welches eine Klasse von Proble-

men in endlich vielen Schritten löst.

Ein Algorithmus läßt sich, unabhängig von der

jeweils verwendeten Programmiersprache, als

Flußdiagramm (später auch: Struktogramm)

darstellen und verdeutlichen.

1. Lineare Algorithmen

Unter einem linearen Algorithmus verstehen wir einen Algorithmus, bei dem

die nacheinander auszuführenden Anweisungen sich längs eines einzigen Pfades

aneinanderreihen; insbesondere enthält ein linearer Algorithmus keine Pro-

grammverzweigungen.

Aufgabe 1 (Quaderberechnung)

Eingabedaten: Länge a, Breite b, Höhe c

Verarbeitung: Berechnung des Volumens V und der Oberfläche O

Ausgabe: Volumen V, Oberfläche O

Aufgabe 2 (Zinseszins)

Wenn ein Anfangskapital k0 zu einem jährlichen Zinssatz p % über einen Zeit-

raum von n Jahren mit Zinseszins angelegt wird (der Zinsbetrag wird also am En-

de eines jeden Jahres dem zu verzinsenden Kapital zugeschlagen), ermittelt der

Algorithmus „Zinseszins“ das Endkapital k nach n Jahren.

(Bemerkung: In entsprechender Weise läßt sich die Entwicklung des Preisindex

nach n Jahren bestimmen, wenn die jährliche Inflationsrate p % beträgt.)

Aufgabe 3 („Promillerechner“)

Dieser Algorithmus ermittelt einen groben Schätzwert für die Blutalkoholkonzen-

tration.

Eingabedaten:

V = Volumen des Getränks in Litern

p = Volumenanteil in % des Alkohols im Getränk

m = Gewicht (Masse) der Person in kg

Ausgabedaten:

K = Blutalkohol-Konzentration in Promille

Berechnungsvorschrift: K = 10  V  p / (m  0.7)

 2

Lösung zu Aufgabe 2

Flußdiagramm:

Programmtext in Python:

Wenn wir nach Eingabe des Programmtextes im „IDLE“-Editor den Button „Run“
anklicken, öffnet sich ein Kontextmenue, und wir starten das Programm durch

Klick auf „Run Module“.
Nachdem man bestätigt hat, den eventuell geänderten Programmtext zu spei-

chern, öffnet sich die „Python Shell“, in der man die Eingaben macht und in der

dann die Ausgabe des Ergebnisses oder der Ergebnisse erfolgt.

Informatik inf11 13.02.2023

Definition: Ein Anweisungsblock besteht aus einer Folge zusammengehören-

der Anweisungen, die nacheinander ausgeführt werden.

Ein Anweisungsblock, der innerhalb einer Schleife wiederholt wird,

heißt Schleifenrumpf.

Den zu einer Funktion gehörenden Anweisungsblock nennen wir

auch Funktionsrumpf.

Bemerkungen: - Anweisungsblöcke können auch ineinander verschachtelt sein.

- In Python wird ein Anweisungsblock durch Einrücken des Pro-

grammtextes gekennzeichnet (hier ist also auf die korrekte

Formatierung des Programmtextes zu achten!).

2. Verzweigte Algorithmen

Ein verzweigter Algorithmus enthält mindestens eine Fallunterscheidung, so

daß je nach Ausgang der Fallunterscheidung verschiedene Anweisungsblöcke

durchlaufen werden.

Aufgabe 4

Mit dem Body-Mass-Index (BMI) kann man abschätzen, ob jemand Normalge-

wicht hat. Der BMI ist eine dimensionslose Zahl (also ohne Maßeinheit) und be-

rechnet sich wie folgt:

BMI = gewicht / (groesse * groesse)

mit

gewicht = Maßzahl der Masse in kg

groesse = Maßzahl der Körpergröße in m

Beispiel:

Mit Masse = 70 kg und Körpergröße = 1,80 m erhält man

BMI = 70 / (1,80 * 1,80) = 70 / 3,24  21,6.

Für BMI < 19 gilt man als untergewichtig, für BMI > 26 als übergewichtig; Nor-

malgewicht verbindet man mit 19  BMI  26.

