Gutekriterien bei Algorithmen

1. Effizienz

Verlangt werden Effizienz bzgl. des zeitlichen Aufwands und des Speicherbedarfs
wahrend der Laufzeit; beide Forderungen sind haufig nicht gleichzeitig erfillbar.

2. Korrektheit

Das Programm liefert die L6sung eines Problems entsprechend seiner Spezifikation, in
der die Eingabedaten und die Ausgabedaten vorgeschrieben werden.

3. Zuverlassigkeit
Ein zuverlassiges Programm korrigiert Fehler infolge falscher Anwendung oder
falscher oder sinnloser Eingabe.

4. Wartungsfreundlichkeit

Ein wartungsfreundliches Programm laBt sich leicht andern, korrigieren oder
erweitern (wichtig fiur upgrades!); die Wartungsfreundlichkeit setzt allerdings eine
entsprechende Dokumentation des Quelltextes voraus.

5. Benutzerfreundlichkeit

Der Anwender kann ohne Konsultation des Programmautors oder eines Handbuchs
mit dem Programm erfolgreich umgehen; diese Fertigkeit wird selbstverstandlich
auch unterstitzt von der Intuition und Erfahrung des Anwenders.

1. Effizienz

Sei n := Anzahl der Datensatze, die der Algorithmus zu verarbeiten hat

Algorithmus Sortieren Sortieren Turme von | Erfassen Suchen in
durch durch Hanoi von einer
direkte Mischen Adressen sortierten
Auswahl (mergesort) Liste

Anzahl der

Rechenope-

rationen und

damit

ézlglaﬁ?izr n? n - log(n) 2"-1 n log»(n)

Laufzeit des

Programms

proportional

Zu

CVr;theSstums polynomial exponentiell linear logarithmisch

Algorithmen, deren zeitlicher Aufwand exponentiell oder starker als exponentiell
(Ackermann-Funktion!) anwdchst, sind in der Praxis unbrauchbar.

2. Korrektheit

Jeder Programmierer macht die Erfahrung, daB3 ein Programm weder bezlglich der
Syntax der verwendeten Programmiersprache noch bezlglich der erwarteten
Verarbeitung der Daten auf Anhieb korrekt ist.

Insbesondere gilt dies flr iberaus komplexe Programme wie Betriebssysteme (winXP
oder win2k3; die alten winDOS-Systeme (win3.11, win95, win98, winME) erwiesen sich
als besonders unzuverlassig).
In einigen Fallen, leider beschrankt auf vergleichsweise einfache Algorithmen, 1aBt sich
sogar ein mathematischer Beweis flir die Korrektheit eines Algorithmus erbringen, indem
man Schleifeninvarianten findet und diese als korrekt verifiziert. Das hierzu benétigte
Beweisverfahren ist das Verfahren der Vollstdndigen Induktion (Die Mathematik kennt
bekanntlich drei Beweisverfahren: direkter Beweis, indirekter Beweis, vollstandige
Induktion).
Verfahren der Vollstandigen Induktion:
Sei A(n) eine von der natirlichen Zahl n abhangige Aussage, n € {0, 1,2, 3, }.
Um zu beweisen, daB A(n) wahrist farallen € {0, 1, 2, 3, }, verifizieren wir:

(1) A() istwahr (Induktionsanfang)

2 Die Implikation [A(n) = A(n+1)] ist wahr (Induktionsschritt)

Bevor wir dieses Verfahren auf den Korrektheitsbeweis von Algorithmen anwenden,
sollten wir es bei einfachen innermathematischen Problemen einiiben und verstehen.

Aufgabe 1:

Behauptung: 12+ 22+ 3%+ + n? = n(n+1)(2n+1)/6
Beweis:

Definiere A(n) := ,, 12 + + n? = n(n+1)(2n+1)/6“

(Beachte: A(n) ist eine Gleichung, somit insbesondere eine Aussage, die genau zwei
boolesche Werte annehmen kann: TRUE oder FALSE.)

Induktionsanfang (n=1):

A(1)=TRUE ,

denn A(1) & [1°=1.(1+1)(21+1)/6] & [1=123/6] & [1=1]
die letzte Aussage hat trivialerweise den Wert TRUE.

Induktionsschritt:

Unter der Annahme, daB A(n) TRUE ist, verifizieren wir, da dann auch A(n+1) den Wert
TRUE annimmt.

Sei also A(n) TRUE, das heif3t

12+22+3%2+ + n? = n(n+1)(2n+1)/6 ist richtig fur beliebiges n (diese
Annahme heiBt auch Induktionsvoraussetzung).

Wir betrachten A(n+1), also die Gleichung
12+22+....... + (n+ 1)2 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6,

die wir unter der Annahme, daB A(n) TRUE ist, als TRUE qualifizieren werden.

