
SelectionSort

Aufgabenstellung:

Gegeben ist ein Array a mit den n Komponenten a[0], a[2], , a[n-1] als

Datenelemente, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt sind (also

Komponenten z. B. vom Typ integer, char oder string). Die Inhalte dieser

Datenelemente sind aufsteigend so anzuordnen, daß gilt:

a[0] ≤ a[2] ≤ ≤ a[n-1] .

In Python läßt sich ein Array a als Liste realisieren.

Sortieren durch direkte Auswahl („SelectionSort“)

Bei diesem Verfahren handelt es um einen typischen Vertreter eines imperativ

formulierten Algorithmus’.

Der Algorithmus SelectionSort bestimmt

- das kleinste Element (Minimum) der Liste a[0], a[1], , a[n-1] und

weist dieses der Komponente a[0] zu, dabei wird der Inhalt von a[0] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[1], , a[n-1] und

weist dieses der Komponente a[1] zu, dabei wird der Inhalt von a[1] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[2], , a[n-1] und

weist dieses der Komponente a[2] zu, dabei wird der Inhalt von a[2] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

-

-

- das kleinste Element (Minimum) der Liste a[n-2], a[n-1] und weist dieses

der Komponente a[n-2] zu, dabei wird der Inhalt von a[n-2] der Kompo-

nente a[n-1] zugewiesen.

Nach dem Abarbeiten der vorgenannten n-1 Schritte ist das Array a aufsteigend

sortiert.

In Python lassen sich die ersten vier Schritte wie folgt formulieren:

min = a[0]

i = 0 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[0]

 a[0] = min

 i = i + 1

min = a[1]

i = 1 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[1]

 a[1] = min

 i = i + 1

 2

min = a[2]

i = 2 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[2]

 a[2] = min

 i = i + 1

min = a[3]

i = 3 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[3]

 a[3] = min

 i = i + 1

Letzter Schritt:

min = a[n-2]

i = n-2 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[n-2]

 a[n-2] = min

 i = i + 1

Zusammenfassend gilt: Der Anweisungsblock

min = a[j]

i = j + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[j]

 a[j] = min

 i = i + 1

ist nacheinander für j = 0, 1, 2, , n-2 abzuarbeiten; folglich fassen wir die-

sen Block als Schleifenrumpf einer weiteren Schleife (hier: for-Schleife) mit

Schleifenindex j auf:

for j in range(0,n-1):

 min = a[j]

 i = j + 1

 while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[j]

 a[j] = min

 i = i + 1

Alternativ können wir die äußere Schleife als while-Schleife formulieren:

 3

j = 0

while j <= n – 2:
 min = a[j]

 i = j + 1

 while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[j]

 a[j] = min

 i = i + 1

 j = j + 1

Das folgende Python-Programm

- weist nach Eingabe von n den Komponenten der Liste a Zufallszahlen aus

dem Bereich 1, . . . , 1000000 zu,

- sortiert diese Liste a aufsteigend,

- ermittelt den Zeitbedarf für das Sortieren der n Datenelemente,

- gibt jeweils einen Teil der Quelliste und der sortierten Liste sowie den

Zeitaufwand für den Sortiervorgang (in s) aus.

 4

Aufwandsbetrachtung

Wir untersuchen den Algorithmus SelectionSort hinsichtlich seiner zeitlichen

Komplexität, d. h. wir untersuchen, wie der Zeitbedarf zur Laufzeit sich in Abhän-

gigkeit von der Anzahl n der zu sortierenden Datensätze verhält. Den Aufwand

hinsichtlich des Speicherplatzbedarfs können wir hier vernachlässigen, da der Al-

gorithmus SelectionSort auf dem Array a operiert und keinen weiteren Speicher-

platz zur Laufzeit benötigt.

