Sortieren durch Mischen ("MergeSort")

Aufgabe:

Gegeben ist eine Liste L = {a[0], a[2], a[3],...., a[n-1]}
von n Datenelementen, flr die die Ordnungsrelationen <, >, <, > erklart
sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daB gilt:
a[0] =a[2] =..... < a[n-1].
Wir fassen die Elemente der Liste auf als Komponenten eines arrays a.

Strategie: "Divide et impera”
Eine Liste, die nur ein einziges Element enthalt, ist bereits sortiert.

Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, laBt sich in 4 Schritten
bewaltigen:

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten
2). Sortiere die erste Teilliste gemaB den Schritten 1). - 4).
3). Sortiere die zweite Teilliste geman den Schritten 1). - 4).

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste

Falls left < right wahr ist, sortiert die rekursiv definierte Funktion
sort (array, left, right)

die Liste

array[left], , array[right]

unter Verwendung der Funktion merge.

Die Funktion

merge (array, left, middle, right)

mischt die sortierten Teillisten

array[left], , array[middle]
und
array[middle+l], , array[right]

zu der sortierten Gesamtliste

array[left], , array[right]

Quellcode der Funktion sort in Python:

def sort(array, left, right):
if left >= right:
return
middle = (left + right)//2
sort (array, left, middle)
sort (array, middle + 1, right)
merge (array, left, middle, right)

Aufruf zum Sortieren der aus den n Komponenten

a[0], a[2], al3]1, , a[n-1]
bestehenden Liste a:

sort(a, 0, len(a)-1)

Aufwandsbetrachtung:

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus
n Komponenten bestehende Liste zu sortieren.

Dann gilt:

A(n) = 2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen
+ Aufwand zum Mischen zweier sortierter Teillisten

A(n) = A(n/2) + A(n/2)
+ Aufwand zum Mischen zweier sortierter Teillisten

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wachst linear mit der Anzahl n der zu sortierenden Datenelemente; somit
erhalten wir fir den Funktionsterm A(n) die Funktionalgleichung (c = Konstante
= Proportionalitatsfaktor)

(*Y A(n) =A(n/2) + A(n/2) + c- n mit der Bedingung
(**) A(1) =0.

Behauptung: Die Funktion
A(n) = c-n-log,(n)

ist Losung der Funktionalgleichung (*) mit der Anfangsbedingung (**).

Beweis:
A(n/2) + A(n/2) + c-n = 2-A(nh/2) +c-n
= 2-.-¢c-n/2-logx(n/2) + c-n
= c-n-(logz(n) — logx(2)) + c-n
= c-n-(logz(n)— 1) +c-n
= C-n-logx(n)
= A(n)

Damit ist (*) erfullt; wegen log,(1) = 0 genlgt A(n) auch der Bedingung (**).

Bemerkung: Mit Methoden der Analysis 148t sich die Eindeutigkeit der Lésung des
Problems (*), (**) zeigen, somit ist mit A(n) = ¢ - n -log,(n) die einzige Lésung
der Funktionalgleichung gefunden.

Allgemein 1aBt sich beweisen, daB der Aufwand zum Sortieren von n Datensatzen
grundsatzlich mindestens von der Ordnung n - log,(n) wachst. In diesem Sinne
kann das Sortierverfahren ,MergeSort" als optimales Vefahren gelten.

Erganzende Betrachtung zum Speicherplatzbedarf:

Nachdem wir festgestellt haben, daB der Aufwand zum Sortieren von n
Datenelementen von der Ordnung n - log,(n) wachst und damit ein Optimum
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn
rekursive Algorithmen haben grundsatzlich den Nachteil, daB sie wahrend der
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. DaB3 dieser Effekt bei
MergeSort nicht oder nur unwesentlich ins Gewicht fallt, zeigt folgende
Uberlegung:

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.

