
Rekursive Funktionen und Berechenbarkeit 
 
 
Seien x, y, a, b, xi, yi ∈ 0N�  mit  0N�= {0, 1, 2, 3, . . . . . }; in Pascal-Programmen also 
vom Typ integer. 
 
Unter der Produktmenge A × B zweier Mengen A und B verstehen wir die Menge aller 
geordneten Paare (ein solches Paar läßt sich als zweidimensionaler Vektor auffassen), 
deren erste Komponente aus A und deren zweite Komponente aus B ist: 
 
A  =  {a1, a2, . . . . . , an} 
B  =  {b1, b2, . . . . . , bm}  
 
A × B  := { (ai, bj) ⏐  ai ∈ A und bj ∈ B } 
 
Beachte: die Produktmenge A × B enthält n⋅m Elemente. 
 
 
1. Elementare Funktionen („basic functions“) 
 

a) Nachfolgerfunktion:  
 

S:    0N�   →  0N� 
 x   →   succ(x) 
 
S(x) := succ(x) = x + 1 
 
 

b) Nullfunktion (“zero function”): 
 

N:    0N�   →  0N� 
 x   →   0 
 
N(x) := 0 
 
 

c) Projektionsfunktion (“generalized identity function”) 
 
 U(2)

i :   0N�× 0N�    →  0N� 
   (x1 , x2 )    →  xi 
 

U(2)
i(x1 , x2 ) = xi  

 

 

allgemein: 
 

U(n)
i :   0N�n                      →  0N� 

   (x1 , x2 , . . ., xn)    →  xi 
 

U(n)
i(x1 , x2 , . . ., xn) = xi  

 
 
 
2. Primitiv-rekursive Funktionen („primitive recursive functions“) 
 
 Definition: 
 Eine Funktion  r : 0N�n   →  0N�  heißt primitiv-rekursiv genau dann, wenn sie gemäß 

folgender in a), b), c) gemachten Vorgaben gebildet wird (zunächst: Beschränkung 
auf n ≤ 2): 
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a) Die Grundfunktionen und Verkettungen aus diesen sind primitiv-rekursiv. 
 
b) Verkettung („composition“): 

Falls  g:    0N�2    →  0N� 
und   fi :   0N�    →  0N�  ,   i ∈ {1, 2} 
primitiv-rekursiv sind, dann ist auch die Funktion 
 
         r :   0N�    →  0N�   
 
mit r(x) := g(f1(x), f2(x)) primitiv rekursiv. 
 

c) Primitive Rekursion („primitive recursion“) 
Falls  g:    0N�       →  0N� 
und   h :    0N�3    →  0N�   
primitiv-rekursiv sind, dann ist auch die Funktion 
 
         r :   0N�2    →  0N� 
 
mit   r(x,0)  :=  g(x) 
und   r(x,y)  :=  h(x, y-1, r(x, y – 1)) , falls y≥1 
primitiv rekursiv. 
         
 
 

Beispiele primitiv-rekursiver Funktionen: 
 
a) f(x) = 1 ist primitiv-rekursiv, denn 
 

 f(x)  = 1 = 0+1 = S(0) = S(N(x))    
 

 (hier: f(x) als Verkettung von Grundfunktionen) 
 
b) Sum :  0N�× 0N�    →  0N� 
   (x,y)   →  x + y 
  
 oder als Funktionsgleichung geschrieben: 
  

Sum(x, y) = x + y 
 

ist primitiv-rekursiv, denn  
 
Sum(x, 0) = x  
Sum(x, y) = x + y  = [x + (y -1)] + 1 
 = S[x + (y -1)] 
 = S(Sum(x, y-1))   falls y ≥ 1. 
 
Damit ist Sum primitiv-rekursiv nach Definition c)  
mit  g(x)=x 
und h(x, y-1, Sum(x, y – 1))  = f(U(3)

3(x, y-1, Sum(x, y – 1)) 
  = f(Sum(x, y – 1)) 
  = S(Sum(x, y-1))   mit S = f 
 
 

c) Prod :  0N�× 0N�    →  0N� 
   (x,y)   →  x ⋅ y 
  
 oder als Funktionsgleichung geschrieben: 
  

Prod(x, y) = x ⋅ y 
 

ist primitiv-rekursiv, denn  
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Prod(x, 0)  = 0  
Prod(x, y)  = x ⋅ y = x ⋅ (y-1) + x    
 = Prod(x, y-1) + x  
 = Sum(Prod(x, y-1), x)  
 = Sum(Prod(x, y-1), U(2)

1(x , y )) 
 = Sum(U(2)

1(x , y ), Prod(x, y-1))   ,  falls y ≥ 1 
 

Damit ist Prod ebenfalls primitiv-rekursiv nach Definition c). 
 
 
d) Pot :  0N�× 0N�    →  0N� 
       (x,y)       →   xy 

  
 oder als Funktionsgleichung geschrieben: 
  