12+2%2+, .. +(n+1)% = [12+2%2+...... +n?] + (n+ 1)?
wegen A(n) = TRUE folgt
= n(n+1)(2n+1)/6 + (n + 1)?
= (n+1[n2n+1)/6 + (n + 1)]
(n+ D[n(2n+1) +6(n + 1)]/6
(n + 1)[2n?+n + 6n + 6)]/6
(n + 1)[2n?+ 7n + 6)]/6
= (n+D[(+2)2n + 3)]/6
= (n+ V[(n+1) + 1][2(n+1) + 1]/6

Somit folgt unter der Annahme ,A(n)=TRUE", daB ,A(n+1)=TRUE" wahr ist, und in
Verbindung mit dem Induktionsanfang ,A(1)=TRUE" ergibt sich die Behauptung fir alle
Werte von n.

Als Ubungsaufgabe verifiziere man die Behauptungen der Aufgaben 2 und 3:

Aufgabe 2:

Behauptung: 1®+ 23+ 33+ + n® = n?’(n+1)%/4

Aufgabe 3:

Behauptung: Die Bernoullische Ungleichung (1 +x)">1+n-x

ist wahr fur alle natlrlichen Zahlen n mit n>2 und fir reelle Zahlen x mit
x#0 und 1+x>0.

(Vgl. auch das Mathematikbuch; man sieht, daB Informatik und Mathematik durchaus
verwandte Wissenschaften sind, was man auch nicht anders vermutet hatte.)

Korrektheitsbeweise bei Algorithmen

1. Der Algorithmus elmo

Seien n eine natirliche Zahl, a eine von 0 verschiedene reelle Zahl.
Gegeben ist folgender Algorithmus als Struktogramm:

Eingabe a; n

b:=a; u:=n; p:=1;

while u>0
U ungerade
+ J—
u:=u-1
p:=p*b

u:=u div 2
b:=b*b

Ausgabe p

Aufgaben:
a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache).
b) Teste das Programm; was bewirkt der Algorithmus vermutlich?

c) Die Vermutung laBt sich anhand eines Trace erharten; finde eine Beziehung, die sich
als Schleifeninvariante erweisen kénnte.

d) Beweise vermoge vollstandiger Induktion, daB die in c) gefundene Beziehung
tatsachlich Schleifeninvariante ist, und schlieBe daraus, daB3 die in b) aufgestellte
Vermutung, was der Algorithmus bewirkt, richtig ist.

Lésungen:

Zu a):

program elmo;

uses crt;

var n,u :longint;
a,b,p:real;

begin
clrscr;

{ Eingabe der Werte fir a und n }
write("a "); readln(a);
write(™n "); readln(n);

{ Initialisierung der Variablen }

b:=a;
u:=n;
p:=1;

{ Verarbeitung der Daten }
while u>0 do begin
if odd(u) then begin

I=u-1;
p:=p*b
end;
u:=u div 2;
b:=sqgr(b)
end;
{ Ausgabe }
writeln;

write ("p = ",p);
while not keypressed do

end.

zu b): Kompiliere den Quelltext und fihre das Programm aus.

ZuU C):
Empirisches Testen des Programms anhand eines Trace

Vereinbarung: S.D. = Schleifendurchlauf

Seien n eine natirliche Zahl, a eine von 0 verschiedene reelle Zahl.

o) Trace flr n=7:

n b u p u=0
vor dem 7 a v, 1 B
1.S.D.
vor dem 2
2.S.D. 7 a 3 a -
ordem |7 a* 1 5 -
R | o | a | s
B) Trace fir n=18:

n b u p u=0
vor dem
1.S.D. 18 a 18 1 -
e 18 a’ 9 1 -
v | e # 4 | & |-
A 18 a* 2 a’ -
oden | 18 |1 | @ | -
g‘?csh_g_em 18 a>? 0 ald +
y) Trace fir n=52:

n b u p u=
vor dem
1.S.D. 52 a 52 1 -
yor dem 52 a’ 26 1 -
\éorsdgm 52 a* 13 1 _
S | s = | e | a | -
o | s2 a3 | & | -
oD 52 a® 1 a®f -
nach dem 52 364 0 a>2 +

6. S.D.

Vermutung:

Die Beziehung
p'bu — an

ist vor und nach jedem Schleifendurchlauf erftllt, also invariant gegeniber
Schleifendurchlaufen. Eine solche Gleichung heiBt auch Schleifeninvariante.