Der Algorithmus BodyMassIndex soll folgendes leisten:

Nach Eingabe des Gewichts (in kg) und der Größe (in m) wird BMI (auf eine De-

zimale gerundet) berechnet und ausgegeben, darüberhinaus erfolgt die Informa-

tion, ob man als normal-, unter- oder übergewichtig gilt.

Konzipiere ein

a) Flußdiagramm, b) Struktogramm, c) Python-Programm!

Aufgabe 5 (Mobilfunkrechnung)

Der Betreiber eines Mobilfunknetzes hat folgende Tarifgestaltung:

Monatliche Grundgebühr (einschließlich 100 Gesprächsminuten): 8 €;
für die nächsten, über 100 Minuten hinausgehenden Gesprächsminuten sind 5 ct

je Minute zu entrichten.

Formuliere einen Algorithmus als

Flußdiagramm, Struktogramm, Pythonprogramm,

um nach Eingabe der Anzahl x der monatlichen Gesprächsminuten den Rech-

nungsbetrag b zu bestimmen.

Informatik 11 27.02.2023

Numerischen Datentypen: float und integer

(float: Gleitkommazahlen oder Dezimalzahlen; integer: ganze Zahlen)

>>> print(11 / 6) Quotient zweier ganzer Zahlen

1.8333333333333333

>>> print(2 ** 0.5) Wurzel aus 2

1.4142135623730951

>>> print(27 / 4) Quotient zweier ganzer Zahlen

6.75

>>> print(27 // 4) ganzzahliger Quotient (27 : 4 = 6 Rest 3)

6

>>> print(27 % 4) Rest bei ganzzahliger Division

3

>>> print(7 * 12) Produkt ganzer Zahlen

84

>>> print(0.8 * (-7.5)) Produkt zweier Kommazahlen

-6.0

Datentyp boolean

Eine Boolesche Variable oder ein Boolescher Ausdruck (Term) nimmt nur zwei Werte an:
True oder False

(abkürzend: 1 oder 0, ja oder nein; in Python sind True oder False zu verwenden!)

Insbesondere sind folgende Terme Boolesche Ausdrücke, deren Wert sich auch einer

Variablen zuweisen läßt:

8 > 5 hat den Wert True

7 == 8 hat den Wert False

7 != 8 hat den Wert True

x hat den Wert True nach der Wertzuweisung x = 7 < 12

x hat den Wert False nach der Wertzuweisung x = (0 == 6)

Wir definieren die Verknüpfungen and und or sowie die Operation not jeweils über eine

Wahrheitstafel:

a b a or b a b a and b a not a

False False False False False False False True

False True True False True False True False

True False True True False False

True True True

True True True

Datentyp character (Zeichen)

>>> x = 'a' >>> zeichen = '&'

>>> print(x) >>> print(zeichen)

a &

Datentyp string (Zeichenkette)

>>> name = 'Kopernikus'

>>> print(name)

Kopernikus

Informatik inf11 23.02.2023

Lösung zu Aufgabe 5:

a) Struktogramm

b) Python-Quelltext:

Struktogramm zu Aufgabe 4:

Arbeitsauftrag: Schreibe einen Python-Quelltext und teste das Programm!

 2

Aufgabe 6

Gegeben sei folgender Telefontarif:

Monatliche Grundgebühr: 8 € (einschließlich 100 Gesprächsminuten). Für die über
das Freikontingent hinausgehenden nächsten 200 Minuten werden 3 ct/min be-

rechnet, darüberhinausgehende Minuten kosten 5 ct/min.

Formuliere den Algorithmus als Struktogramm und Python-Programm.

Zusammenfassung: Verzweigte Algorithmen

Beachte: In Python wird ein Anweisungsblock durch Einrücken des Programm-

textes gekennzeichnet.

Im folgenden verstehen wir unter condition einen Booleschen Term (der auch
nur aus einer Booleschen Variablen bestehen kann), der die Werte True oder

False annimmt. In Struktogrammen kennzeichnen wir True auch durch ‚ + ’
oder ‚ ja ’ , False durch ‚  ’ oder ‚ nein ’ .

