SelectionSort

Aufgabenstellung:
Gegeben ist ein Array a mit den n Komponenten a[0], a[2],, a[n-1] als
Datenelemente, fir die die Ordnungsrelationen < , > , <, 2 erklart sind (also
Komponenten z. B. vom Typ integer, char oder string). Die Inhalte dieser
Datenelemente sind aufsteigend so anzuordnen, daB gilt:

af[0] = a[2] = < a[n-1].
In Python 1aBt sich ein Array a als Liste realisieren.

Sortieren durch direkte Auswahl (,,SelectionSort")

Bei diesem Verfahren handelt es um einen typischen Vertreter eines imperativ
formulierten Algorithmus’.

Der Algorithmus SelectionSort bestimmt

- das kleinste Element (Minimum) der Liste a[0], a[1], , a[n-1] und
weist dieses der Komponente a[0] zu, dabei wird der Inhalt von a[0] der-
jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[1], ,a[n-1] und
weist dieses der Komponente a[1] zu, dabei wird der Inhalt von a[1] der-
jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[2], , a[n-1] und
weist dieses der Komponente a[2] zu, dabei wird der Inhalt von a[2] der-
jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[n-2], a[n-1] und weist dieses
der Komponente a[n-2] zu, dabei wird der Inhalt von a[n-2] der Kompo-
nente a[n-1] zugewiesen.

Nach dem Abarbeiten der vorgenannten n-1 Schritte ist das Array a aufsteigend
sortiert.

In Python lassen sich die ersten vier Schritte wie folgt formulieren:

min = a[0]
i=0+4+1
while i1 < n:
if ali] < min:
min = af[i]
al[i] = al[0]
al[0] = min
i =1+4+1
min = a[l]
i=1+1
while 1 < n:
if a[i] < min:
min = af[i]
ali] = af[l]
all] = min
i =1+4+1

min = a[2]
i=24+1
while 1 < n:
if ali] < min:
min = al[i]
ali] = al[2]
al[2] = min
i=1+4+1
min = al[3]
i=3+1
while i1 < n:
if ali] < min:
min = af[i]
alil = al3]
al[3] = min
i=1+4+1
Letzter Schritt:
min = a[n-2]
i=n-2+1
while i1 < n:
if al[i] < min
min = al[i]
ali] = a[n-2]
aln-2] = min
i=1+4+1

Zusammenfassend gilt: Der Anweisungsblock
min = al[j]
i=7+1
while 1 < n:
if a[i] < min:

min = afi]
ali] = alj]
alj] = min

i=1+1
ist nacheinander firj=0,1, 2, , h-2 abzuarbeiten; folglich fassen wir die-

sen Block als Schleifenrumpf einer weiteren Schleife (hier: for-Schleife) mit
Schleifenindex j auf:

for 7 in range(0,n-1):
min = al[j]
i=73+1
while i < n:
if al[i] < min:

min = af[i]
ali] = alj]
alj] = min

i=1+1

Alternativ kdnnen wir die duBBere Schleife als while-Schleife formulieren:

7 =0
while j <= n - 2:

min = al[j]
i=73+1
while 1 < n:
if a[i] < min:
min = af[i]
ali] = al3J]
alj] = min
i=1+1
j=3+1

Das folgende Python-Programm

- weist nach Eingabe von n den Komponenten der Liste a Zufallszahlen aus

dem Bereich 1, ..., 1000000 zu,
- sortiert diese Liste a aufsteigend,

- ermittelt den Zeitbedarf fir das Sortieren der n Datenelemente,
- gibt jeweils einen Teil der Quelliste und der sortierten Liste sowie den
Zeitaufwand fir den Sortiervorgang (in s) aus.

SelectionSort

n = int(input('Anzahl der Datenelemente
r = int({input('Wieviele Elemente sollen angezeigt werden?

a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Kompecnenten der Liste a

for i in range(0,n):
a[il= randint(1,1000000)

¥ Ausgabe der Quelliste:
or 1 in range(0,r):
print(a[il)

h

Sortieren der Quelliste:
start = time.time ()

j =0
while j <= n-2:
min = al[j]
i=73+1
while i < n:
1if a[i] < min:

min = a[i]
ali] = al]jl
aljl = min
i=1+1
j=3+1

end = time.time ()

¥ Ausgabe der sortierten Liste:

print ()

print ('sortierte Liste:')

for i in range(0,r):
print(afil)

print ()

rint ('Zeitaufwand zum Sortieren von',n, 'Elementen:
r r

=)

[:7.3f)}

"))

= T
b

.format (end-start))

Aufwandsbetrachtung

Wir untersuchen den Algorithmus SelectionSort hinsichtlich seiner zeitlichen
Komplexitat, d. h. wir untersuchen, wie der Zeitbedarf zur Laufzeit sich in Abhan-
gigkeit von der Anzahl n der zu sortierenden Datensatze verhalt. Den Aufwand
hinsichtlich des Speicherplatzbedarfs kénnen wir hier vernachlassigen, da der Al-
gorithmus SelectionSort auf dem Array a operiert und keinen weiteren Speicher-
platz zur Laufzeit benétigt.