Hierzu betrachten wir denjenigen Programmteil, der das Sortieren ausführt:

 j = 0

 while j <= n-2:

 min = a[j]

 i = j + 1

 while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[j]

 a[j] = min

 i = i + 1

 j = j + 1

Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife (hier:
rot markiert) dieses Programmauszugs gedanklich zum Anweisungsblock A zu-

sammen.

Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu sor-

tieren, fragen wir, wie oft Block A in Abhängigkeit von n abgearbeitet wird.

In folgender Tabelle gibt z(j) jeweils an, wie oft Block A in Abhängigkeit von j

abgearbeitet wird.

Für die Gesamtanzahl z der Abarbeitungen von Block A erhalten wir:

 z = z(0) + z(1) + z(2) + z(3) + + z(n-3) + z(n-2)

 = (n-1) + (n-2) + (n-3) + + 2 + 1

 = 1 + 2 + + n-1

 = ½  (n-1)  n (beachte untenstehenden Hinweis)

 = ½  (n2  n)

 = ½  n2  ½  n

Für große Werte von n können wir den Summand ½  n gegenüber dem Sum-

mand ½  n2 vernachlässigen; somit folgt:

Index j Index i z(j)

j = 0 1  i  n-1 n - 1

j = 1 2  i  n-1 n - 2

j = 2 3  i  n-1 n - 3

j = 3 4  i  n-1 n - 4

....

j = n-3 n-2  i  n-1 2

j = n-2 n-1  i  n-1 1

 5

 z  ½  n2

 z  n2

Bei SelectionSort wächst der Zeitbedarf proportional zum Quadrat der Anzahl n

der zu sortierenden Datenelemente.

SelectionSort ist von polynomialer (hier: quadratischer) Komplexität.

Hinweis:

Für die Summe der ersten n natürlichen Zahlen gilt:

 1 + 2 + + n = ½  n  (n + 1)

Aufgaben:

1. Bestätige die quadratische Komplexität von SelectionSort experimentell an-

hand geeigneter Testläufe.

2. Modifiziere den Quelltext so, daß SelectionSort absteigend sortiert.

3. Sobald in der Teilliste a[j], . . . , a[n-1], 0  j  n-2, ein Element

gefunden wird, welches kleiner ist als das jeweils aktuelle Minimum, werden
die Wertzuweisungen innerhalb des Blocks A ausgeführt, was für ein bestimm-

tes j ggf. auch mehrmals erfolgt. Optimiere den Algorithmus so, daß die Wert-

zuweisungen jeweils höchstens ein Mal für jeden Wert von j vorgenommen

werden.

 Bestimme experimentell die Laufzeit und bestätige die (insgesamt bescheide-

ne) Optimierung.

 Hinweis: Ermittle zunächst den Index derjenigen Komponente, welche den
kleinsten Inhalt innerhalb der Liste a[j], . . , a[n-1] hat, und führe an-

schließend einmalig die Wertzuweisungen des Blocks A aus.

Komplexität von Algorithmen

A(n) bezeichne den Aufwand und damit den Zeitbedarf zur Laufzeit in Abhängig-

keit von n (z. B. n = Anzahl der zu verarbeitenden Datenelemente).

Algorithmus Aufwand Art der Komplexität

sequentielle oder

lineare Suche
A(n)  n linear

binäre Suche A(n)  log2(n) logarithmisch

SelectionSort A(n)  n2 polynomial

(hier: quadratisch)

MergeSort A(n)  n  log2(n) linear-logarithmisch

Fibonacci-Folge

(rekursiv)
A(n)  2n exponentiell

Ackermann-Funktion

A(3,n)  2n+3 – 3

A(3,n)  2(n+3) – 3

A(4,n)  2(n+3) – 3

A(5,n)  2(n+3) – 3

exponentiell

hyper-exponentiell

Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als un-

brauchbar; selbst Algorithmen mit polynomialer Komplexität zeigen häufig ein

ungünstiges Laufzeitverhalten.
03.07.2023