Einseitige Auswahl

Zweiseitige Auswahl

 condition
 True False

 Block1 Block2

 Block3

 condition
 True False

 Block1

 Block2

 3

Formulierung in Python:

if condition: if condition:

 Block1 Block1

Block2 else:

 Block2

 Block3

Mehrstufige Auswahl

Formulierung in Python:

if condition1: if condition1:

 Block1 Block1

else: elif condition2:

 if condition2: Block2

 Block2 else:

 else: Block3

 Block3 Block4

Block4

 4

Aufgabe 7 (Quadratische Gleichungen)

Spezifikation des Algorithmus QuadEquation:

Nach Eingabe der Koeffizienten a, b, c der allgemeinen quadratischen Gleichung

ax2 + bx + c = 0 ermittelt der QuadEquation die Lösungsmenge und gibt diese

aus.

Flußdiagramm:

a) Erstelle ein Struktogramm.

b) Schreibe und teste ein Python-Programm.

Informatik inf11 10.03.2023

Lösung zu Aufgabe 7:

a) Struktogramm (Jakob)

Aufgabe:

Man überzeuge sich, daß das folgende Python-Programm gemäß obenstehendem

Struktrogramm aufgebaut ist.

 2

b) Python-Quelltext:

3. Algorithmen mit Wiederholungen

Wenn ein Anweisungsblock innerhalb eines Algorithmus wiederholt auszuführen

ist, verwenden wir eine Schleife (engl.: loop) als Kontrollstruktur; der zu wieder-

holende Anweisungsblock heißt auch Schleifenrumpf.

Die Programmiersprache Python kennt die (kopfgesteuerte) while-Schleife und die

for-Schleife; in anderen Sprachen (z. B. Java, Pascal, C++) sind auch auch fuß-

gesteuerte Schleifen (repeat-Schleife) implementiert.

while-Schleife

 3

Syntax einer while-Schleife in Python:

while condition:

 Anweisung1

Anweisung2

 Anweisung3

while condition:

 A
Dabei ist condition ein Boolescher Term; der aus einer Anweisung oder meh-

reren Anweisungen bestehende Schleifenrumpf A wird nur dann ausgeführt,

falls condition den Wert True hat.

Beachte: Der Schleifenrumpf ist durch Einrücken des Programmtextes kenntlich

zu machen!

Aufgabe 8 (Quadratzahltabelle)

Formuliere einen Algorithmus, welcher nach Eingabe einer natürlichen Zahl n die

Quadrate der Zahlen 1, , n berechnet und ausgibt.

 Eingabe n

 Zuweisung eines Anfangswerts an die

 Zählvariable i (oder: Schleifenindex i)

Schleifenrumpf

Aufgabe 9

Formuliere einen Algorithmus a) als Struktogramm, b) als Python-Programm,

welcher nach Eingabe einer natürlichen Zahl n, n  0, die Summe der

Zahlen 0, , n berechnet und ausgibt.

Lösung:

a) Struktogramm:

Initialisierung des Schleifenindex i

Initialisierung der Variablen summe

Abfrage des Booleschen Terms

i <= n

 Schleifenrumpf

 4

b) Quellcode in Python:

Bemerkungen:

- Der Schleifenindex i heißt auch Zählindex oder Zähler.

- Da die als Boolescher Term formulierte Bedingung (hier: i <= n) vor Ein-

tritt in den Schleifenrumpf abgefragt wird, handelt es sich bei der while-

Schleife um eine kopfgesteuerte Schleife.

Aufgaben:

- Schreibe obenstehendes Struktogramm als Flußdiagramm.

- Verfolge gedanklich die Arbeitsschritte, die der Algorithmus nach der Ein-

gabe von 0, 1, 2, 3 jeweils ausführt.

Trace

Anhand einer Trace-Tabelle können wir für bestimmter Eingabewerte überprüfen,

ob der Algorithmus das Verlangte leistet; ein Trace liefert somit eine erste Infor-

mation darüber, ob der Algorithmus korrekt ist.

Beachte: Ein Trace ersetzt nicht einen allgemeinen Korrektheitsbeweis.

In einer Tabelle notieren wir die Werte aller Variablen, Konstanten und Boole-

schen Terme (wir verwenden dieselben Variablennamen wie in obenstehendem
Struktogramm). Solange der Term i <= n den Wert True hat, erfolgt ein weite-

rer Schleifendurchlauf; der Algorithmus bricht ab, sobald der Term i <= n den

Wert False annimmt, denn es gibt dann keinen weiteren Schleifendurchlauf.

