
Gütekriterien bei Algorithmen 
 
1. Effizienz 
 Verlangt werden Effizienz bzgl. des zeitlichen Aufwands und des Speicherbedarfs 

während der Laufzeit; beide Forderungen sind häufig nicht gleichzeitig erfüllbar.  
 
2. Korrektheit 
 Das Programm liefert die Lösung eines Problems entsprechend seiner Spezifikation, in 

der die Eingabedaten und die Ausgabedaten vorgeschrieben werden. 
 
3. Zuverlässigkeit 
 Ein zuverlässiges Programm korrigiert Fehler infolge falscher Anwendung oder 

falscher oder sinnloser Eingabe. 
 
4. Wartungsfreundlichkeit 
 Ein wartungsfreundliches Programm läßt sich leicht ändern, korrigieren oder 

erweitern (wichtig für upgrades!); die Wartungsfreundlichkeit setzt allerdings eine 
entsprechende Dokumentation des Quelltextes voraus. 

 
5. Benutzerfreundlichkeit 
 Der Anwender kann ohne Konsultation des Programmautors oder eines Handbuchs 

mit dem Programm erfolgreich umgehen; diese Fertigkeit wird selbstverständlich 
auch unterstützt von der Intuition und Erfahrung des Anwenders. 

 
 
 
 
1. Effizienz 
 
Sei n := Anzahl der Datensätze, die der Algorithmus zu verarbeiten hat 
 
 
Algorithmus Sortieren 

durch 
direkte 
Auswahl 

Sortieren 
durch 
Mischen 
(mergesort) 

Türme von 
Hanoi 

Erfassen 
von 
Adressen 

Suchen in 
einer 
sortierten 
Liste 

Anzahl der 
Rechenope-
rationen und 
damit 
zeitlicher 
Bedarf zur 
Laufzeit des 
Programms 
proportional 
zu 

n2 n ⋅ log2(n) 2n − 1 n log2(n) 

Art des 
Wachstums 

polynomial  exponentiell linear logarithmisch 

 
Algorithmen, deren zeitlicher Aufwand exponentiell oder stärker als exponentiell 
(Ackermann-Funktion!) anwächst, sind in der Praxis unbrauchbar. 
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2. Korrektheit 
 
Jeder Programmierer macht die Erfahrung, daß ein Programm weder bezüglich der 
Syntax der verwendeten Programmiersprache noch bezüglich der erwarteten 
Verarbeitung der Daten auf Anhieb korrekt ist. 
 
Insbesondere gilt dies für überaus komplexe Programme wie Betriebssysteme (winXP 
oder win2k3; die alten winDOS-Systeme (win3.11, win95, win98, winME) erwiesen sich 
als besonders unzuverlässig). 
 
In einigen Fällen, leider beschränkt auf vergleichsweise einfache Algorithmen, läßt sich 
sogar ein mathematischer Beweis für die Korrektheit eines Algorithmus erbringen, indem 
man Schleifeninvarianten findet und diese als korrekt verifiziert. Das hierzu benötigte 
Beweisverfahren ist das Verfahren der Vollständigen Induktion (Die Mathematik kennt 
bekanntlich drei Beweisverfahren: direkter Beweis, indirekter Beweis, vollständige 
Induktion). 
 
 
Verfahren der Vollständigen Induktion: 
 
Sei A(n) eine von der natürlichen Zahl n abhängige Aussage, n ∈ {0, 1, 2, 3, . . . . }. 
 
Um zu beweisen, daß A(n) wahr ist für alle n ∈ {0, 1, 2, 3, . . . . }, verifizieren wir:  
 
 (1)      A(0)    ist wahr (Induktionsanfang) 
 
 (2) Die Implikation [A(n) ⇒ A(n+1)] ist wahr (Induktionsschritt) 
 
 
Bevor wir dieses Verfahren auf den Korrektheitsbeweis von Algorithmen anwenden, 
sollten wir es bei einfachen innermathematischen Problemen einüben und verstehen. 
 
