
SelectionSort 
 

Aufgabenstellung: 
 

Gegeben ist ein Array a mit den n Komponenten a[0], a[2], . . . . , a[n-1] als 

Datenelemente, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt sind (also 

Komponenten z. B. vom Typ integer, char oder string). Die Inhalte dieser 

Datenelemente sind aufsteigend so anzuordnen, daß gilt:  

a[0]  ≤  a[2]  ≤  .  .  .  .  .  ≤  a[n-1] . 

In Python läßt sich ein Array a als Liste realisieren. 

 

Sortieren durch direkte Auswahl („SelectionSort“) 
 

Bei diesem Verfahren handelt es um einen typischen Vertreter eines imperativ 

formulierten Algorithmus’. 
 

Der Algorithmus SelectionSort bestimmt 
 

- das kleinste Element (Minimum) der Liste a[0], a[1], . . . . . , a[n-1]  und 

weist dieses der Komponente a[0] zu, dabei wird der Inhalt von a[0] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde; 
 

- das kleinste Element (Minimum) der Liste a[1], . . . . . . , a[n-1]  und 

weist dieses der Komponente a[1] zu, dabei wird der Inhalt von a[1] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde; 
 

- das kleinste Element (Minimum) der Liste a[2], . . . . . . , a[n-1]  und 

weist dieses der Komponente a[2] zu, dabei wird der Inhalt von a[2] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde; 
 

- . . . . . . . . . . 
 

- . . . . . . . . . . 
 

- das kleinste Element (Minimum) der Liste a[n-2], a[n-1]  und weist dieses 

der Komponente a[n-2] zu, dabei wird der Inhalt von a[n-2]  der Kompo-

nente a[n-1] zugewiesen.  
 

Nach dem Abarbeiten der vorgenannten n-1 Schritte ist das Array a aufsteigend 

sortiert. 
 

In Python lassen sich die ersten vier Schritte wie folgt formulieren: 
 

min = a[0] 

i = 0 + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[0] 

          a[0] = min 

     i = i + 1 

 

min = a[1] 

i = 1 + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[1] 

          a[1] = min 

     i = i + 1 
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min = a[2] 

i = 2 + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[2] 

          a[2] = min 

     i = i + 1 

 

min = a[3] 

i = 3 + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[3] 

          a[3] = min 

     i = i + 1 

 

 

 

Letzter Schritt: 
 

min = a[n-2] 

i = n-2 + 1 

while i < n: 

     if a[i] < min: 

          min    = a[i] 

          a[i]   = a[n-2] 

          a[n-2] = min 

     i = i + 1 

 

 

Zusammenfassend gilt:  Der Anweisungsblock 
 

min = a[j] 

i = j + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[j] 

          a[j] = min 

     i = i + 1  
 

ist nacheinander für j = 0, 1, 2, . . . . . , n-2 abzuarbeiten; folglich fassen wir die-

sen Block als Schleifenrumpf einer weiteren Schleife (hier: for-Schleife) mit 

Schleifenindex j auf: 
 

for j in range(0,n-1): 

   min = a[j] 

   i = j + 1 

   while i < n: 

        if a[i] < min: 

             min  = a[i] 

             a[i] = a[j] 

             a[j] = min 

        i = i + 1 
 

Alternativ können wir die äußere Schleife als while-Schleife formulieren: 
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j = 0 

while j <= n – 2: 
   min = a[j] 

   i = j + 1 

   while i < n: 

        if a[i] < min: 

             min  = a[i] 

             a[i] = a[j] 

             a[j] = min 

        i = i + 1 

   j = j + 1 

 

 

Das folgende Python-Programm  

- weist nach Eingabe von n den Komponenten der Liste a Zufallszahlen aus 

dem Bereich 1, . . . , 1000000 zu, 

- sortiert diese Liste a aufsteigend, 

- ermittelt den Zeitbedarf für das Sortieren der n Datenelemente, 

- gibt jeweils einen Teil der Quelliste und der sortierten Liste sowie den 

Zeitaufwand für den Sortiervorgang (in s) aus. 
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Aufwandsbetrachtung 
 

Wir untersuchen den Algorithmus SelectionSort hinsichtlich seiner zeitlichen 

Komplexität, d. h. wir untersuchen, wie der Zeitbedarf zur Laufzeit sich in Abhän-

gigkeit von der Anzahl n der zu sortierenden Datensätze verhält. Den Aufwand 

hinsichtlich des Speicherplatzbedarfs können wir hier vernachlässigen, da der Al-

gorithmus SelectionSort auf dem Array a operiert und keinen weiteren Speicher-

platz zur Laufzeit benötigt. 