Nach Abbruch wird der Wert der Variablen summe (hier: 15) ausgegeben.

Trace für den Eingabewert n = 5

Abkürzung: SD = Schleifendurchlauf

 n i summe i <= n

vor dem 1. SD 5 1 0 True

vor dem 2. SD 5 2 1 True

vor dem 3. SD 5 3 3 True

vor dem 4. SD 5 4 6 True

vor dem 5. SD 5 5 10 True

nach dem 5. SD 5 6 15 False

 5

Aufgabe 10

Formuliere den Algorithmus FAKULTÄT unter Verwendung einer while-Schleife

a) als Struktogramm,

b) als Python-Programm,

welcher nach Eingabe einer natürlichen Zahl n, n  1, das Produkt der

Zahlen 1, , n berechnet und ausgibt.

Anmerkung:

Man schreibt auch n! = 1  2  3   n (Lies: n-Fakultät).

Beispiele: 6! = 720 13! = 6 227 020 800

 Ergänzung:

 Definitionsgemäß gilt: 0! = 1. Erweitere den Algorithmus so, daß für die Ein-

gabe n = 0 der Wert 1 ausgegeben wird.

c) Erstelle eine Trace-Tabelle für n = 5.

Informatik 11 20.03.2023

range-Anweisung

Die range-Anweisung definiert einen Bereich ganzer Zahlen.

range(10) definiert den Bereich 0, 1, . . . , 9

range(4,21) definiert den Bereich 4, 5, . . . , 20

range(4,21,3) definiert den Bereich 4, 7, 10, . . . , 16, 19

range(-4,3) definiert den Bereich -4, -3, -2, -1, 0, 1, 2

Allgemein gilt:

range(start, stop)

definiert den Bereich start, , stop-1 ganzer Zahlen,

range(start, stop, step)

definiert den Bereich start, . . . , stop-1 mit der Schrittweite step.

Erstellen einer Liste ganzer Zahlen

a = list(range(4,13)) erzeugt die Liste

[4, 5, 6, 7, 8, 9, 10, 11, 12];

die (in diesem Fall 9) Elemente dieser Liste nennen wir auch Komponenten, auf

die man mit a[0], a[1], . . . , a[8] zugreifen kann.

Bemerkung: Unter einem Feld oder einem array verstehen wir eine Folge von

Variablen gleichen Typs; mit vorstehendem Beispiel haben wir also

ein array a ganzer Zahlen erzeugt mit den Komponenten

a[0], a[1], . . . , a[8].

Beispiele (ausgeführt in der Python-shell):

>>> list(range(1,9))

[1, 2, 3, 4, 5, 6, 7, 8]

>>> a = list(range(-5,25,3))

>>> print(a)

[-5, -2, 1, 4, 7, 10, 13, 16, 19, 22]

>>> print(a[0])

-5

>>> print(a[3])

4

>>> print(a[9])

22

 6

For-Schleife

Das Python-Programm

n = int(input('n = '))

for i in range(1,n):

 print(i)

 print(i*i)

liefert nach Eingabe der natürlichen Zahl n die Zahlen 1, 2, . . . , n-1 und deren

Quadrate; probiert es aus!

Syntax einer for-Schleife in Python:

for i in range(start, stop):

 Anweisung1

 Anweisung2

 Anweisung3

for i in range(start, stop):

 A
Arbeitsaufträge:

1. Schreibe und teste ein Python-Programm, um die Siebener-Reihe auszugeben

(also die Zahlen 7, 14, 21, . . .).

2. Erstelle (siehe screenshot) den Python-Programmtext zur Berechnung der

Summe 1 + . . . + n und teste das Programm mit unterschiedlichen

Eingaben.

Aufgabe 11

Formuliere den Algorithmus FAKULTÄT, der nach Eingabe einer natürlichen Zahl n,

n  0, den Wert n! liefert, unter Verwendung einer for-Schleife als

a) Struktogramm,

b) Python-Programm!

c) Erstelle eine Trace-Tabelle für n = 4.