 
 
Aufgabe 1: 
 
Behauptung:  12 + 22 + 32 + . . . . . . . + n2 = n(n+1)(2n+1)/6 
 
Beweis:   
 

Definiere A(n) := „12 + . . . . . + n2 = n(n+1)(2n+1)/6“   
 

(Beachte: A(n) ist eine Gleichung, somit insbesondere eine Aussage, die genau zwei 
boolesche Werte annehmen kann: TRUE oder FALSE.) 
 
 
Induktionsanfang (n=1): 
 
A(1)=TRUE ,  
denn  A(1)   ⇔   [ 12 = 1⋅(1+1)(2⋅1+1)/6 ]   ⇔   [ 1 = 1⋅2⋅3/6 ]   ⇔   [ 1=1 ] 
die letzte Aussage hat trivialerweise den Wert TRUE. 
 
 
Induktionsschritt: 
 
Unter der Annahme, daß A(n) TRUE ist, verifizieren wir, daß dann auch A(n+1) den Wert 
TRUE annimmt. 
 



 3 

Sei also A(n) TRUE, das heißt 
 
 
12 + 22 + 32 + . . . . . . . + n2 = n(n+1)(2n+1)/6  ist richtig für beliebiges n (diese 
Annahme heißt auch Induktionsvoraussetzung). 
 
Wir betrachten A(n+1), also die Gleichung 
 
12 + 22 + . . . . . . . + (n + 1)2 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6,  
 
die wir unter der Annahme, daß A(n) TRUE ist, als TRUE qualifizieren werden. 
 
 
12 + 22 + . . . . . . . + (n + 1)2   =  [12 + 22 + . . . . . . + n2 ] + (n + 1)2 
 

 

wegen A(n) = TRUE folgt 
 = n(n+1)(2n+1)/6            + (n + 1)2 

 

 = (n + 1)[ n(2n+1)/6 + (n + 1)] 
 

 = (n + 1)[ n(2n+1) + 6(n + 1)]/6 
  

 = (n + 1)[ 2n2+n + 6n + 6)]/6 
  

 = (n + 1)[ 2n2+ 7n + 6)]/6 
 

 = (n + 1)[ (n + 2)(2n + 3)]/6 
 

 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6 
 
Somit folgt unter der Annahme „A(n)=TRUE“, daß „A(n+1)=TRUE“ wahr ist, und in 
Verbindung mit dem Induktionsanfang „A(1)=TRUE“ ergibt sich die Behauptung für alle 
Werte von n. 
 

 
 
 
Als Übungsaufgabe verifiziere man die Behauptungen der Aufgaben 2 und 3: 
 
 
 
 

Aufgabe 2: 
 
Behauptung:  13 + 23 + 33 + . . . . . . . + n3 = n2(n+1)2/4 
 

 
 
 
Aufgabe 3: 
 
Behauptung:   Die Bernoullische Ungleichung    (1 + x)n > 1 + n ⋅ x 
 

 ist wahr für alle natürlichen Zahlen n mit n≥2 und für reelle Zahlen x mit  
 x≠0 und 1+x>0. 
 
 
 
(Vgl. auch das Mathematikbuch; man sieht, daß Informatik und Mathematik durchaus 
verwandte Wissenschaften sind, was man auch nicht anders vermutet hätte.) 
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Korrektheitsbeweise bei Algorithmen 
 
 
1. Der Algorithmus elmo 
 

Seien n eine natürliche Zahl, a eine von 0 verschiedene reelle Zahl. 
Gegeben ist folgender Algorithmus als Struktogramm: 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aufgaben: 
 
a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache). 
 
b) Teste das Programm; was bewirkt der Algorithmus vermutlich? 
 
c) Die Vermutung läßt sich anhand eines Trace erhärten; finde eine Beziehung, die sich 

als Schleifeninvariante erweisen könnte. 
 
d) Beweise vermöge vollständiger Induktion, daß die in c) gefundene Beziehung 

tatsächlich Schleifeninvariante ist, und schließe daraus, daß die in b) aufgestellte 
Vermutung, was der Algorithmus bewirkt, richtig ist. 

