
FORMALE SPRACHEN 
 

Syntax: „Lehre vom Satzbau“  
Die Syntax beschreibt die Gesetzmäßigkeiten, gemäß denen Wörter zu einem Satz zu-
sammengefügt werden. 
 

Semantik: „Lehre von der Bedeutung (von Zeichen, Wörtern und Sätzen)“ 
 
Analyse folgenden Satzes: 
 

„Die Katze jagt die Maus“ 
 
Syntaxbaum: 
 

        Satz 
 
 
       Nominalgruppe          Verbalgruppe 
 
 
 
Artikel        Substantiv        Verb         Nominalgruppe 
 
 
 
                Artikel             Substantiv 
 
Eine Grammatik wird wesentlich beschrieben durch ein System von Regeln, z.B. in der 
Backus-Naur-Form (BNF-Notation): 
 
<SATZ>  ::= <NOMINALGRUPPE> <VERBALGRUPPE> 
 
<NOMINALGRUPPE>  ::= <ARTIKEL> <SUBSTANTIV> 
 
<VERBALGRUPPE>  ::= <VERB> <NOMINALGRUPPE> 
 
<VERB>  ::= jagt | sieht | beißt | frißt 
 
<ARTIKEL>  ::= der | die | das 
 
<SUBSTANTIV>  ::= Katze | Maus | Merlin | Tablet 
 
„ ::= “ ist zu lesen als: „wird ersetzt durch“ 
„ | “  ist zu lesen als: „oder“  
 
Bemerkung: In spitzen Klammern eingeschlossene Symbole sind nicht endgültige Zei-
chen, sogenannte Non-Terminalzeichen (Nonterminals); die anderen Zeichen, wie z. 
B. “der” oder “Katze” im obigen Beispiel, werden nicht mehr durch andere Zeichen er-
setzt und heißen daher endgültige Zeichen, Terminalzeichen (Terminals). 
Die Ersetzungsregel  „ <ARTIKEL> ::= der | die | das “  bedeutet, daß das Non-Terminal 
„<ARTIKEL>“ durch die Terminals „der“ oder „die“ oder „das“  ersetzt werden kann und 
auch zu ersetzen ist, denn der endgültige Satz besteht aus lauter Terminals. 
 

Beachte: Mit dem Begriff „Zeichen“ ist hier nicht ein Buchstabe oder eine Ziffer im Sinne 
von  „character“ (char) gemeint,  sondern die Terminalzeichen sind bei einer natürlichen 
Sprache die einzelnen Wörter der Sprache, bei einer Programmiersprache Schlüsselwör-
ter (z. B. while, print, if, else etc. in Python) oder Bezeichner. Folglich sind die Sätze, 
die gemäß den Syntaxregeln einer die Programmiersprache definierenden Grammatik 
gebildet werden können, nichts anderes als die in dieser Sprache formulierten Pro-
grammtexte. 



 2 

Sätze, die gemäß obenstehenden Regeln aufgebaut sind: 
 

“der Merlin beißt das Tablet” 
“die Maus sieht die Katze” 
“das Katze frißt die Maus” 
 

Die Syntaxregeln müssen zur Bildung korrekter Sätze eingehalten werden; andererseits 
impliziert die Einhaltung der Regeln nicht zwingend, daß ein syntaktisch korrekter Satz 
auch semantisch Sinn macht.  
 
DEFINITION: 
 

Wenn A eine endliche Menge von Zeichen ist, erhält man durch deren Hintereinander-
schreiben Zeichenketten. Die Menge A heißt auch Alphabet, die Zeichenketten heißen 
Wörter über dem Alphabet A; das leere Wort, das keine Zeichen enthält, heißt . 
Jede Menge von Wörtern über A heißt eine formale Sprache; ein System von Regeln, 
welches entscheidet, ob ein Wort w über A zur Sprache gehört, heißt Grammatik G (oder 
Syntax) einer formalen Sprache. 
 
 

In Python sind 
 

- die Zeichen oder Symbole der formalen Sprache: Schlüsselwörter wie print, if, in-
put, else, elif, return, . . . , Namen 

 

- die Zeichenketten oder Wörter der formalen Sprache: Python-Programme 
 

Eine Grammatik beinhaltet Regeln, mit Hilfe derer entschieden wird, ob ein Wort (also ein 
Programm-Text) z. B. ein gültiges Python-Programm ist. Dieser Vorgang heißt Syntax-
Analyse; letztere erledigt ein Parser, der Bestandteil jedes Compilers und jedes Interpre-
ters ist. Ein syntaktisch korrekter Programm-Text ist nicht hinreichend, daß das Pro-
gramm auch etwas “Vernünftiges” leistet; die Bedeutung eines Programm-Textes (oder 
eines Textes einer natürlichen Sprache) wird mit dem Begriff “Semantik” erfaßt. 
 
Wir unterscheiden bei einer formalen Sprache terminale (“endgültige”) und nicht-
terminale (“nicht endgültige”) Zeichen oder Symbole. 
 
 

 

DEFINITION: 
 

Eine Satzgliederungsgrammatik G ist durch folgende Bestandteile gegeben: 
 

(1) eine endliche Menge T; ihre Elemente heißen Terminalzeichen oder Terminals. 
(2) eine endliche Menge N; ihre Elemente heißen nicht-terminale Zeichen oder Non-

Terminals; in dieser Menge N ist ein Startzeichen S ausgezeichnet. 
(3) endlich viele Ersetzungsregeln, genannt Produktionen P. 