Aufgabe 12

Formuliere und teste ein Python-Programm, welches nach Eingabe der natürli-

chen Zahl k, k  1, die Summe der ersten k ungeraden natürlichen Zahlen be-

stimmt, und zwar unter Verwendung einer for-Schleife.

Informatik inf11 13.04.2023

Lösungen zu Aufgabe 12

a) while-Schleife

Struktogramm:

Trace für k = 6:

 k i summand summe i <= k

vor dem

1. SD
6 2 1 1 True

vor dem

2. SD
6 3 3 4 True

vor dem

3. SD
6 4 5 9 True

vor dem

4. SD
6 5 7 16 True

vor dem

5. SD
6 6 9 25 True

nach dem

5. SD
6 7 11 36 False

Quellcode Python:

 2

b) for-Schleife

Struktogramm:

Quellcode Python:

Aufgabe 13

Für jede natürliche Zahl n, n  0, und jede reelle Zahl a, a  0, ist folgender Algo-

rithmus als Struktogramm gegeben:

a) Schreibe und teste den Python-Quelltext zu vorstehendem Struktogramm.

b) Erstelle eine Trace-Tabelle für n = 7, a = 2.

c) Erstelle eine Trace-Tabelle für n = 18.

Prinzipien zur Formulierung eines Algorithmus

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal, Java oder

Python) besteht aus einer Folge von ausführbaren Anweisungen, die in der vorge-

gebenen Reihenfolge nacheinander abgearbeitet werden.

Wesentliche Kontrollstruktur: Iteration (realisiert als for- oder while-Schleife)

Funktionaler Ansatz

Die Formulierung des Quellcodes orientiert sich der inneren, in der Regel mathe-

matischen Struktur eines Algorithmus.

Wesentliche Kontrollstruktur: Rekursion

Definition:

Eine Prozedur (Teilprogramm, Subroutine) oder eine Funktion heißt rekursiv,

wenn deren Anweisungsblock mindestens einen Aufruf von sich selbst enthält.

Bei beiden Ansätzen ist durch eine Abbruchbedingung sicherzustellen, daß der

Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu

einem Ergebnis führt.

Beispiel 1: Die Fakultätsfunktion (engl.: factorial; Aufgabe 10)

Wir ordnen jeder natürlichen Zahl n, n  0, die Zahl n! (lies: n-Fakultät) zu:

0! = 1

n! = 1  2   n falls n > 0

Berechnung von n! gemäß imperativem Ansatz

 2

Berechnung von n! gemäß funktionalem Ansatz

 Die Funktion n  fact(n) läßt sich rekursiv definieren:

 Rekursionsanfang: fact(0) = 1

 Rekursionsvorschrift: fact(n) = n  fact(n–1) , falls n > 0

Beispiel 2: Der Algorithmus ggT (größter gemeinsamer Teiler)

Nach Eingabe zweier natürlicher Zahlen a und b bestimmt ggT die größte ganze

Zahl, durch die sich a und b jeweils ohne Rest teilen lassen.

a) Imperativer Ansatz, formuliert als iterativer Algorithmus

 („Euklidischer Algorithmus“)
 Struktogramm:

 3

b) Funktionaler Ansatz, formuliert als rekursiv definierte Funktion

 Die Funktion (a, b)  ggT(a,b) läßt sich rekursiv definieren:

 Rekursionsanfang: ggT(a,a) = a

 Rekursionsvorschrift: ggT(a,b) = ggT(a–b, b) , falls a > b

 ggT(a,b) = ggT(a, b–a) , falls b > a

Aufgabe:

Realisiere den Algorithmus ggT als iteratives und als rekursives Python-

Programm; vergleiche die Laufzeiten.

Beispiel 3: Die Hofstadter-Funktion

Die Funktion hof ist rekursiv definiert, n  {1, 2, 3, } :

Rekursionsanfang: hof(1) = 1

 hof(2) = 1

Rekursionsvorschrift: hof(n) = hof(n - hof(n - 1)) + hof(n - hof(n - 2)) , n>2

Aufgabe:

Codiere den Algorithmus hofstadter

a) rekursiv,

b) iterativ

jeweils in Python; vergleiche insbesondere die Laufzeiten!