 
 
 
 
 
 
 
 

 Eingabe a; n

b:=a;   u:=n;   p:=1; 

 
Ausgabe p 

 

while u>0 

                  u ungerade 
+                                       −     
 

u:=u-1 
 

p:=p*b 

 
u:=u div 2 
 

b:=b*b 
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Lösungen: 
 
 
 
zu a): 
 
 
 program elmo; 

uses crt; 
var  n,u  :longint; 
     a,b,p:real; 
 

 
begin 

     clrscr; 
 
   { Eingabe der Werte für a und n } 
     write('a = '); readln(a); 
     write('n = '); readln(n); 
 
     { Initialisierung der Variablen } 
     b:=a; 
     u:=n; 
     p:=1; 
 
     { Verarbeitung der Daten } 
     while u>0 do begin 
                    if odd(u) then begin 
                                     u:=u-1; 
                                     p:=p*b 
                                   end; 
                    u:=u div 2; 
                    b:=sqr(b) 
                  end; 
 
   { Ausgabe } 
     writeln; 
     write ('p = ',p); 
     while not keypressed do 
 
   end. 
 
 
 
zu b):  Kompiliere den Quelltext und führe das Programm aus. 
 
 
 
zu c):  
 
Empirisches Testen des Programms anhand eines Trace 
  
Vereinbarung: S.D. = Schleifendurchlauf 
 
Seien n eine natürliche Zahl, a eine von 0 verschiedene reelle Zahl. 
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α) Trace für n=7: 
 

 n a b u p u=0 

vor dem  
1. S.D. 7 a a 7 1 − 

vor dem  
2. S.D. 7 a a2 3 a − 

vor dem  
3. S.D. 7 a a4 1 a3 − 

nach dem  
3. S.D. 7 a a8 0 a7 + 

 
 
β) Trace für n=18: 
 

 n a b u p u=0 

vor dem  
1. S.D. 18 a a 18 1 − 

vor dem  
2. S.D. 18 a a2 9 1 − 

vor dem  
3. S.D. 18 a a4 4 a2 − 

vor dem  
4. S.D. 18 a a8 2 a2 − 

vor dem  
5. S.D. 18 a a16 1 a2 − 

nach dem  
5. S.D. 18 a a32 0 a18 + 

 
 
γ) Trace für n=52: 
 

 n a b u p u=0 

vor dem  
1. S.D. 52 a a 52 1 − 

vor dem  
2. S.D. 52 a a2 26 1 − 

vor dem  
3. S.D. 52 a a4 13 1 − 

vor dem  
4. S.D. 52 a a8 6 a4 − 

vor dem  
5. S.D. 52 a a16 3 a4 − 

vor dem  
6. S.D. 52 a a32 1 a20 − 

nach dem  
6. S.D. 52 a a64 0 a52 + 
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Vermutung: 
 
Die Beziehung  
 

p⋅bu = an 
 
ist vor und nach jedem Schleifendurchlauf erfüllt, also invariant gegenüber 
Schleifendurchläufen. Eine solche Gleichung heißt auch Schleifeninvariante. 
 
Der Algorithmus bricht ab, sobald u den Wert 0 hat; da u bei jedem Schleifendurchlauf 
um 1 vermindert wird, falls u ungerade ist, in jedem Fall aber durch 2 dividiert wird, ist 
die Abbruchbedingung nach endlich vielen Schleifendurchläufen mit Sicherheit erfüllt. 
 
Für u=0 schreibt sich die Schleifeninvariante: 
 

p⋅b0 = an 

 

⇔ p = an 

 
Damit ist gezeigt, daß bei Abbruch des Algorithmus die Zahl an ausgegeben wird, falls die 
Beziehung p⋅bu = an sich als Schleifeninvariante erweist. 
 
 
 
 
 
Zu d):  
 

Wir führen den Beweis vermöge vollständiger Induktion über den Index i, der den i-ten 
Schleifendurchlauf bezeichnet. 
 
Mit pi , bi  und ui bezeichnen wir die Werte der Variablen p , b und u vor dem i-ten 
Schleifendurchlauf. 
 
 
Induktionsanfang (i=1): 
 

Wegen p1 = 1 ,  b1 = a   und u1 = n gilt: 
 

1 =⋅ = ⋅1
1 1

u n np b a a  , somit ist die Beziehung p⋅bu = an  für i=1 erfüllt. 
 
