
Gütekriterien bei Algorithmen

1. Effizienz
 Verlangt werden Effizienz bzgl. des zeitlichen Aufwands und des Speicherbedarfs

während der Laufzeit; beide Forderungen sind häufig nicht gleichzeitig erfüllbar.

2. Korrektheit
 Das Programm liefert die Lösung eines Problems entsprechend seiner Spezifikation, in

der die Eingabedaten und die Ausgabedaten vorgeschrieben werden.

3. Zuverlässigkeit
 Ein zuverlässiges Programm korrigiert Fehler infolge falscher Anwendung oder

falscher oder sinnloser Eingabe.

4. Wartungsfreundlichkeit
 Ein wartungsfreundliches Programm läßt sich leicht ändern, korrigieren oder

erweitern (wichtig für upgrades!); die Wartungsfreundlichkeit setzt allerdings eine
entsprechende Dokumentation des Quelltextes voraus.

5. Benutzerfreundlichkeit
 Der Anwender kann ohne Konsultation des Programmautors oder eines Handbuchs

mit dem Programm erfolgreich umgehen; diese Fertigkeit wird selbstverständlich
auch unterstützt von der Intuition und Erfahrung des Anwenders.

1. Effizienz

Sei n := Anzahl der Datensätze, die der Algorithmus zu verarbeiten hat

Algorithmus Sortieren

durch
direkte
Auswahl

Sortieren
durch
Mischen
(mergesort)

Türme von
Hanoi

Erfassen
von
Adressen

Suchen in
einer
sortierten
Liste

Anzahl der
Rechenope-
rationen und
damit
zeitlicher
Bedarf zur
Laufzeit des
Programms
proportional
zu

n2 n ⋅ log2(n) 2n − 1 n log2(n)

Art des
Wachstums

polynomial exponentiell linear logarithmisch

Algorithmen, deren zeitlicher Aufwand exponentiell oder stärker als exponentiell
(Ackermann-Funktion!) anwächst, sind in der Praxis unbrauchbar.

 2

2. Korrektheit

Jeder Programmierer macht die Erfahrung, daß ein Programm weder bezüglich der
Syntax der verwendeten Programmiersprache noch bezüglich der erwarteten
Verarbeitung der Daten auf Anhieb korrekt ist.

Insbesondere gilt dies für überaus komplexe Programme wie Betriebssysteme (winXP
oder win2k3; die alten winDOS-Systeme (win3.11, win95, win98, winME) erwiesen sich
als besonders unzuverlässig).

In einigen Fällen, leider beschränkt auf vergleichsweise einfache Algorithmen, läßt sich
sogar ein mathematischer Beweis für die Korrektheit eines Algorithmus erbringen, indem
man Schleifeninvarianten findet und diese als korrekt verifiziert. Das hierzu benötigte
Beweisverfahren ist das Verfahren der Vollständigen Induktion (Die Mathematik kennt
bekanntlich drei Beweisverfahren: direkter Beweis, indirekter Beweis, vollständige
Induktion).

Verfahren der Vollständigen Induktion:

Sei A(n) eine von der natürlichen Zahl n abhängige Aussage, n ∈ {0, 1, 2, 3, }.

Um zu beweisen, daß A(n) wahr ist für alle n ∈ {0, 1, 2, 3, }, verifizieren wir:

 (1) A(0) ist wahr (Induktionsanfang)

 (2) Die Implikation [A(n) ⇒ A(n+1)] ist wahr (Induktionsschritt)

Bevor wir dieses Verfahren auf den Korrektheitsbeweis von Algorithmen anwenden,
sollten wir es bei einfachen innermathematischen Problemen einüben und verstehen.

Aufgabe 1:

Behauptung: 12 + 22 + 32 + + n2 = n(n+1)(2n+1)/6

Beweis:

Definiere A(n) := „12 + + n2 = n(n+1)(2n+1)/6“

(Beachte: A(n) ist eine Gleichung, somit insbesondere eine Aussage, die genau zwei
boolesche Werte annehmen kann: TRUE oder FALSE.)

Induktionsanfang (n=1):

A(1)=TRUE ,
denn A(1) ⇔ [12 = 1⋅(1+1)(2⋅1+1)/6] ⇔ [1 = 1⋅2⋅3/6] ⇔ [1=1]
die letzte Aussage hat trivialerweise den Wert TRUE.

Induktionsschritt:

Unter der Annahme, daß A(n) TRUE ist, verifizieren wir, daß dann auch A(n+1) den Wert
TRUE annimmt.

 3

Sei also A(n) TRUE, das heißt

12 + 22 + 32 + + n2 = n(n+1)(2n+1)/6 ist richtig für beliebiges n (diese
Annahme heißt auch Induktionsvoraussetzung).

Wir betrachten A(n+1), also die Gleichung

12 + 22 + + (n + 1)2 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6,

die wir unter der Annahme, daß A(n) TRUE ist, als TRUE qualifizieren werden.