Pot(x, y) = xy 
 

ist primitiv-rekursiv, denn  
 
 Pot(x, 0) = x0 = 1 

Pot(x, y) = xy = xy-1 ⋅ x = . . . . . . .   (Übungsaufgabe, analog zu Beispiel c)) 
 
 
e) Fact :  0N�    →  0N� 
          x    →   x! 
 
 oder als Funktionsgleichung geschrieben: 
  

Fact(x)= x! 
 

ist primitiv-rekursiv, denn  
Fact(0) = 0! = 1 
Fact(x) =  x! = x ⋅ (x-1)! = . . . . . . .  (Übungsaufgabe, analog zu Beispiel c)) 

 
 

 
 
 
Pascal-Programm, welches obenstehende primitiv-rekursiven Funktionen jeweils als 
function enthält; beachte: da einige der Funktionen zweckmäßigerweise andere 
aufrufen, müssen im Programmtext solche aufgerufenen Funktionen vor der rufenden 
Funktion stehen. 
 
 
Das Pascalprogramm hat also folgenden Aufbau: 
 
 
Eingabe von x, y 
 
Auswahl der Operation (Funktion), die auf x, y wirkt 
 
Ausgabe des Ergebnisses 
 
 
 
 
Pascal-Programm: 
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program RecFunc; 
uses crt; 
 
var 
  x, y, i: integer; 
  ans: char; 
 
function S(a: integer): integer; 
begin 
  S := a + 1; 
end; 
 
function N(a: integer): integer; 
begin 
  N := 0; 
end; 
 
function U(a, b, i: integer): integer; 
begin 
  if i=1 then U := a 
         else U := b 
  //else U := nil; 
end; 
 
function Sum(a, b: integer): integer; 
begin 
  if b = 0 then Sum := a 
           else Sum := S(Sum(a, b-1)) 
  //else Sum := nil; 
end; 
 
function Prod(a, b: integer): integer; 
begin 
  if b = 0 then Prod := 0 
           else Prod := Sum(Prod(a,b-1), U(a, b, 1)) 
  //else Prod := nil; 
end; 
 
function Pot(a, b: integer): integer; 
begin 
  //I was here.... 
end; 
 
begin 
  Writeln('1 -> X + 1'); 
  Writeln('2 -> X = 0'); 
  Writeln('3 -> U(2) i'); 
  Writeln('4 -> Summe'); 
  Writeln('5 -> Produkt'); 
  Write('Zahl von 1 bis 5... '); 
  readln(ans); 
  Write('x = '); Readln(x); 
  Write('y = '); Readln(y); 
  if (ans = '1') then Writeln(S(x)); 
  if (ans = '2') then Writeln(N(x)); 
  if (ans = '3') then Writeln(U(x, y, 2)); 
  if (ans = '4') then Writeln(Sum(x, y)); 
  if (ans = '5') then Writeln(Prod(x, y)); 
  repeat until keypressed; 
  while not keypressed do 
end. 
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Aufgabe: Zeige, daß folgende Funktionen primitiv-rekursiv sind: 
 
 
f) Diff :  0N�× 0N�    →  0N� 

     (x,y)    →   Diff(x,y)         mit       Diff(x,y) := x − y  falls x ≥ y 
 Diff(x,y) := 0       falls x < y 
 
 
g) Pred:       0N�   →  0N� 

              x   →  Pred(x)          mit       Pred(x) := x − 1  falls x ≥ 1 
 Pred(x) := 0       falls x = 0 
 
 
h) Abs:     0N�× 0N�    →  0N� 
                  (x,y)       →   |x − y| 
 
 
 
i) Man mache sich folgende Äquivalenz klar: 
 

x ≥ y      ⇔     Diff(y,x) = 0 
 

 
 
 
 
 
3. Partiell-rekursive Funktionen („partial recursive functions“) 
 
Wir erweitern die Klasse primitiv-rekursiver Funktionen, indem wir folgende Vorschrift zur 
Erzeugung von Funktionen formulieren: 
 
„Minimalization“ (auch: μ-operator ) 
 
Für eine gegebene Funktion f(y,x) definieren wir die Funktion h wie folgt: 
 
h(x) := min { y  |  f(y,x) = 0}  
 
lies: „das Minimum aller Werte von y, für die gilt: f(y,x)=0“ 
 
 
Beispiel: 
 
Die Funktion  
 

h(x) := [x/2] = x DIV 2                 (  [ . . . ] = Gauß-Klammer  ) 
 

läßt sich durch einen geeigneten Minimalisierungsprozeß definieren. 
 
 
h(x)  =  min { y | 2(y+1) > x } 
 =  min { y | 2y + 2  > x } 
 =  min { y | 2y + 2   ≥  x + 1 } 
 =  min { y | 2y + 1   ≥  x  } 
 =  min { y | (2y + 1)  − x  ≥  0 } 
 =  min { y | Diff(x, 2y + 1) =  0 } 
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Flußdiagramm zur Berechnung mittels des μ-Operators definierter Funktionen: 
 
 
 

 
 

y:=0 

f(y, x) 

 
f(y, x)=0 
 

 
h(x):=y 

+ 

−

y:=y+1 