 

Die von der Grammatik G bestimmte formale Sprache L(G) besteht aus allen Wörtern 
(bzw. Zeichenketten, Sätzen, Programmtexten) über T, die  –  ausgehend vom Startzei-
chen S  –  durch endlich viele Anwendungen der Produktionen erzeugt werden können. 
 
Somit ist eine Grammatik G durch das Quadrupel (T, N, P, S) bestimmt. 
 
Beispiel einer einfachen formalen Sprache: 
 

Das Non-Terminal S sei Startzeichen, a, b seien terminale Symbole. 
Ersetzungsregeln P der Grammatik G: 
 

(1) S ::= a        
(2) S ::= a S a 
(3) S ::= S b 

 

Bemerkung:  
Die in der BNF-Notation für Nonterminals vorgesehenen spitzen Klammern wurden hier weggelassen. 
 
Zeige jeweils mittels einer Linksableitung und eines Syntaxbaums, daß die Wörter 
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a) aaa ,   b) aaba ,   c) abbb ,   d) aababb 
 

zur Sprache L(G) gehören. 
 
Beachte:  
 

Linksableitung bedeutet, daß jeweils das am weitesten links stehende Nonterminal-
Zeichen ersetzt wird. 

 

Solange noch ein S vorkommt, muß S ersetzt werden, bis das entstandene Wort aus 
lauter Terminal-Zeichen besteht. 

 

Linksableitungen (ausgehend vom Startsymbol S; „top-down“): 
 
 

a) S 2  a S a  1  a a a 
 

b) S 2  a S a  3  a S b a  1  a a b a 
 

c) S 3  S b  3  S b b  3  S b b b  1  a b b b 
 

d) S 3  S b  3  S b b  2  a S a b b  3  a S b a b b  1  a a b a b b 
 

 
Syntaxbaum zu d): 
 

 
 
Das Wort a a b a b b läßt sich auf das Startsymbol S zurückführen („bottom-up“). 
 
 
 

REGULÄRE SPRACHEN (TYP 3) 
 

DEFINITION: 
 
Eine Grammatik G heißt regulär, wenn alle Produktionen von der Form    

( R )           A  ::=  aB  ,         A  ::=  a             (Rechtslinearität) 
 

sind,  
 
oder wenn alle Produktionen die Form 
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( L  ) A  ::=  Ba  ,            A  ::=  a (Linkslinearität) 
 

haben.  
 

Die zugehörige formale Sprache L(G) heißt regulär. 
 
Wir beschränken uns im folgenden auf linkslineare Grammatiken, was keine Einschrän-
kung darstellt; eine linksreguläre Grammatik nennen wir auch Grammatik vom 
Typ 3, die zugehörige reguläre Sprache heißt vom Typ 3. 
 

Vereinbarung: Im Folgenden schreiben wir statt  „  ::=  “   auch   „    “  . 
 
DEFINITION: 
 

Ein endlicher Automat (Akzeptor) ist bestimmt durch 
 

- eine nichtleere, endliche Menge Z von Zuständen, 
- eine nichtleere, endliche Menge E von Eingabesymbolen (Eingabealphabet), 
- eine Überführungsfunktion f : Z x E  Z, die jedem Paar aus aktuellem Zustand und 

Eingabe eindeutig einen Folgezustand zuordnet, 
- einen Anfangszustand z0 aus der Menge Z, 
- mindestens einen Endzustand zE aus der Menge Z. 

 
Wir verdeutlichen einen endlichen Automaten durch einen Graphen: Für jedem Zustand 
aus Z zeichnen wir einen Knoten. Von den Knoten gehen gerichtete Kanten aus, wobei 
eine Kante mit dem jeweiligen Eingabesymbol aus der Menge E beschriftet wird. Eine 
Kante endet bei demjenigen Knoten (Zustand), in den der Automat nach Lesen des Ein-
gabesymbols übergeht. 
 
Es gilt folgender 
 

SATZ:  Ein endlicher Automat erkennt eine Sprache genau dann, wenn sie regulär ist. 
 

Der strenge Beweis dieses Satzes ist schwierig; für linkslineare Grammatiken führen wir 
konstruktiv eine Plausibilitätsbetrachtung durch: 
 

(1) Jedem Element der Menge N der Nonterminals einer Sprache ist ein Zustand (Kno-
ten) des endlichen Automaten zugeordnet; Ausnahme: dem Anfangszustand ent-
spricht kein Nonterminalzeichen. Das Nonterminal S (Startzeichen) entspricht dem 
Endzustand. 

 

(2) Einer Produktion B  Ab entspricht eine gerichtete Kante mit der Bewertung b        
(b  T) vom Knoten A (Zustand A) zum Knoten B (Zustand B). 

 
 

B    Ab   
 
 
 

S      Ab 
 
 

(3) Einer Produktion B  a entspricht eine gerichtete Kante vom Anfangszustand zum 
Knoten B (Zustand B) mit der Bewertung a, a  T. Auf den Anfangszustand dürfen 
keine Kanten hinführen.  