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld; in Python: Liste), in

dem bereits berechnete Funktionswerte gespeichert werden.

Aufgabe 14

Der Algorithmus GAUSS, der nach Eingabe einer natürlichen Zahl n die Summe

der Zahlen 1, . . . , n ermittelt, läßt sich sowohl imperativ als auch funktional

programmieren (vgl. Aufgabe 9).

Ergreife diese beiden Möglichkeiten, indem jeweils ein Python-Quelltext erstellt

wird (imperativ: Implementierung einer for- oder while-Schleife, mit Strukto-

gramm; funktional: Implementierung einer rekursiv definierten Funktion)

Aufgabe 15

Eingabe: natürliche Zahl k, k > 0;

Ausgabe: Summe der ersten k ungeraden Zahlen (vgl. Aufgabe 12)

Rekursive Formulierung:

Rekursionsanfang: summe(1) = 1

Rekursionsvorschrift: summe(k) = summe(k – 1) + 2k – 1 falls k > 1

Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf!

13.04.2023

Informatik inf11 20.04.2023

Aufgabe 16

Nach Eingabe einer reellen Zahl a und einer natürlichen Zahl n, n  0, berechnet

der Algorithmus POTENZ den Wert an und gibt diesen aus.

a) Formuliere den Potenzierungsalgorithmus iterativ (wahlweise while- oder for-

Schleife) als Struktogramm und Python-Programm.

 Implementiere eine Zählvariable z, um die Anzahl der Schleifendurchläufe zu

bestimmen und auszugeben.

b) Vergleiche den Potenzierungs-Algorithmus aus Aufgabe 13 mit dem Algorith-

mus aus 16.a) hinsichtlich der Anzahl der benötigten Schleifendurchläufe.

c) Wegen an = a  an-1 und a0 = 1 läßt sich die Potenz als rekursive Funktion f

definieren, die jedem n den Wert an zuordnet:

 Rekursionsanfang: f(0) = 1

 Rekursionsvorschrift: f(n) = a  f(n-1) falls n > 0

 Beispiel:

 a = 7, n = 4

 f(4) = 74 = 7  73 = 7  (7  72) = 7  (7  (7  71)) = 7  (7  (7  (7  70))) =

 7  (7  (7  (7  1))) = 7  (7  (7  7)) = 7  (7  49) = 7  343 = 2401

 Formuliere ein Python-Programm zur Berechnung von an mit rekursivem Funk-

tionsaufruf!

Nachtrag: Lösungen zu Aufgabe 13

a)

 2

b) Trace für a = 2, n = 7

 a n b u p
u

ungerade
u > 0

vor dem

1. SD
2 7 2 7 1 + +

vor dem

2. SD
2 7 4 3 2 + +

vor dem

3. SD
2 7 16 1 8 + +

nach dem

3. SD
2 7 256 0 128  

c) Trace für n = 18

 a n b u p
u

ungerade
u > 0

vor dem

1. SD
a 18 a 18 1  +

vor dem

2. SD
a 18 a2 9 1 + +

vor dem

3. SD
a 18 a4 4 a2  +

vor dem

4. SD
a 18 a8 2 a2  +

vor dem

5. SD
a 18 a16 1 a2 + +

nach dem

5. SD
a 18 a32 0 a18  

Vermutung:

Für eine reelle Zahl a und eine natürliche Zahl n, n  0, berechnet der Algorith-

mus die Potenz an und gibt deren Wert aus.

Ausblick:

Die vorgenannte Vermutung läßt sich auch streng beweisen; hierzu zeigt man,

daß die Beziehung

p  bu = an

vor und nach jedem Schleifendurchlauf erfüllt, also invariant gegenüber Schlei-

fendurchläufen ist (eine solche Beziehung heißt Schleifeninvariante).

Da während jedem Schleifendurchlauf entweder u halbiert wird, falls u gerade ist,

oder u  1 halbiert wird, falls u ungerade ist, nimmt u nach endlich vielen Schlei-

fendurchläufen den Wert 0 an, und der Algorithmus terminiert (u>0 ist False, falls

u=0 ist).

Sobald u den Wert 0 annimmt, folgt wegen b0 = 1 aus der Schleifeninvariante:

p = an

