
Rekursive Funktionen und Berechenbarkeit

Seien x, y, a, b, xi, yi ∈ 0N� mit 0N�= {0, 1, 2, 3, }; in Pascal-Programmen also
vom Typ integer.

Unter der Produktmenge A × B zweier Mengen A und B verstehen wir die Menge aller
geordneten Paare (ein solches Paar läßt sich als zweidimensionaler Vektor auffassen),
deren erste Komponente aus A und deren zweite Komponente aus B ist:

A = {a1, a2, , an}
B = {b1, b2, , bm}

A × B := { (ai, bj) ⏐ ai ∈ A und bj ∈ B }

Beachte: die Produktmenge A × B enthält n⋅m Elemente.

1. Elementare Funktionen („basic functions“)

a) Nachfolgerfunktion:

S: 0N� → 0N�
 x → succ(x)

S(x) := succ(x) = x + 1

b) Nullfunktion (“zero function”):

N: 0N� → 0N�
 x → 0

N(x) := 0

c) Projektionsfunktion (“generalized identity function”)

 U(2)

i : 0N�× 0N� → 0N�
 (x1 , x2) → xi

U(2)
i(x1 , x2) = xi

allgemein:

U(n)
i : 0N�n → 0N�

 (x1 , x2 , . . ., xn) → xi

U(n)
i(x1 , x2 , . . ., xn) = xi

2. Primitiv-rekursive Funktionen („primitive recursive functions“)

 Definition:
 Eine Funktion r : 0N�n → 0N� heißt primitiv-rekursiv genau dann, wenn sie gemäß

folgender in a), b), c) gemachten Vorgaben gebildet wird (zunächst: Beschränkung
auf n ≤ 2):

 2

a) Die Grundfunktionen und Verkettungen aus diesen sind primitiv-rekursiv.

b) Verkettung („composition“):

Falls g: 0N�2 → 0N�
und fi : 0N� → 0N� , i ∈ {1, 2}
primitiv-rekursiv sind, dann ist auch die Funktion

 r : 0N� → 0N�

mit r(x) := g(f1(x), f2(x)) primitiv rekursiv.

c) Primitive Rekursion („primitive recursion“)
Falls g: 0N� → 0N�
und h : 0N�3 → 0N�
primitiv-rekursiv sind, dann ist auch die Funktion

 r : 0N�2 → 0N�

mit r(x,0) := g(x)
und r(x,y) := h(x, y-1, r(x, y – 1)) , falls y≥1
primitiv rekursiv.

Beispiele primitiv-rekursiver Funktionen:

a) f(x) = 1 ist primitiv-rekursiv, denn

 f(x) = 1 = 0+1 = S(0) = S(N(x))

 (hier: f(x) als Verkettung von Grundfunktionen)

b) Sum : 0N�× 0N� → 0N�
 (x,y) → x + y

 oder als Funktionsgleichung geschrieben:

Sum(x, y) = x + y

ist primitiv-rekursiv, denn

Sum(x, 0) = x
Sum(x, y) = x + y = [x + (y -1)] + 1
 = S[x + (y -1)]
 = S(Sum(x, y-1)) falls y ≥ 1.

Damit ist Sum primitiv-rekursiv nach Definition c)
mit g(x)=x
und h(x, y-1, Sum(x, y – 1)) = f(U(3)

3(x, y-1, Sum(x, y – 1))
 = f(Sum(x, y – 1))
 = S(Sum(x, y-1)) mit S = f

c) Prod : 0N�× 0N� → 0N�
 (x,y) → x ⋅ y

 oder als Funktionsgleichung geschrieben:

Prod(x, y) = x ⋅ y

ist primitiv-rekursiv, denn

 3

Prod(x, 0) = 0
Prod(x, y) = x ⋅ y = x ⋅ (y-1) + x
 = Prod(x, y-1) + x
 = Sum(Prod(x, y-1), x)
 = Sum(Prod(x, y-1), U(2)

1(x , y))
 = Sum(U(2)

1(x , y), Prod(x, y-1)) , falls y ≥ 1

Damit ist Prod ebenfalls primitiv-rekursiv nach Definition c).

d) Pot : 0N�× 0N� → 0N�
 (x,y) → xy

 oder als Funktionsgleichung geschrieben:

Pot(x, y) = xy

ist primitiv-rekursiv, denn

 Pot(x, 0) = x0 = 1

Pot(x, y) = xy = xy-1 ⋅ x = (Übungsaufgabe, analog zu Beispiel c))

e) Fact : 0N� → 0N�
 x → x!

 oder als Funktionsgleichung geschrieben:

Fact(x)= x!

ist primitiv-rekursiv, denn
Fact(0) = 0! = 1
Fact(x) = x! = x ⋅ (x-1)! = (Übungsaufgabe, analog zu Beispiel c))

Pascal-Programm, welches obenstehende primitiv-rekursiven Funktionen jeweils als
function enthält; beachte: da einige der Funktionen zweckmäßigerweise andere
aufrufen, müssen im Programmtext solche aufgerufenen Funktionen vor der rufenden
Funktion stehen.

Das Pascalprogramm hat also folgenden Aufbau:

Eingabe von x, y

Auswahl der Operation (Funktion), die auf x, y wirkt

Ausgabe des Ergebnisses

Pascal-Programm:

 4

program RecFunc;
uses crt;

var
 x, y, i: integer;
 ans: char;

function S(a: integer): integer;
begin
 S := a + 1;
end;

function N(a: integer): integer;
begin
 N := 0;
end;

function U(a, b, i: integer): integer;
begin
 if i=1 then U := a
 else U := b
 //else U := nil;
end;

function Sum(a, b: integer): integer;
begin
 if b = 0 then Sum := a
 else Sum := S(Sum(a, b-1))
 //else Sum := nil;
end;

function Prod(a, b: integer): integer;
begin
 if b = 0 then Prod := 0
 else Prod := Sum(Prod(a,b-1), U(a, b, 1))
 //else Prod := nil;
end;

function Pot(a, b: integer): integer;
begin
 //I was here....
end;

begin
 Writeln('1 -> X + 1');
 Writeln('2 -> X = 0');
 Writeln('3 -> U(2) i');
 Writeln('4 -> Summe');
 Writeln('5 -> Produkt');
 Write('Zahl von 1 bis 5... ');
 readln(ans);
 Write('x = '); Readln(x);
 Write('y = '); Readln(y);
 if (ans = '1') then Writeln(S(x));
 if (ans = '2') then Writeln(N(x));
 if (ans = '3') then Writeln(U(x, y, 2));
 if (ans = '4') then Writeln(Sum(x, y));
 if (ans = '5') then Writeln(Prod(x, y));
 repeat until keypressed;
 while not keypressed do
end.

 5

Aufgabe: Zeige, daß folgende Funktionen primitiv-rekursiv sind:

f) Diff : 0N�× 0N� → 0N�

 (x,y) → Diff(x,y) mit Diff(x,y) := x − y falls x ≥ y
 Diff(x,y) := 0 falls x < y

g) Pred: 0N� → 0N�

 x → Pred(x) mit Pred(x) := x − 1 falls x ≥ 1
 Pred(x) := 0 falls x = 0

h) Abs: 0N�× 0N� → 0N�
 (x,y) → |x − y|

i) Man mache sich folgende Äquivalenz klar:

x ≥ y ⇔ Diff(y,x) = 0

3. Partiell-rekursive Funktionen („partial recursive functions“)

Wir erweitern die Klasse primitiv-rekursiver Funktionen, indem wir folgende Vorschrift zur
Erzeugung von Funktionen formulieren:

„Minimalization“ (auch: μ-operator)

Für eine gegebene Funktion f(y,x) definieren wir die Funktion h wie folgt:

h(x) := min { y | f(y,x) = 0}

lies: „das Minimum aller Werte von y, für die gilt: f(y,x)=0“

Beispiel:

Die Funktion

h(x) := [x/2] = x DIV 2 ([. . .] = Gauß-Klammer)

läßt sich durch einen geeigneten Minimalisierungsprozeß definieren.

h(x) = min { y | 2(y+1) > x }
 = min { y | 2y + 2 > x }
 = min { y | 2y + 2 ≥ x + 1 }
 = min { y | 2y + 1 ≥ x }
 = min { y | (2y + 1) − x ≥ 0 }
 = min { y | Diff(x, 2y + 1) = 0 }

 6

Flußdiagramm zur Berechnung mittels des μ-Operators definierter Funktionen:

y:=0

f(y, x)

f(y, x)=0

h(x):=y

+

−

y:=y+1