Hierzu betrachten wir denjenigen Programmteil, der das Sortieren ausfiihrt:

j=0 3 =0
while j <= n-2: while j <= n-2:
min = al[j] min = a[j]
i=3j+1 i=9+1
while i < n: while i < n:
if a[i] < min:
min = a[i] A
a[i] = a[3jl . .
a[j] = min IJ=3+1
i=1i+1
i=3j+1

Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife (hier:
rot markiert) dieses Programmauszugs gedanklich zum Anweisungsblock A zu-
sammen.

Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu sor-
tieren, fragen wir, wie oft Block A in Abhangigkeit von n abgearbeitet wird.

In folgender Tabelle gibt z (j) jeweils an, wie oft Block A in Abhangigkeit von j
abgearbeitet wird.

Index j Index i z(j)
j =20 1 <1i<n-1 n -1
3 =1 2 <1 <n-1 n - 2
j=2 3 <1 <n-1 n -3
J =3 4 < i< n-1 n - 4
J = n-3 n-2 < i < n-1 2
j = n-2 n-1 < i < n-1 1

Fir die Gesamtanzahl z der Abarbeitungen von Block A erhalten wir:

z = z(0) + z(1) + z(2) + z3) + + z(n-3) + z(n-2)
= (n-1) +(n-2) +n-3)+ + 2 + 1
=1+2+.......+n1
= % . (n-1) - n (beachte untenstehenden Hinweis)
= % .(n*-n)

= 1.n%> - ¥%.n

Fiar groBe Werte von n kénnen wir den Summand "2 - n gegenliber dem Sum-
mand %2 - n? vernachlassigen; somit folgt:

zZ =~ %.n?
z ~ n?

Bei SelectionSort wachst der Zeitbedarf proportional zum Quadrat der Anzahl n
der zu sortierenden Datenelemente.

SelectionSort ist von polynomialer (hier: quadratischer) Komplexitat.

Hinweis:
Flr die Summe der ersten n natirlichen Zahlen gilt:

1 +2+......4+n= Y.-n-(n+1)
Aufgaben:

1. Bestatige die quadratische Komplexitat von SelectionSort experimentell an-
hand geeigneter Testlaufe.

2. Madifiziere den Quelltext so, daB SelectionSort absteigend sortiert.

3. Sobald in der Teilliste a[j], . . . , a[n-1], 0 < j < n-2, ein Element
gefunden wird, welches kleiner ist als das jeweils aktuelle Minimum, werden
die Wertzuweisungen innerhalb des Blocks A ausgefiihrt, was flr ein bestimm-
tes j ggf. auch mehrmals erfolgt. Optimiere den Algorithmus so, daB die Wert-
zuweisungen jeweils héchstens ein Mal fir jeden Wert von j vorgenommen
werden.

Bestimme experimentell die Laufzeit und bestatige die (insgesamt bescheide-
ne) Optimierung.

Hinweis: Ermittle zundchst den Index derjenigen Komponente, welche den
kleinsten Inhalt innerhalb der Liste afj], . . , a[n-1] hat, und fihre an-
schlieBend einmalig die Wertzuweisungen des Blocks A aus.

Komplexitit von Algorithmen
A(n) bezeichne den Aufwand und damit den Zeitbedarf zur Laufzeit in Abhangig-
keit von n (z. B. n = Anzahl der zu verarbeitenden Datenelemente).

Algorithmus Aufwand Art der Komplexitat
sequentielle oder 5)
lineare Suche A(n) ~n linear
bindre Suche A(n) ~ logx(n) logarithmisch
. 2 polynomial
SelectionSort A(n) ~n (hier: quadratisch)
MergeSort A(n) ~ n - log,(n) linear-logarithmisch
Fibonacci-Folge n .
(rekursiv) A(n) ~2 exponentiell
A(3,n) ~2"3 -3 exponentiell
Ackermann-Funktion | A(3,n) ~2T(n+3) - 3
A(4,n) ~ 2™ (n+3) - 3 hyper-exponentiell

A(5,n) ~ 2™ (n+3) - 3

Algorithmen mit exponentieller Komplexitat erweisen sich in der Praxis als un-
brauchbar; selbst Algorithmen mit polynomialer Komplexitat zeigen haufig ein

unginstiges Laufzeitverhalten.
03.07.2023