0. B. d. A. sei n eine Zweierpotenz, d. h. n=2%, ke{0,1,2,3,...... ¥.
Bemerkung: Der Pfeil ——— bedeutet: ,ruft auf"

n=1: sort(a,0,0) 1 Aufruf

n=2: sort(a,0,1)

SN

sort(a,0,0) sort(a,1,1)

1+ 2.1 = 3 Aufrufe

n=4: sort(a,0,3)
sort(a,0,1) sort(a,2,3)
sort(a,0,0) sort(a,1,1) sort(a,2,2) sort(a,3,3)

1+ 2.3 =7 Aufrufe

n = 8: sort(0,7)
sort(0,3) sort(4,7)
sort(0,1) sort(2,3) sort(4,5) sort(6,7)

SN /N SN N

sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

1+ 2.7 =15 Aufrufe

f(1) =1 =1 =2.1-1
f2) =1+2-1 = 3 =2.2 -1
f(4) =1+2.3 = 7 =2.4 -1
f(8) =1+4+2.7 =15 = 2.8 -1
f(16)=1+2-15= 31 = 2.16-1
f(32)=1+2-31 =63 =2-32-1

allgemein:
f(n)=2.n-1

Offensichtlich ist f(n) Losung der rekursiv definierten Funktionalgleichung
f(n) =1+ 2.f(n/2)
mit der Anfangsbedingung f(1)=1.

Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der
Speicherplatzbedarf wahrend der Laufzeit wachst somit linear mit n, also
wesentlich schwacher als die Anzahl A(n) elementarer Rechenoperationen.

Die rekursiv veranlaBten Aufrufe der Funktion sort zerlegen die zu sortierende
Liste in Teillisten jeweils der Lange 1, die als ein-elementige Listen bereits
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils
einer sortierten Liste gemaB folgendem Diagramm:

Bemerkung: Der Pfeili —— bedeutet: ,wird gemischt"

al0] al1] al2] al3] al4] als] ale] al7]
merge(0,0,1) merge(2,2,3) merge(4,4,5) merge(6,6,7)
alo] a[1l al2] a[3] al4] a[s] a[6] a[7]
merge(0,1,3) merge(4,5,7)
alo] al1] al2] a[3) al4] a[5] al6] al7]

\./

merge(0,3,7)
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Fir die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar:

g(1) =0
g(n)=1+4+2.g(n/2) falls n=2% k>1

Lésung der vorstehenden Funktionalgleichung:

g(n)=n-1

Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe
der Funktion merge wachsen jeweils linear mit n.

Februar 2021
Bemerkung:

Fiar den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten
wir bei

- SelectionSort: A(n) ~ n?

- MergeSort: A(n) ~n - logy(n)

- Fibonacchi-Folge: A(n) ~ 2" (bei rekursiver Berechnung)
- BinarySearch: A(n) ~ logy(n)

Entsprechend haben

- SelectionSort quadratische Komplexitat,

MergeSort linear-logarithmische Komplexitat,

die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexitdt,
BinarySearch logarithmische Komplexitat.

Algorithmen mit exponentieller Komplexitdt erweisen sich in der Praxis als unbrauchbar.

T4 (1124 0ed 0ee 0Te 0o¢ OeT 08T 0LT 09T 0sT 0FT 0eT 0<tT 01T 00T

06

08

0L

09

0%

0¥

113

0Z

0T

wnisydepr sadJeauL|

x=A

(x)bo| #x=A

wnisysepm saydsLwyiLaeho|—aesauL|

wnaisys>em ssydsiiedpenb

00T

00z

00t

00t

00s

009

004

008

006

000T

00TT

00T

00ET

00+T

00ST

009T

004T

008T

006T

MergeSort
Anzahl und Reihenfolge der Aufrufe der Funktionen sort und merge

Quelltext

MergeSort
Rusgabe der Reihenfolge der Funktionsaufrufe

E::r random import randint

z =0

v =10

n = int{input{'lLaenge des arc]
print ()

Erzeugen des arrays mit dem Namen a
und den n FKomponenten al[0], . . . , aln-1]
a = list{range{0,n))

Zuweisung won Zufallszahlen an die Eomponenten des arrays a
for i in range{0O,n): a[i] = randint (0, 539)