 
 B      a    
  
 
Ein Wort w einer Sprache L(G) wird genau dann erkannt, wenn, ausgehend vom An-
fangszustand, das Wort vollständig gelesen werden kann und der Automat in einen End-
zustand gerät. 
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Um den Zusammenhang zwischen einer regulären Sprache und einem endlichen Auto-
mat, der diese Sprache erkennt, zu verdeutlichen, betrachten wir folgende durch das 
Quadrupel (N, T, P, S) gegebene Grammatik G vom Typ 3: 
 

G = (N, T, P, S)   mit 
 
T := {a, b}  (Eingabealphabet des endlichen Automaten) 
N := {A, B, S}  (Menge der Zustände mit S = Startzeichen = Endzustand) 
 

Produktionen P: 
 

(1) A    a | Aa 
(2) B    b | Ab 
(3) S    Ba 
 
Der als Graph konzipierte endliche Automat DFA („deterministic finite acceptor“), der zu 
dieser Grammatik G gehört: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zu dieser Grammatik G gehört offensichtlich die Sprache L(G): 
 

L(G)   =  {ba, aba, aaba, aaaba, aaaaba, aaaaaba, . . . . . . }  
 

 = {w | w = anba mit n  0}     (lies: „die Menge aller Wörter w, für die gilt: w = anba“) 
 
Linksableitung für das Wort aaaaba („top-down”): 
 

S  Ba  Aba  Aaba  Aaaba  Aaaaba  aaaaaba 
 
Syntaxbaum für das Wort aaba („bottom-up“):                    
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Ein Beispiel für eine Sprache L, die nicht regulär ist und folglich von einem endlichen Au-
tomaten nicht erkannt wird: 
 

Eingabe-Alphabet = T := {a, b} 
 

L = {w | w = anbn   mit n   } = {ab, aabb, aaabbb, aaaabbbb, . . . . . . } 
 
Daß wir gerade diese Sprache betrachten, hat folgenden Grund: 
 

Interpretiert man a als öffnende, b als schließende Klammer, so stellt L die Menge der 
Klammerstrukturen beliebiger Tiefe dar. Solche Klammern treten nicht nur bei arithmeti-
schen Ausdrücken auf, sondern auch bei allen blockorientierten Sprachen wie C++, Pas-
cal, Java oder Python; in Pascal erfolgt die Klammerung eines Blocks mit begin und end, 
in Java oder C++ mit geschweiften Klammern  {  und  },  in Python wird ein Anwei-
sungsblock durch Einrücken gekennzeichnet. 
 
Versuch, ein Regelsystem für eine die Sprache L beschreibende reguläre Grammatik zu 
finden: 
 

N := {A, S} 
 

Produktionen P:  
 

(1)  S     Sb | Ab 
(2)  A     Aa | a 
 
Aufgabe: 
a) Konstruiere den endlichen Automat Au, der zu dieser Grammatik gehört. 
b) Zeige, daß auch die “falschen” Wörter  anbm   mit nm erkannt werden. 
c) Gib ein Regelsystem (Produktionen) an, so daß die Sprache L erkannt wird. (Diese 

Sprache ist nicht regulär, sondern heißt contextfrei oder vom Typ 2.) 
 
 
 
Lexikalische Analyse von Namen (Bezeichner, identifier) 
 

Gegeben ist folgende Grammatik G = (N, T, P, S)   mit 
 

T :=  {a, b, . . . , z, A, B, . . . , Z, _, 0, 1, . . . . , 9} 
N := { <name>, <buchstabe>, <ziffer> } ; Startzeichen: S = <name>       
  

Produktionen P: 
 

(1) <name>  ::=   <buchstabe> | <name> <buchstabe> | <name> <ziffer> 
(2) <buchstabe>  ::=   a | b | c | . . . . . . | z | _ | A | B | C | . . . . . . | Z  
(3) <ziffer>  ::=   0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  
 
Bemerkung: In Python wie in anderen Programmiersprachen sind Schlüsselwörter oder reservierte 
Wörter (z. B. except, if, elif, else, . . . .) als Bezeichner unzulässig.  
 
Aufgabe: 
 

a) Zeige: Die Grammatik G läßt sich als linkslineare Grammatik vom Typ 3 formulieren. 
 

b) Zeichne den Graph des zu dieser Grammatik gehörenden endlichen Automaten, der 
Identifier erkennt. 

 

c) Zeige, daß die Zeichenkette a3Xyz ein gültiger Bezeichner, also ein Wort der von der 
Grammatik G erzeugten Sprache L(G) ist, indem diese Zeichenkette (Programmtext 
oder hier: Teil eines Programmtextes) solange reduziert wird, bis die gesamte Zei-
chenkette auf das Startsymbol S zurückgeführt wurde (Syntaxbaum!). 

 

d) Formuliere die Linksableitung für das Wort a3Xyz . 
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Lösungen: 
 

zu a): 
 

Für das Nonterminal <name>, welches auch Startzeichen ist, schreiben wir S; dann  
läßt sich die Grammatik G = (N, T, P, S), welche Bezeichner in der Programmiersprache 
Python erzeugt, als linkslineare Grammatik formulieren:  
 

T  :=  {a, b, c, . . . , z, _ , A, B, C, . . . , Z, 0, 1, 2, 3, . . . . , 9} 
N  :=  { S }  mit  S = Startsymbol 
 

Produktionen P: 
 

(1)  S    a | b | . . .  | z | _ | A | B | . . . | Z 
(2)  S    Sa | Sb | . . . . | Sz | S_ | SA | SB | . . . | SZ 
(3)  S    S0 | S1 | S2 | . . . . | S9 
 
zu b): 
 

Zu dieser Grammatik G gehört folgender DFA: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

zu c): 
 

Syntaxbaum 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
zu d): Linksableitung für das Wort a3Xyz („top-down“): 
 
           (2)                      (2)                       (2)                           (3)                               (1) 

 S         Sz         Syz         SXyz         S3Xyz        a3Xyz     
 
Lokale Teilbereiche (hier: Syntax von Bezeichnern) einer Programmiersprache können 
durch eine reguläre Grammatik (Grammatik vom Typ 3) beschrieben werden. 