 
Induktionsschritt: 
 

Wir nehmen an, daß die Beziehung p⋅bu = an vor dem i-ten Schleifendurchlauf erfüllt 
ist, daß somit gilt: 
 

⋅ i
i i  

u np b = a  (*) 
 
Wir  werden verifizieren, daß unter dieser Annahme (*) die Beziehung p⋅bu = an  auch 
nach dem (i + 1)-ten Schleifendurchlauf erfüllt ist. 
 
Dazu drücken wir die Werte pi+1 , bi+1  und ui+1 der Variablen p , b und u durch die Werte 
pi , bi  und ui aus. Da die Eigenschaft von u, gerade oder ungerade zu sein, auf die 
Berechnung der neuen Werte von p , b und u Einfluß hat, müssen wir eine 
Fallunterscheidung vornehmen: 
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α.  u sei ungerade vor dem i-ten Schleifendurchlauf, also odd(ui) = TRUE 
 
 pi+1 = pi ⋅ bi   ⇔ pi = pi+1 / bi 
 

 bi+1 = bi  ⋅ bi   ⇔ bi  = √ bi+1   

 ui+1 = (ui  − 1)/2 ⇔ ui  = 2 ⋅ ui+1 + 1 
 
 Wenn wir in die Gleichung (*) die für pi , bi  und ui  erhaltenen Werte einsetzen, folgt: 
 
 

(pi+1 / bi) ⋅ (√ bi+1)^(2 ⋅ ui+1 + 1)  = (pi+1 / √ bi+1) ⋅ (√ bi+1)^(2 ⋅ ui+1 + 1) 
 

 = pi+1 ⋅ bi+1^ui+1  

 

 
 
β.  u sei gerade vor dem i-ten Schleifendurchlauf, also odd(ui) = FALSE 
 
 Übungsaufgabe! 
  
 
 
 
 
 
2. Der Algorithmus merlin 
 

x und y seien natürliche Zahlen mit x ≥ 0 und y > 0. 
Gegeben ist folgender Algorithmus als Struktogramm: 
 
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aufgaben: 
 
a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache). 
 
b) Teste das Programm; was bewirkt der Algorithmus vermutlich? 

 Eingabe x; y

q:=0;   r:=x;    

 

while r ≥ y 

    q:=q + 1                                    

   r:=r − y 

 Ausgabe q 

 Ausgabe r 
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c) Läßt sich der Algorithmus auch mit einer repeat-Schleife formulieren? 
 
d) Die Vermutung aus b) läßt sich anhand eines Trace erhärten; finde eine 

Beziehung, die sich als Schleifeninvariante erweisen könnte. 
 
e) Beweise vermöge vollständiger Induktion, daß die in d) gefundene Beziehung 

tatsächlich Schleifeninvariante ist, und schließe daraus, daß die in b) aufgestellte 
Vermutung, was der Algorithmus bewirkt, richtig ist. 

 
 
 
 
3. Den Potenzierungsalgorithmus „elmo“ kann man modifizieren, indem man 

die while-Schleife durch folgende Befehlssequenz ersetzt: 
 
 

while u>0 do begin 
               while not odd(u) do begin 
                                     u:=u div 2; 
                b:=b*b 
                                   end; 
               u:=u−1; 
               p:=P*b 
             end; 

 
a) Integriere diese Befehlssequenz in den vorhandenen Programmtext und teste das 

Programm empirisch.  
 
b) Beweise die Korrektheit des auf diese Weise modifizierten Algorithmus! 

 
 
 
4. In einem Buch ist das Struktogramm des folgenden Algorithmus abgedruckt, 

von dem behauptet wird, daß er das Produkt der natürlichen Zahlen a und b 
berechne (dieses − im übrigen nicht schlechte − Buch gibt’s tatsächlich!): 

 
 
  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Eingabe a , b 

u:=a;   v:=b;   s:=0; 

Ausgabe s 

 

while u>0 

                  u gerade 
+                                        −     
 

s:= s+v 

u:=u div 2 
 

s:=2*s 
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a) Verifizieren anhand eines Trace (oder indem man das Pascal-Programm schreibt 
und dieses testet), daß der Algorithmus das verlangte nicht leistet. 

 
b) Korrigiere den Algorithmus, so daß er korrekt im Sinne der Spezifikation arbeitet; 

beweise dessen Korrektheit vermöge vollständiger Induktion. 
 