Rusgabe der Cuelliste

anzahl = int{input({'Wieviele Elemente sollen angezeigt werden? '})
print ()

for i in range{0,an=zahl): print{alil)

print ()

def merge (array, left, middle, right):
global ¥
v += 1
left_sublist = arrayl[left:omiddle + 1]
right_sublist = array[middle+l:right+l]
left sublist_index = 0
right_sublist_index = 0

sorted index = left
while left_sublist index = len{left_sublist) and right_sublist_ index < len{right_sublist):
if left sublist[left sublist_ index] <= right sublist[right sublist indexx]:
array[sorted_index] = left sublist[left_sublist_index]

left sublist index = left sublist index + 1
array[sorted index] = right sublist[right sublist index]
right_sublist index = right_ sublist_index + 1

sorted index = sorted index + 1

while left_sublist index < len{left sublist):

array[sorted index] = left sublist[left sublist_ index]

left_sublist index = left sublist_index + 1

sorted index = sorted index + 1

while right sublist_ index < leni{right sublist):

array[sorted index] = right sublist[right sublist index]

right_subklist index = right_ sublist_index + 1

sorted index = sorted_index + 1

def sort{array, left, right):
e

= right: return
= (left + right)/s2
print("sort(",left, ", ", middle, ") ")
sort (array, left, middle)
print("sort(’ ,middle + 1,",",xight, "1 ")
sort {array, middle + 1, right)
print ("merge (" ,left, ", ", middle, ", ", right, ") ")

merge {array, left, middle, right)

1 =20
r = len(a)-1
print{"sort({",1,",",xr, "} "}

sorti{a, 1, r)

print ()

print('Sortierte Liste:")

print ()

for i in range{0,an=zahl): print{al[i])
print ()

print{'g sort: |

print("§ merge: ",¥)

Durchfihrung von MergeSort und Auflistung der Aufrufe der Funktionen sort
und merge flr eine aus den 8 Komponenten a[0], . . . , a[7] bestehende
Liste a:

Wieviele Elemente sollen angezeigt werden? 8

89
37
31
0

1%
86
33
L

sSort (
sort (
sort (
sort (
sort(
merge{ 0 , 0 , 1)
sart(& 5 3

sorkf 2 . 2)
sortl & .05

mergel 2 ; 2 ; 3)

= o o o o
= O W =d

r
r
r
r
r

7)
sort{ 6 ;, 6)
sorty T - T}
merge(6 , 6 ,
merge| 4 5 5 ;
merge(0 , i

-] =]

Sortierte Liste:

0

1

15
31
33
37
86
859

Aufrufe sort: 15
BAufrufe merge: 7

Baumstruktur mit Reihenfolge flir die Funktionsaufrufe:

1
sort{0 ,E-’jl
a[0] a[1] a[2] _at3] o a[5) a[6] a[7]
E 7 & _ M 5 e 3 | o7
sort(0 , 2)] sort(4,7)]
a[0] a[i)f 2] a[3] al4] als)” ||\ al6] al7]
L 3 /A2 [o\, | [¢ T A [[7
3 EK 13 17
sort(0,1)] :":"_“.:.:1 ;3] su:uﬂii 4,5) su:u-'t; 6, 7)
afo] /|| \al1] a2/ ||\ al=1 al4) |\ als] ats)/ | \ al71
HEVAS [ol \s | [&][\ | 7 [\~
ﬂ IEK 8 9 Jﬂ |15| JE lEy
%
sort(0,0) sort(1,1) sort(Z2,2) sort(3,3) sort(4,4) sort(5,5) sort{6,8) sort(7,7)
a[0] al1] al2] a[3] al4] al5] al6] a[7]
| 3 | ‘ 7 | 9 5 =] 4 | z | 7
G ?EI .15 25
a[o] a[1] al2] al3] al4] lﬁ a[5] a[6] a[7]
3 7 9 5 B 4 2 7
mergel 0,0 ,1) | | merge(2, 2, 3) | merge(4, 4, 5) | | merge(6,6 ,7)
1_1 |?1.
a[o] a[1] al2] a[3] al4] a[5] a[s] al7]
3 7 5 9 4 6 L 2 7
merge(0, 1, 3) | merge(4,5,7)
2
a[o] af1] a[2] a[3] a[4] a[s] a[s] a[7]
3 3 7 9 2 4 =] 7
| merge(0,3 , 7)
a[0] al1] a[2] a[3] a[4] a[5] a[&] al7]
| 2 3 4 5 6 7 7 g
von sort veranlaBte sort-aufrufe:

von sort

veranlabte merge-Aufrufe:

08.12.2023