 8 

Paritätsbit 
 

Eine Folge von Bits wird um ein „Paritätsbit“ ergänzt, so daß die Anzahl der mit 1 beleg-
ten Bits (einschließlich Paritätsbit) entweder gerade („gerade Parität“) oder ungerade 
(„ungerade Parität“) ist. 
 

Wir betrachten die Menge T* aller Wörter, die sich über dem  Alphabet T = {0;1} bilden 
lassen. Sämtliche Daten werden als binäre Worte über T auf einem Speichermedium ab-
gelegt oder zwischen Komponenten eines Netzwerks transportiert. 
Beispiel: Die 128 Zeichen der ASCII-Tabelle werden mit jeweils 7 Bit codiert, so daß das 
Paritätsbit als 8. Bit die Bitfolge zu einem aus 8 Bit bestehenden Byte ergänzen kann. 
 

Um Fehler bei der Datenübertragung oder –speicherung zu erkennen, wird z. B. an jedes 
Wort ein „Paritätsbit“ angehängt, so daß die Anzahl der Einsen im resultierenden Wort w 
gerade ist. Ein Wort w besteht also den Paritäts-Check, falls es zur Sprache 
 

 L(G) = {w  T* |  die Anzahl der Einsen in w  ist gerade}   
gehört. 
 

a) Konstruiere einen DFA, der L(G) erkennt. 
 

b) Gib die Syntaxregeln (Produktionen P) an. 
 

c) Zeige, daß es für das Wort 01101100 einen korrekten Syntaxbaum gibt.  
 

d) Zeige: Für das Wort 01011 läßt sich weder eine Linksableitung noch ein korrekter Syn-
taxbaum angeben. 

 
Lösungen: 
 

zu a): 
 

Menge der Terminalzeichen:    T = {0;1} 
Menge der Nonterminalzeichen:   N = {A; S}  mit S als Startzeichen 
 

DFA: 

 
zu b): 
 

Produktionen P: 
 

(1)  A  1 
(2)  A  A0 
(3)  A  S1 
(4)  S  0 
(5)  S  S0 
(6)  S  A1 
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zu c): 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
zu d): 
 

Linksableitung: 
 
     6            3             5                6                  2     
S    A1    S11    S011    A1011    A01011    ? 
 
Syntaxbaum: 

 
 

Da das Wort 01011 sich auf das Startsymbol S nicht reduzieren läßt, gehört 01011 nicht 
zur Sprache L(G) mit G = (N, T, P, S). 
 
 
Wir oben (S. 6) bereits gezeigt, läßt sich die Sprache 
 

L(G) = {ab, aabb, aaabbb, . . . . } = {w | w = anbn   mit n   }  mit T = {a, b}  
 

nicht durch eine reguläre Grammatik erzeugen; wenn man allerdings allgemeinere als 
reguläre Produktionsregeln zuläßt, gelingt die Formulierung einer Grammatik G, zu der 
L(G) gehört: 
 

T = {a, b};   N = {S};   S = Startsymbol 
 

P: (1) S  ab 
 (2) S  aSb 
 

Übung: Gib eine Linksableitung und einen Syntaxbaum für das Wort aaabbb an! 
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KONTEXTFREIE GRAMMATIKEN UND KONTEXTFREIE SPRACHEN  
(TYP 2) 

 

Context free grammars (CFG) and context free languages (CFL) 
 

Zur Grammatik G = (T, N, P, S) mit Eingabealphabet T = {a; b; c} und  N = {A; S} 
(S=Startsymbol) sei die Sprache 
 

 L(G) := {w |  w = ancbn , n = 0, 1, 2, . . . } = {c, acb, aacbb, aaacbbb, . . . . . } 
 

gegeben. Falls man versucht, zu dieser Sprache L(G) ein linksreguläre Grammatik mit 
den Produktionen P 
 
(1) S  Sb | Ac | c 
(2) A  Aa | a 
 
zu formulieren (siehe auch Seite 6), erkennt man, daß der zugehörige DFA zwar die 
„richtigen“ Wörter c, acb, aacbb, aaacbbb, . . . .  erkennt und daß es korrekte Syntax-
bäume für diese Wörter gibt, daß allerdings ebenso die „falschen“ Wörter ac, acbb,  
aaaacbb, . . . (also ancbm mit nm) erkannt werden; denn zum Abarbeiten der a bedarf 
es der rekursiven Regel A  Aa, zum Abarbeiten der b der rekursiven Regel S  Sb. Und 
der DFA ermöglicht nicht zu zählen und festzuhalten, wie oft diese rekursiven Regeln je-
weils angewandt wurden! 
Bemerkung: Eine Produktionsregel heißt rekursiv, wenn ein Nonterminal auf der linken Seite der 
Regel auch auf deren rechter Seite vorkommt. 
 

Mehrfach geschachtelte Klammerungen, wie durch  L(G) = {w |  w = ancbn } beschrie-
ben, treten nicht nur in arithmetischen Termen, sondern auch als Programmstruktur in 
allen blockorientierten Sprachen wie Python, Pascal, Java, C++ usw. auf. Um die oben 
formulierte Sprache L(G) zu erkennen, muß man das Regelsystem erweitern. 
 

Vereinbarung:  
Im Folgenden verstehen wir unter dem Symbol  eine beliebige Aneinanderreihung von 
Terminals oder Nonterminals, z. B.  = AbaSa. 

 
 

DEFINITION:  
Eine zur Grammatik G gehörende Sprache L(G) heißt kontextfrei (oder kontext-
unabhängig, engl.: contextfree) genau dann, wenn alle Produktionen die Form 
 

A                 (andere Schreibweise:     A ::=  ) 
 

mit A  N haben. 
 
