Rekursive Funktionen und Berechenbarkeit

Seien X, Yy, a, b, X;, yi € No

vom Typ integer.

mit No=4{0,1,2,3,..... ¥}; in Pascal-Programmen also

Unter der Produktmenge A x B zweier Mengen A und B verstehen wir die Menge aller
geordneten Paare (ein solches Paar lal3t sich als zweidimensionaler Vektor auffassen),
deren erste Komponente aus A und deren zweite Komponente aus B ist:

AxB :={(a,b) | aaceAundb;eB}

Beachte: die Produktmenge A x B enthalt n-m Elemente.

1. Elementare Funktionen (,,basic functions)

a) Nachfolgerfunktion:

S: Noe - No

X — succ(X)

S(X) :=succ(X) =x+1

b) Nullfunktion (“zero function”):

N: No » No
X —> 0

N(x) :=0

¢) Projektionsfunktion (“generalized identity function”)

U(Z)i : Nox No - No

(X1, X2)

U(Z)i(xl , X2) = X

allgemein:
U(n)i : No"

(X1, X2, - - -, Xp)
UMi(X1, Xz, -« 4 Xp) = X

- X

- No
- X

2. Primitiv-rekursive Funktionen (,,primitive recursive functions)

Definition:
Eine Funktion r : No"

- No

heil3t primitiv-rekursiv genau dann, wenn sie gemafi

folgender in a), b), ¢) gemachten Vorgaben gebildet wird (zunachst: Beschrankung

auf n < 2):



a) Die Grundfunktionen und Verkettungen aus diesen sind primitiv-rekursiv.

b) Verkettung (,,composition*):
Falls g: No?2 — No
und fi: No - No , ie{l, 2}
primitiv-rekursiv sind, dann ist auch die Funktion

r:- No -5 No
mit r(x) := g(f1(x), f2(x)) primitiv rekursiv.

c) Primitive Rekursion (,,primitive recursion®)
Falls g: No - No
und h: No® -5 N,
primitiv-rekursiv sind, dann ist auch die Funktion

r: No2 - No

mit r(x,0) = g(x)
und r(x,y) = h(x, y-1, r(x,y— 1)), falls y>1
primitiv rekursiv.

Beispiele primitiv-rekursiver Funktionen:

a) f(x) = 1 ist primitiv-rekursiv, denn
f(x) =1 =0+1=S(0) = S(NX))
(hier: f(x) als Verkettung von Grundfunktionen)

b) Sum: Nox No — No
xy) - x+y

oder als Funktionsgleichung geschrieben:
Sum(x,y) =X +y

ist primitiv-rekursiv, denn

Sum(x, 0) = x

Sum(x,y) =x+y =[x+ ((y-1D]+1

=S[x + (y -1]
= S(Sum(x, y-1)) fallsy > 1.

Damit ist Sum primitiv-rekursiv nach Definition c)

mit g(x)=x

und h(x, y-1, Sum(x, y — 1)) = f(U®3(x, y-1, Sum(x, y — 1))
=f(Sum(x, y — 1))
=S(Sum(x, y-1)) mitS=f

c) Prod: Nox No — No
xy) - x-y

oder als Funktionsgleichung geschrieben:
Prod(x,y) =x-Yy

ist primitiv-rekursiv, denn



d)

e)

Prod(x, 0)
Prod(x, y)

0]
X.-y=x-(y-1) +x

Prod(x, y-1) + x

= Sum(Prod(x, y-1), x)

= Sum(Prod(x, y-1), U®,(x, y))

= Sum(U®@,(x,y), Prod(x, y-1)) , fallsy=>1

Damit ist Prod ebenfalls primitiv-rekursiv nach Definition c).