 

Hierzu betrachten wir denjenigen Programmteil, der das Sortieren ausführt: 
  
         j = 0                                                                

          while j <= n-2:    

              min = a[j] 

          i = j + 1 

              while i < n: 

                  if a[i] < min: 

                      min  = a[i] 

                      a[i] = a[j] 

                      a[j] = min 

                  i = i + 1 

              j = j + 1 

 

Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife (hier: 
rot markiert) dieses Programmauszugs gedanklich zum Anweisungsblock A zu-

sammen. 

Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu sor-

tieren, fragen wir, wie oft Block A  in Abhängigkeit von n abgearbeitet wird. 
 

In folgender Tabelle gibt z(j) jeweils an, wie oft Block A in Abhängigkeit von j 

abgearbeitet wird.  
 

 

 

Für die Gesamtanzahl z der Abarbeitungen von Block  A  erhalten wir:  

 

     z   =    z(0)  +  z(1)   +  z(2)  +  z(3)  +  .  .  .  .  .   +  z(n-3)  +  z(n-2) 
  

 =   (n-1)  + (n-2)  + (n-3) +  .  .  .  .  .  .  .  .  .    +    2     +    1 
 

 =  1  +  2  +  .  .  .  .  .  .  .  +  n-1 
 

 =  ½  (n-1)  n    (beachte untenstehenden Hinweis) 
 

 =  ½  (n2  n)  
 

 =  ½  n2    ½  n 

 

Für große Werte von n können wir den Summand ½  n gegenüber dem Sum-

mand ½  n2 vernachlässigen; somit folgt: 

Index j Index i z(j) 

j = 0  1  i  n-1 n - 1 

j = 1  2  i  n-1 n - 2 

j = 2  3  i  n-1 n - 3 

j = 3  4  i  n-1 n - 4 

.... .... .... 

j = n-3 n-2  i  n-1 2 

j = n-2 n-1  i  n-1 1 
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    z   ½  n2 
 

    z    n2 

 

Bei SelectionSort wächst der Zeitbedarf proportional zum Quadrat der Anzahl n 

der zu sortierenden Datenelemente. 

 

SelectionSort ist von polynomialer (hier: quadratischer) Komplexität. 

 

Hinweis: 

Für die Summe der ersten n natürlichen Zahlen gilt: 
 

  1  +  2  +  .  .  .  .  .  .  +  n  =   ½  n  (n + 1) 
 

 

Aufgaben: 
 

1. Bestätige die quadratische Komplexität von SelectionSort experimentell an-

hand geeigneter Testläufe. 
 

2.  Modifiziere den Quelltext so, daß SelectionSort absteigend sortiert. 
 

3. Sobald in der Teilliste   a[j], . . . , a[n-1], 0  j  n-2, ein Element 

gefunden wird, welches kleiner ist als das jeweils aktuelle Minimum, werden 
die Wertzuweisungen innerhalb des Blocks A ausgeführt, was für ein bestimm-

tes j ggf. auch mehrmals erfolgt. Optimiere den Algorithmus so, daß die Wert-

zuweisungen jeweils höchstens ein Mal für jeden Wert von j vorgenommen 

werden.  

 Bestimme experimentell die Laufzeit und bestätige die (insgesamt bescheide-

ne) Optimierung. 

 Hinweis: Ermittle zunächst den Index derjenigen Komponente, welche den 
kleinsten Inhalt innerhalb der Liste a[j], . . , a[n-1] hat, und führe an-

schließend einmalig die Wertzuweisungen des Blocks A aus.  

 

Komplexität von Algorithmen 

A(n) bezeichne den Aufwand und damit den Zeitbedarf zur Laufzeit in Abhängig-

keit von n (z. B. n = Anzahl der zu verarbeitenden Datenelemente). 
 

Algorithmus Aufwand  Art der Komplexität 

sequentielle oder 

lineare Suche 
A(n)  n  linear 

binäre Suche A(n)  log2(n) logarithmisch 

SelectionSort A(n)  n2 polynomial  

(hier: quadratisch) 

MergeSort A(n)  n  log2(n) linear-logarithmisch 

Fibonacci-Folge 

(rekursiv) 
A(n)  2n exponentiell 

 

Ackermann-Funktion 

A(3,n)  2n+3 – 3 

A(3,n)  2(n+3) – 3 

A(4,n)  2(n+3) – 3 

A(5,n)  2(n+3) – 3 

exponentiell 

 

hyper-exponentiell 

 

 
 

Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als un-

brauchbar; selbst Algorithmen mit polynomialer Komplexität zeigen häufig ein 

ungünstiges Laufzeitverhalten. 
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