12 + 22 + + (n + 1)2 = [12 + 22 + + n2] + (n + 1)2

wegen A(n) = TRUE folgt
 = n(n+1)(2n+1)/6 + (n + 1)2

 = (n + 1)[n(2n+1)/6 + (n + 1)]

 = (n + 1)[n(2n+1) + 6(n + 1)]/6

 = (n + 1)[2n2+n + 6n + 6)]/6

 = (n + 1)[2n2+ 7n + 6)]/6

 = (n + 1)[(n + 2)(2n + 3)]/6

 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6

Somit folgt unter der Annahme „A(n)=TRUE“, daß „A(n+1)=TRUE“ wahr ist, und in
Verbindung mit dem Induktionsanfang „A(1)=TRUE“ ergibt sich die Behauptung für alle
Werte von n.

Als Übungsaufgabe verifiziere man die Behauptungen der Aufgaben 2 und 3:

Aufgabe 2:

Behauptung: 13 + 23 + 33 + + n3 = n2(n+1)2/4

Aufgabe 3:

Behauptung: Die Bernoullische Ungleichung (1 + x)n > 1 + n ⋅ x

 ist wahr für alle natürlichen Zahlen n mit n≥2 und für reelle Zahlen x mit
 x≠0 und 1+x>0.

(Vgl. auch das Mathematikbuch; man sieht, daß Informatik und Mathematik durchaus
verwandte Wissenschaften sind, was man auch nicht anders vermutet hätte.)

 4

Korrektheitsbeweise bei Algorithmen

1. Der Algorithmus elmo

Seien n eine natürliche Zahl, a eine von 0 verschiedene reelle Zahl.
Gegeben ist folgender Algorithmus als Struktogramm:

Aufgaben:

a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache).

b) Teste das Programm; was bewirkt der Algorithmus vermutlich?

c) Die Vermutung läßt sich anhand eines Trace erhärten; finde eine Beziehung, die sich

als Schleifeninvariante erweisen könnte.

d) Beweise vermöge vollständiger Induktion, daß die in c) gefundene Beziehung

tatsächlich Schleifeninvariante ist, und schließe daraus, daß die in b) aufgestellte
Vermutung, was der Algorithmus bewirkt, richtig ist.

 Eingabe a; n

b:=a; u:=n; p:=1;

Ausgabe p

while u>0

 u ungerade
+ −

u:=u-1

p:=p*b

u:=u div 2

b:=b*b

 5

Lösungen:

zu a):

 program elmo;

uses crt;
var n,u :longint;
 a,b,p:real;

begin

 clrscr;

 { Eingabe der Werte für a und n }
 write('a = '); readln(a);
 write('n = '); readln(n);

 { Initialisierung der Variablen }
 b:=a;
 u:=n;
 p:=1;

 { Verarbeitung der Daten }
 while u>0 do begin
 if odd(u) then begin
 u:=u-1;
 p:=p*b
 end;
 u:=u div 2;
 b:=sqr(b)
 end;

 { Ausgabe }
 writeln;
 write ('p = ',p);
 while not keypressed do

 end.

zu b): Kompiliere den Quelltext und führe das Programm aus.

zu c):

Empirisches Testen des Programms anhand eines Trace

Vereinbarung: S.D. = Schleifendurchlauf

Seien n eine natürliche Zahl, a eine von 0 verschiedene reelle Zahl.

 6

α) Trace für n=7:

 n a b u p u=0

vor dem
1. S.D. 7 a a 7 1 −

vor dem
2. S.D. 7 a a2 3 a −

vor dem
3. S.D. 7 a a4 1 a3 −

nach dem
3. S.D. 7 a a8 0 a7 +

β) Trace für n=18:

 n a b u p u=0

vor dem
1. S.D. 18 a a 18 1 −

vor dem
2. S.D. 18 a a2 9 1 −

vor dem
3. S.D. 18 a a4 4 a2 −

vor dem
4. S.D. 18 a a8 2 a2 −

vor dem
5. S.D. 18 a a16 1 a2 −

nach dem
5. S.D. 18 a a32 0 a18 +

γ) Trace für n=52:

 n a b u p u=0

vor dem
1. S.D. 52 a a 52 1 −

vor dem
2. S.D. 52 a a2 26 1 −

vor dem
3. S.D. 52 a a4 13 1 −

vor dem
4. S.D. 52 a a8 6 a4 −

vor dem
5. S.D. 52 a a16 3 a4 −

vor dem
6. S.D. 52 a a32 1 a20 −

nach dem
6. S.D. 52 a a64 0 a52 +

 7

Vermutung:

Die Beziehung

p⋅bu = an

ist vor und nach jedem Schleifendurchlauf erfüllt, also invariant gegenüber
Schleifendurchläufen. Eine solche Gleichung heißt auch Schleifeninvariante.