 
Bemerkungen: 
Eine kontextfreie Grammatik nennen wir auch Grammatik vom Typ 2, die zugehörige 
kontextfreie Sprache heißt vom Typ 2. 
Eine Produktion aAb ::= aBaS ist dagegen nicht kontextfrei in dem Sinne, daß man das 
Nonterminal A nicht einfach durch aBaS ersetzen darf, sondern nur dann, wenn es im 
Zusammenhang (im Kontext) mit einem voranstehenden a und einem folgenden b vor-
kommt; hier ist die Zeichenkette aAb durch aBaS zu ersetzen. Bei kontextfreien Spra-
chen steht das auf der linken Seite einer Produktion stehende Nonterminal in keinem 
Kontext anderer Zeichen. 
Teilbereiche (z. B. Identifier, Paritäts-Check) einer Programmiersprache lassen sich durch 
eine reguläre Grammatik (siehe Seiten 6 - 9) beschreiben; insgesamt ist Python mindes-
tens eine kontextfreie Programmiersprache, also vom Typ 2. 
Natürliche Sprachen sind nicht kontextunabhängig (daß man den Satz “die Maus jagt die 
Katze” bilden konnte, liegt daran, daß die Produktionen kontextfrei definiert waren; sol-
che semantisch unsinnigen Sätze kann man dadurch ausschließen, indem die Produktio-
nen kontextabhängig formuliert werden.). 
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DEFINITION:  
 
Zwei Grammatiken G und G’ heißen äquivalent genau dann, wenn gilt:   

 

L(G) = L(G’) 
 
Beispiel: 
 

Definiere die Grammatiken G und G’ wie folgt: 
 
G = (T, N, P, S) mit Eingabealphabet T = {a; b; c}, N = {R; S}, S=Startsymbol und 
den Produktionen P 
 

(1)  S ::= c 
(2)  S ::= Rb          
(3)  R ::= aS          

 

 
G’ = (T, N, P, S) mit T = {a; b; c}, N = {S}, S=Startsymbol und den Produktionen P  
 

(1)  S ::= c 
(2)  S ::= aSb        (zentralrekursive Regel) 

 
G und G’ sind äquivalent, denn: 
 
 L(G) = L(G’) = {w |  w = ancbn , n = 0, 1, 2, . . . }        
 
Beispiel: w = aacbb 
 

Syntaxbaum gemäß Grammatik G:                         Syntaxbaum gemäß Grammatik G’: 
  
 

 
Offensichtlich lassen sich die Wörter ancbn sowohl in G als auch in G’ auf das Startsymbol 
S reduzieren, indem man obenstehende Syntaxbäume jeweils geeignet erweitert. 
 
 
 
DEFINITION:  
Eine Grammatik G heißt strukturell mehrdeutig (structurally ambiguous) genau 
dann, wenn die zugehörige Sprache L(G) Wörter (die Wörter einer Program-
miersprache  sind die Quelltexte!) enthält, für die es strukturell unterschiedli-
che Syntaxbäume gibt. 
 
Hinweis:  
Von lexikalischer Mehrdeutigkeit spricht man, wenn ein Terminal (in einer natürlichen 
Sprache: ein Wort) mehrere Bedeutungen besitzt; Beispiel: In dem Satz 
„Das Schloß wurde im 16. Jahrhundert gebaut“ kann mit dem Wort „Schloß“  ein Gebäu-
de oder eine Schließvorrichtung gemeint sein. 
 

Weitere Beispiele für lexikalische Mehrdeutigkeit in natürlichen Sprachen: 
 “Der Gefangene floh”                 “Der gefangene Floh” 
 “time flies like an arrow”           “fruit flies like a banana”. 



 12 

Bemerkungen: 
 

- Es gibt kontextfreie Sprachen (CFLs; Sprachen vom Typ 2), die inhärent mehrdeutig 
(inherently ambiguous) sind, d. h. jede Grammatik für diese Sprache ist mehrdeutig. 
Eine kontextfreie Sprache heißt eindeutig, sobald sich eine eindeutige Grammatik an-
geben läßt, die diese Sprache erzeugt. 

 

- Eine reguläre Sprache (Sprache vom Typ 3) kann nicht inhärent mehrdeutig sein, da 
sich stets eine eindeutige Grammatik angeben läßt, die diese Sprache erzeugt. 

 

- Die Frage, ob zwei Grammatiken dieselbe Sprache erzeugen und damit äquivalent 
sind, ist allgemein nicht entscheidbar. 

 

- Es ist grundsätzlich nicht möglich, für eine gegebene kontextfreie Grammatik mit ei-
nem allgemeinen Algorithmus zu entscheiden, ob sie eindeutig oder mehrdeutig ist. 

 

- Gleichwohl gelingt es in der Praxis in aller Regel, eine eindeutige kontextfreie Gram-
matik zu formulieren (indem man z. B. die möglichen Fälle durchspielt). 

 

- Syntaxbäume, bei denen das Startzeichen als Wurzel, die Nonterminals als innere 
Knoten und die Terminals als Endknoten (Blätter) auftreten, lassen sich nur bei Typ-3 
oder Typ-2-Sprachen sinnvoll erstellen, also bei Sprachen, bei denen die „linke“ Seite 
jeder Produktionsregel aus genau einem Nonterminal-Zeichen besteht. 