Pot : NOX No - No
(x,y) - %Y

oder als Funktionsgleichung geschrieben:
Pot(x, y) = x¥
ist primitiv-rekursiv, denn

Pot(x,0) =x°=1
Pot(x,y) =xY=x¥*.x=....... (Ubungsaufgabe, analog zu Beispiel c))

Fact : No -> No
x — x!

oder als Funktionsgleichung geschrieben:
Fact(x)= x!

ist primitiv-rekursiv, denn
Fact(0) =0l =1
Fact(x) = xl=x.- (x-D!'=....... (Ubungsaufgabe, analog zu Beispiel c))

Pascal-Programm, welches obenstehende primitiv-rekursiven Funktionen jeweils als
function enthalt; beachte: da einige der Funktionen zweckmaligerweise andere
aufrufen, missen im Programmtext solche aufgerufenen Funktionen vor der rufenden
Funktion stehen.

Das Pascalprogramm hat also folgenden Aufbau:

Eingabe von x, y

Auswahl der Operation (Funktion), die auf x, y wirkt

Ausgabe des Ergebnisses

Pascal-Programm:



program RecFunc;

uses crt;
var
X, Yy, i: integer;
ans: char;
function S(a: integer): integer;
begin
S :=a+ 1;
end;
function N(a: integer): integer;
begin
N == 0;
end;
function U(a, b, i: integer): integer;
begin
if 1=1 then U := a
else U := b
//else U = nil;
end;
function Sum(a, b: integer): integer;
begin
if b =0 then Sum = a
else Sum = S(Sum(a, b-1))
//else Sum := nil;
end;
function Prod(a, b: integer): integer;
begin
if b =0 then Prod := 0
else Prod := Sum(Prod(a,b-1), U(a,
//else Prod := nil;
end;
function Pot(a, b: integer): integer;
begin
//1 was here....
end;
begin
WriteIn("1 -> X + 17);
WriteIn("2 -> X = 0%);
WriteIn("3 -> U(2) 17);
WriteIn("4 -> Summe®);
WriteIn("5 -> Produkt™);
Write("Zahl von 1 bis 5... ");
readln(ans);
Write("x = "); Readln(X);
Write("y = "); ReadIn(y);
if (ans = "1%) then WriteIn(S(xX));
if (ans = "2%) then WriteIn(N(X));
if (ans = "3") then WriteIn(U(X, v, 2));
if (ans = "47) then WriteIn(Sum(x, y));
if (ans = "5") then Writeln(Prod(x, V¥));

repeat until keypressed;
while not keypressed do

end.

b, 1))



Aufgabe: Zeige, dal} folgende Funktionen primitiv-rekursiv sind:

f) Diff : Nox No - No
(x,y) - Diff(x,y) mit Diff(x,y) :=x -y fallsx>y
Diff(x,y) :=0 falls x <y

g) Pred: No —» No
X — Pred(x) mit Pred(x) :=x-1 fallsx>1
Pred(x) :=0 falls x =0

h) Abs: Nox No — No
x.y) - Ix-vl

i) Man mache sich folgende Aquivalenz klar:

X2y < Diff(y,x) =0

3. Partiell-rekursive Funktionen (,,partial recursive functions*)

Wir erweitern die Klasse primitiv-rekursiver Funktionen, indem wir folgende Vorschrift zur
Erzeugung von Funktionen formulieren:

,»Minimalization* (auch: p-operator )

Fur eine gegebene Funktion f(y,x) definieren wir die Funktion h wie folgt:

h(xX) :==min{y | f(y,x) =0}

lies: ,,das Minimum aller Werte von vy, fur die gilt: f(y,x)=0"

Beispiel:

Die Funktion
h(x) :=[x/2] = x DIV 2 ([...]=GauB-Klammer )
lakt sich durch einen geeigneten Minimalisierungsprozell definieren.

h(>) min{y | 2(y+1) >x}
mn{y|2y+2 =>x}%}
min{yl|l2y+2 > x+1%
min{yl2y+1 > x }
mn{y|@y+1) - x>0}
min {y | Diff(x,2y +1) = 0}



FluRdiagramm zur Berechnung mittels des p-Operators definierter Funktionen:

A

f(y, X)

y:=y+1

f(y, X)=0

h(x):=y