Der Algorithmus bricht ab, sobald u den Wert 0 hat; da u bei jedem Schleifendurchlauf
um 1 vermindert wird, falls u ungerade ist, in jedem Fall aber durch 2 dividiert wird, ist
die Abbruchbedingung nach endlich vielen Schleifendurchläufen mit Sicherheit erfüllt.

Für u=0 schreibt sich die Schleifeninvariante:

p⋅b0 = an

⇔ p = an

Damit ist gezeigt, daß bei Abbruch des Algorithmus die Zahl an ausgegeben wird, falls die
Beziehung p⋅bu = an sich als Schleifeninvariante erweist.

Zu d):

Wir führen den Beweis vermöge vollständiger Induktion über den Index i, der den i-ten
Schleifendurchlauf bezeichnet.

Mit pi , bi und ui bezeichnen wir die Werte der Variablen p , b und u vor dem i-ten
Schleifendurchlauf.

Induktionsanfang (i=1):

Wegen p1 = 1 , b1 = a und u1 = n gilt:

1 =⋅ = ⋅1
1 1

u n np b a a , somit ist die Beziehung p⋅bu = an für i=1 erfüllt.

Induktionsschritt:

Wir nehmen an, daß die Beziehung p⋅bu = an vor dem i-ten Schleifendurchlauf erfüllt
ist, daß somit gilt:

⋅ i
i i

u np b = a (*)

Wir werden verifizieren, daß unter dieser Annahme (*) die Beziehung p⋅bu = an auch
nach dem (i + 1)-ten Schleifendurchlauf erfüllt ist.

Dazu drücken wir die Werte pi+1 , bi+1 und ui+1 der Variablen p , b und u durch die Werte
pi , bi und ui aus. Da die Eigenschaft von u, gerade oder ungerade zu sein, auf die
Berechnung der neuen Werte von p , b und u Einfluß hat, müssen wir eine
Fallunterscheidung vornehmen:

 8

α. u sei ungerade vor dem i-ten Schleifendurchlauf, also odd(ui) = TRUE

 pi+1 = pi ⋅ bi ⇔ pi = pi+1 / bi

 bi+1 = bi ⋅ bi ⇔ bi = √ bi+1

 ui+1 = (ui − 1)/2 ⇔ ui = 2 ⋅ ui+1 + 1

 Wenn wir in die Gleichung (*) die für pi , bi und ui erhaltenen Werte einsetzen, folgt:

(pi+1 / bi) ⋅ (√ bi+1)^(2 ⋅ ui+1 + 1) = (pi+1 / √ bi+1) ⋅ (√ bi+1)^(2 ⋅ ui+1 + 1)

 = pi+1 ⋅ bi+1^ui+1

β. u sei gerade vor dem i-ten Schleifendurchlauf, also odd(ui) = FALSE

 Übungsaufgabe!

2. Der Algorithmus merlin

x und y seien natürliche Zahlen mit x ≥ 0 und y > 0.
Gegeben ist folgender Algorithmus als Struktogramm:

Aufgaben:

a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache).

b) Teste das Programm; was bewirkt der Algorithmus vermutlich?

 Eingabe x; y

q:=0; r:=x;

while r ≥ y

 q:=q + 1

 r:=r − y

 Ausgabe q

 Ausgabe r

 9

c) Läßt sich der Algorithmus auch mit einer repeat-Schleife formulieren?

d) Die Vermutung aus b) läßt sich anhand eines Trace erhärten; finde eine

Beziehung, die sich als Schleifeninvariante erweisen könnte.

e) Beweise vermöge vollständiger Induktion, daß die in d) gefundene Beziehung

tatsächlich Schleifeninvariante ist, und schließe daraus, daß die in b) aufgestellte
Vermutung, was der Algorithmus bewirkt, richtig ist.

3. Den Potenzierungsalgorithmus „elmo“ kann man modifizieren, indem man

die while-Schleife durch folgende Befehlssequenz ersetzt:

while u>0 do begin
 while not odd(u) do begin
 u:=u div 2;
 b:=b*b
 end;
 u:=u−1;
 p:=P*b
 end;

a) Integriere diese Befehlssequenz in den vorhandenen Programmtext und teste das

Programm empirisch.

b) Beweise die Korrektheit des auf diese Weise modifizierten Algorithmus!

4. In einem Buch ist das Struktogramm des folgenden Algorithmus abgedruckt,

von dem behauptet wird, daß er das Produkt der natürlichen Zahlen a und b
berechne (dieses − im übrigen nicht schlechte − Buch gibt’s tatsächlich!):

 Eingabe a , b

u:=a; v:=b; s:=0;

Ausgabe s

while u>0

 u gerade
+ −

s:= s+v

u:=u div 2

s:=2*s

 10

a) Verifizieren anhand eines Trace (oder indem man das Pascal-Programm schreibt
und dieses testet), daß der Algorithmus das verlangte nicht leistet.

b) Korrigiere den Algorithmus, so daß er korrekt im Sinne der Spezifikation arbeitet;

beweise dessen Korrektheit vermöge vollständiger Induktion.