 
 
Beispiele strukturell mehrdeutiger Grammatiken 
 
Beispiel 1 
 
Gegeben ist die Sprache L(G) zur Grammatik G = (T, N, S, P) mit 
T = { +, *, ( , ), a, b, c, . . . , z }  
N = { S, V },  S  = Startzeichen 
 

Produktionen P: 
 (1)  S         V  |  ( S )  |  S + S  |  S * S                 

(2)  V         a | b | c | .  .  . | z 
 
Zeige:  
 

a) (a + b) * c  L(G)     (Linksableitung, Syntaxbaum) 
b) Für das Wort  a + b * c lassen sich Syntaxbäume auf zwei strukturell verschiedene 

Arten angeben! Erläutere die Konsequenzen für die Abfolge der Rechenschritte. 
 
Lösung zu b): 
 
1. Lösung: 
 
Syntaxbaum: 
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Linksableitung: 
 

S     S + S      V + S     a + S     a + S * S    a + V * S    a + b * S   
 a + b * V    a + b * c  

 
 
2. Lösung: 
 
Syntaxbaum: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Linksableitung: 
 

S     S * S      S + S * S    V + S * S    a + S * S    a + V * S    a + b * S 
 a + b * V    a + b * c  

 
Der Term   a + b * c  wird gemäß dem ersten Syntaxbaum als Summe mit den Sum-
manden a und b * c, gemäß dem zweiten Syntaxbaum als Produkt mit der Summe   
a + b  als ersten Faktor und c als zweiten Faktor aufgefaßt. 
 
Da sich zu dem Wort a + b * c  zwei strukturell verschiedene Syntaxbäume in der Gram-
matik G angeben lassen, ist die Grammatik G strukturell mehrdeutig. 
 
 
Beispiel 2    „dangling else“ - ambiguity 

 
Gegeben: Grammatik G = (T, N, P, S) mit 

 

- T  :=  { if, else, s1, s2, c1, c2 } 
- N  :=  { E, S }    mit    S = Startsymbol 
- Produktionsregeln P: 
 

(1) S    if  E  S    
(2) S    if  E  S  else  S 
(3) S    s1 | s2 
(4) E    c1 | c2  

 
Bedeutung der Terminals: 
s1, s2 (statement1, statement2) stehen jeweils für Anweisungen oder Anweisungs-
blöcke 
c1, c2 (condition1, condition2)  stehen jeweils für Boolesche Terme 

 
Zeige:   

Das Wort 
 

           if c1 if c2 s1 else s2      
 

läßt sich auf zwei strukturell verschiedene Weisen auf das Startsymbol S reduzieren. 
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Syntaxbaum 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                Formulierung in Python: 

 
                       if c1:                 
                           if c2:                 
                               s1                     
                           else:              
                               s2                 

 
 
Syntaxbaum 2: 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
                                Formulierung in Python: 

 
                       if c1:                 
                           if c2:                 
                               s1                     
                       else:              
                           s2                 
 
Möglichkeiten, um der Mehrdeutigkeit zu begegnen: 
- Der else-Zweig bezieht sich immer auf das nächst voranstehende if. 
- Kennzeichnung von Anweisungsblöcken durch entsprechende Strukturierung des 

Quelltextes;   
in Python: durch Einrücken;  
in Pascal:  mit den Schlüsselwörtern begin und end;  
in C++, Java: mit { und } . 
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Beispiel 3    Mehrdeutigkeit bei einer Grammatik für eine natürliche Sprache 
 

Gegeben ist die Sprache L(G) zur Grammatik G = (T, N, Satz, P) mit 
 

T  = {mit, in, auf, Hans, Frau, Fernglas, Park, sieht, geht, der, die, das, einem} 
N  = {Satz, NP, VP, PP, N, A, V, P} mit Satz=Startsymbol; NP  Nominalphrase usw. 
 

Produktionen P: 
(1) Satz   NP  VP 
(2) NP   NP  PP  |  A  N   |  N 
(3) VP   VP  PP  |  V  NP  |  V 
(4) PP   P  NP 
(5) P   mit  |  in  |  auf 
(6) N   Hans  |  Frau  |  Fernglas  | Park 
(7) V   sieht  |  geht   
(8) A   der  |  die  |  das  | einem 
 
Zu dem Satz   
 

„Hans sieht die Frau mit einem Fernglas“ 
 

lassen sich zwei strukturell verschiedene Syntaxbäume angeben: 
 

 
 
 

 
 
 

Beachte: Die Klammern sind nicht Bestandteil des zu analysierenden Satzes, sondern 
dienen dazu, die unterschiedliche Semantik zu verdeutlichen. 
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Dagegen erweist die folgende Grammatik sich als eindeutig: 
 
 Gegeben ist die Grammatik G = (T, N, P, S), bestehend aus der Menge T der Termi-

nalzeichen, der Menge N der Nonterminalzeichen, dem Element S  N als Startzei-
chen und der Menge P der Produktionen: 

 

 T := { a, b, p, q, if, then, else} 
 

 N := {S, S1, S2, B, T}  
 

 Produktionen P: 
  

(1)   S      S1  |  S2 
 

(2) S1      T  |  if B then S1 else S2 
 

(3) S2      T  |  if B then S  |  if B then S1 else S2 
 

(4) B       p  |  q 
 

(5) T       a  |  b 
 

 Man überzeuge sich: Das Wort     if p then if q then a else b 
 

 besitzt in dieser Grammatik nur einen einzigen Syntaxbaum! 
 
 Bedeutung der Terminals:  
 p, q bezeichnen Boolesche Terme;  
 a, b stehen für Anweisungen oder Anweisungsblöcke. 
 