Der Algorithmus bricht ab, sobald u den Wert 0 hat; da u bei jedem Schleifendurchlauf
um 1 vermindert wird, falls u ungerade ist, in jedem Fall aber durch 2 dividiert wird, ist
die Abbruchbedingung nach endlich vielen Schleifendurchlaufen mit Sicherheit erfillt.

Flr u=0 schreibt sich die Schleifeninvariante:
p.bo — an

o p=a"

Damit ist gezeigt, daB bei Abbruch des Algorithmus die Zahl a"™ ausgegeben wird, falls die
Beziehung p-b" = a" sich als Schleifeninvariante erweist.

Zu d):

Wir fihren den Beweis vermége vollstandiger Induktion Gber den Index i, der den i-ten
Schleifendurchlauf bezeichnet.

Mit p;i, bi und u; bezeichnen wir die Werte der Variablen p , b und u vor dem i-ten
Schleifendurchlauf.

Induktionsanfang (i=1):
Wegenp; =1, by =a undu; =ngilt:

pl-blU1 =1.a"-a" , somit ist die Beziehung p-b" = a" fir i=1 erfillt.

Induktionsschritt:

Wir nehmen an, daB die Beziehung p-b" = a" vor dem i-ten Schleifendurchlauf erfillt
ist, daB somit gilt:

I:)i'bil'Ii = an (*)

Wir werden verifizieren, daB unter dieser Annahme (*) die Beziehung p-b" = a" auch
nach dem (i + 1)-ten Schleifendurchlauf erfillt ist.

Dazu drucken wir die Werte pj.1, bi+1 und ui., der Variablen p , b und u durch die Werte
pi, bi und u; aus. Da die Eigenschaft von u, gerade oder ungerade zu sein, auf die
Berechnung der neuen Werte von p , b und u EinfluB hat, missen wir eine
Fallunterscheidung vornehmen:

a. u sei ungerade vor dem i-ten Schleifendurchlauf, also odd(u;) = TRUE

Pi+1 = Pi- b; < pi= piva/ b
biv1=bi - b; & by =vVbig

Ui+1=(ui—1)/2 = Uy =2 -uUw+1

Wenn wir in die Gleichung (*) die fur p; , b; und u; erhaltenen Werte einsetzen, folgt:

(Pi+1/ b) - (N biz))N2 - Uiz1+ 1) = (Pirr 7 ¥V bis1) - (Vbix1) ™2 - Uig + 1)

= Pi+1- DivaMUiva

B. u sei gerade vor dem i-ten Schleifendurchlauf, also odd(u;) = FALSE

Ubungsaufgabe!

2. Der Algorithmus merlin

X und y seien natirliche Zahlen mit x >0 und y > O.
Gegeben ist folgender Algorithmus als Struktogramm:

Eingabe x; vy

q:=0; ri=x;

while r >y

q:=q + 1
r:=r -y
Ausgabe ¢
Ausgabe r
Aufgaben:

a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache).

b) Teste das Programm; was bewirkt der Algorithmus vermutlich?

c) LaBt sich der Algorithmus auch mit einer repeat-Schleife formulieren?

d) Die Vermutung aus b) 1aBt sich anhand eines Trace erharten; finde eine
Beziehung, die sich als Schleifeninvariante erweisen kdnnte.

e) Beweise vermdge vollstédndiger Induktion, daB die in d) gefundene Beziehung
tatsachlich Schleifeninvariante ist, und schlieBe daraus, daB3 die in b) aufgestellte
Vermutung, was der Algorithmus bewirkt, richtig ist.

Den Potenzierungsalgorithmus ,,elmo* kann man modifizieren, indem man

die while-Schleife durch folgende Befehlssequenz ersetzt:

while u>0 do begin
while not odd(u) do begin

:=u div 2;
b:=b*b
end;
u:=u-1;
p:=P*b
end;

a) Integriere diese Befehlssequenz in den vorhandenen Programmtext und teste das
Programm empirisch.

b) Beweise die Korrektheit des auf diese Weise modifizierten Algorithmus!

In einem Buch ist das Struktogramm des folgenden Algorithmus abgedruckt,
von dem behauptet wird, dal3 er das Produkt der natirlichen Zahlen aund b
berechne (dieses - im Ubrigen nicht schlechte — Buch gibt’s tatsachlich!):

Eingabe a , b

u:=a; v:=b; s:=0;

while u>0

u gerade
+ —

SI= StV

u:=u div 2
s:=2*s

Ausgabe s

10

a) Verifizieren anhand eines Trace (oder indem man das Pascal-Programm schreibt
und dieses testet), daB der Algorithmus das verlangte nicht leistet.

b) Korrigiere den Algorithmus, so daB er korrekt im Sinne der Spezifikation arbeitet;
beweise dessen Korrektheit vermdge vollstandiger Induktion.