 
Wir betrachten im Folgenden Grammatiken G1 und G2, deren Sprachen L(G1) und L(G2)  
aus arithmetischen Termen bestehen und die wegen  L(G1) = L(G2)  äquivalent sind: 
 
 Gegeben ist die Menge der Terminalzeichen T = {a,  b,  c,  d, (,  ),  +,  *}.  
 Wir definieren die folgenden Grammatiken G1 und G2: 
 

G1 = (T, N, P, S)  mit   N = {V, R, Q, S},  S=Startsymbol 
Produktionen P: 

 

 (1) V     a  |  b  |  c |  d 
 (2) Q  R 
 (3)  Q       Q * R 
 (4)  R    V    
 (5)  R  ( S ) 
 (6)  S    Q  
 (7)  S  S + Q 
 
 G2 = (T, N, P, S)  mit  N = {V, S} ,  S=Startsymbol 
 Produktionen P: 
 

 (1) V     a  |  b  |  c  |  d 
 (2) S       V    
 (3)  S       V * S  |  S * S 
 (4)  S    V + S  |  S + S    
 (5)  S  ( S ) 

  
a) Zeige: Das Wort   a + b * ( c + d )  gehört sowohl zur Sprache L(G1) als auch zur 

Sprache L(G2), indem man bei G1 und G2 jeweils einen Syntaxbaum und eine 
Linksableitung angibt.  

 

b) Analysiere das Wort   a * b + a * c  sowohl nach G1 als auch nach G2 
 (Linksableitung, Syntaxbaum). 
 Welche der Grammatiken G1 und G2 verdient den Vorzug,  obwohl sie äquivalent 

sind (Begründung!)? 
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c) Analysiere das Wort   a * ( b + c )  sowohl nach G1 als auch nach G2. 
 
 
Lösungen: 
 
a) )    a + b * ( c + d )     L(G1) 
 
Syntaxbaum: 

 
Linksableitung:  
Beachte: das am „weitesten links“ stehende Nonterminal wird jeweils ersetzt. 
 
S     S + Q      Q + Q     R + Q    I + Q    a + Q    a + Q * R     
 
 a + R * R    a + I * R    a + b * R    a + b * ( S )    a + b * ( S + Q )   
 
 a + b * ( Q + Q )    a + b * ( R + Q )    a + b * ( I + Q )    a + b * ( c + Q )  

 
 a + b * ( c + R )    a + b * ( c + I )    a + b * ( c + d )  

 
 
a) )    a + b * ( c + d )     L(G2) 
 
Syntaxbaum: 
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Linksableitung: 
 
S     I + S      a + S     a + I * S    a + b * S    a + b * ( S )   a + b * ( I + S ) 
 
 a + b * ( c + S )   a + b * ( c + I )   a + b * ( c + d )  

 
 
 
b) )    a * b +  a * c      L(G1) 
 
Syntaxbaum: 
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Linksableitung: 
 
S     S + Q      Q + Q     Q * R + Q    R * R + Q    I * R + Q    a * R + Q   
 
 a * I + Q    a * b + Q    a * b + Q  * R    a * b + R * R    a * b + I * R    
 
 a * b + a * R     a * b + a * I     a * b + a * c   

 
 
 
 
b) )    a * b +  a * c      L(G2) 
 
Syntaxbaum: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Linksableitung: 
 
S     I * S      a * S     a * I + S     a * b + S     a * b + I * S      
 
 a * b + a * S       a * b + a * I       a * b + a * c       
 
 
 

Der Term   a * b +  a * c    wird in der Grammatik G1 als Summe, deren Summanden 
jeweils die Produkte  a * b  und  a * c  sind, verstanden; dagegen faßt die Grammatik 
G2 den Term a * b +  a * c   als Produkt mit den Faktoren  a  und   b + a * c   auf und 
beachtet folglich nicht die allgemeingültige Vereinbarung „Punkt vor Strich“.  Daher ist 
die „kompliziertere“ Grammatik G1 der „einfacheren“ Grammatik G2 vorzuziehen, obwohl 
beide Grammatiken G1 und G2 äquivalent sind, denn L(G1) = L(G2). 
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 c) Syntaxbäume zum Wort  a * ( b + c )   
 

gemäß Grammatik G1:                           gemäß Grammatik G2:                            

 
 
 
 
 
 

 
 
 
 
 
 
 

KONTEXTSENSITIVE GRAMMATIKEN  
UND KONTEXTSENSITIVE SPRACHEN  

(TYP 1) 
 
 
Rückblick: 
 Eine Grammatik G und die zugehörige Sprache L(G) heißen kontextfrei oder 

vom Typ 2 genau dann, wenn die linke Seite jeder Produktionsregel aus genau 
einem Nonterminal-Symbol und die rechte Seite aus einer beliebigen Aneinander-
reihung von Terminal- und Nonterminal-Symbolen besteht. 

 

 Beachte: 
 Die Syntaxanalyse („bottom-up“) eines zur kontextfreien Sprache L(G) gehö-

renden Wortes w (z. B. arithmetischer Term, Quelltext einer Programmiersprache) 
läßt sich mittels eines Syntaxbaums realisieren, dessen Wurzel das Startsymbol S 
ist, dessen innere Knoten aus Nonterminals und dessen Endknoten („Blätter“) aus 
Terminals bestehen. 

 Somit gehört ein Wort w zur Sprache L(G), wenn es sich unter Anwendung der 
Produktionsregeln auf das Startsymbol S reduzieren läßt. 

 
 
 
Folgende Grammatik G sei geben durch das Quadrupel (T; N; S; P): 
 
Menge der Terminalsymbole:      T := {a, b, c} 
 

Menge der Nonterminalsymbole:   N := {B, C, S}   mit   S = Startsymbol 
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Produktionen P: 
 

(1) S     aSBC | aBC 
 

(2) CB    BC 
 

(3) aB    ab 
 

(4) bB    bb 
 

(5) bC    bc 
 

(6) cC    cc 
 
Die zu dieser Grammatik G gehörende Sprache ist 
 
L(G) = { w | w = anbncn, n   } =  { abc, aabbcc, aaabbbccc, aaaabbbbcccc, . . . . } . 
 
Die Grammatik G ist nicht kontextfrei im Sinne der Definition auf Seite 10; vielmehr ver-
langen die Regeln (2) bis (6), daß die Nonterminals auf der linken Seite nur dann ersetzt 
werden können und auch zu ersetzen sind, wenn sie in einem bestimmten Kontext mit 
anderen Zeichen (Terminals oder Nonterminals) stehen. Die Ersetzungsregeln (2) bis (6) 
sind folglich kontextsensitiv. 
 
Hinweis:  
Zu dieser Sprache L(G) läßt sich keine kontextfreie Grammatik (Grammatik vom Typ 2) 
angeben. Die oben definierte Grammatik G ist kontextsensitiv (Grammatik vom Typ 1). 

 
Auf die exakte Definition einer Typ-1- und einer Typ-0-Grammatik verzichten wir an die-
ser Stelle. 
 
Aufgabe: Verifiziere jeweils durch eine Linksableitung, daß die Worte 
 
a)   abc 
b)   aabbcc 
c)   aaabbbccc 
 
zu L(G) gehören. 
 
 
Lösung zu c): 
 
     1                      1                                1                                      2                                     2           

S    aSBC    aaSBCBC    aaaBCBCBC    aaaBBCCBC    aaaBBCBCC  
 
        2                                        3                                     4                                     4                                     5 

 aaaBBBCCC    aaabBBCCC    aaabbBCCC    aaabbbCCC    aaabbbcCC  
 
 6                                     6 

 aaabbbccC   aaabbbccc 
 
 
 
 
 
 
 
 
Es erhebt sich die Frage, von welchem Typ natürliche Sprachen sind. Folgende Beispiele 
erhellen, daß neben höheren Programmiersprachen (Pascal, C++, Python, Java) auch 
natürliche Sprachen mindestens kontextfrei, also mindestens vom Typ 2 sind: 
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Beispiel 1: 
 
Ein Schüler, der die Qualifikation Block I, für die 35 Kurse, von denen höchstens sieben 
mit weniger als 5 Punkten bewertet wurden, gemäß §10 (1)-(8) einzubringen sind, er-
reicht hat, wird zur mündlichen Prüfung zugelassen. 
 
Die Struktur dieses Satzes wird durch eine geeignete Formatierung des Textes deutlich: 
 
Ein Schüler,                                                 wird zur mdl. Prüfung zugelassen.                 

der die Qualifikation Block I,                                             erreicht hat, 
       für die 35 Kurse,                            gemäß §10(1)-(8) einzubringen sind, 
          von denen höchstens sieben mit weniger als 5 Punkten     bewertet wurden, 

   
Damit hat dieser Satz eine Syntax, die dem Regelsystem der Grammatik auf Seite 9 un-
ten bzw. Seite 10 entspricht (hier: 4 mal „Klammer auf“, gefolgt von genau 4 mal „Klam-
mer zu“) und der folglich eine kontextfreie Grammatik (Typ 2) zugrunde liegt. 
 
Bemerkung:  
Daß ein mit 0 Punkten bewerteter Kurs nicht eingebracht werden kann, wird in obenstehendem 
Beispielsatz nicht erwähnt, ergibt sich aber aus § 10 (8) AbiPrO, auf den der Satz Bezug nimmt. 
 
 
Beispiel 2: 
 
Das Mädchen, das den Hund, der die Katze, die    schnurrte, biß, sah, weinte. 
 
Die Sätze aus diesen Beispielen sind syntaktisch korrekt gebildet; dennoch werden in der 
Praxis solche vierfachen Verschachtelungen gemieden, dreifache kommen kaum vor, 
zweifache dagegen sind durchaus üblich: 
 
 
 
Dreifache Verschachtelung: 
 

Der Schüler, der die Qualifikation Block I, für die er mindestens 200 Punkte    benötigt, 
erreicht hat, wird zur mündlichen Prüfung zugelassen. 
 
 
Zweifache Verschachtelung: 
 

Der Schüler, der die Qualifikation Block I erreicht hat, wird zur mündlichen Prüfung zuge-
lassen. 
 
 
Wenn man solcher eher komplexen grammatikalischen Strukturen vom Typ 2 nicht 
mächtig ist, wird man den Inhalt des Beispiels 2 auch folgendermaßen formulieren kön-
nen: 
 
Das Mädchen weinte, das den Hund sah, der die schnurrende Katze biß. 
 
 
 
 
Seit NOAM CHOMSKY (* 07.12.1928; o. Professor am MIT (Massachusetts Institute of 
Technology)) grundlegende Arbeiten zur Klassifizierung formaler Sprachen (Typ 3  re-
gulär, Typ 2  kontextfrei, Typ 1  kontextsensitiv,  Typ 0  rekursiv-aufzählbar) ver-
faßt hat, ist man der Auffassung, daß natürliche Sprachen mindestens die Komplexität 
einer kontextsensitiven Sprache aufweisen. Allerdings ist zu vermuten, daß kontextsensi-
tive grammatikalische Konstruktionen in der Praxis eher gemieden werden, was sogar für 
kontextfreie Konstruktionen gilt (siehe obige Beispiele). 
 



 23 

Hierarchie der Grammatiken nach Noam Chomsky: 
 
 

 
 

 
Typ-3 Grammatiken bilden eine echte Teilmenge der Typ-2 Grammatiken usw. 
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