
Grenzen der Berechenbarkeit 
 

Jedes mathematische Problem muß einer strengen Erledigung fähig sein; sei es, daß 
eine Antwort auf die gestellte Frage gelingt; sei es, daß die Unmöglichkeit einer Lö-
sung und damit die Notwendigkeit des Mißlingens aller Lösungsversuche dargetan 
wird. 
 

An anderer Stelle: 
 

Diese Überzeugung von der Löslichkeit eines jeden mathematischen Problems ist uns 
ein kräftiger Ansporn während der Arbeit; wir hören in uns den steten Zuruf: Da ist 
das Problem, suche die Lösung. Du kannst sie durch reines Denken finden; denn in 
der Mathematik gibt es kein IGNORABIMUS! 

David Hilbert 
1862 - 1943 

 
Hilbert stellte im Jahre 1900 auf dem Internationalen Mathematiker-Kongreß in Pa-
ris 23 Probleme vor, die zu diesem Zeitpunkt ungelöst waren; darunter 
 
Hilberts zehntes Problem: 
 

Gibt es ein Verfahren, das für eine beliebige diophantische Gleichung ent-
scheidet, ob sie lösbar ist? 
 

Diophantische Gleichungen sind Gleichungen der Form f(x1, x2, ..., xn) = 0, wobei f ein 
Polynom in mehreren Variablen und mit ganzzahligen Koeffizienten ist und nur ganze Zah-
len als Lösungen betrachtet werden. Ein bekanntes Beispiel ist die Gleichung f(x,y,z) = 0 
mit f(x,y,z) = x² + y² − z², die mit dem Satz des Pythagoras zusammenhängt. Diophanti-
sche Gleichungen spielen in der Geschichte der Mathematik eine wichtige Rolle, und viele 
große Mathematiker haben sich intensiv mit diesen Fragen beschäftigt. 
 

Die Antwort (Nein!) wurde erst 1970 von dem russischen Mathematiker Juri W. Mati-
jassewitsch (*1947) gefunden! 
 
 
Um uns dem Problem der Entscheidbarkeit zu nähern, betrachten wir zunächst fol-
gendes in Python codiertes Beispiel (pumuckl.py): 
 

 
 
Anhand von Testdurchläufen läßt sich vermuten und mittels einer Analyse des Pro-
grammtextes auch absichern, daß das Programm für jede Eingabe einer natürlichen 
Zahl i in eine Endlosschleife gerät, somit nicht terminiert.  
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Frage: Gibt es ein allgemeines Verfahren, um für jeden Algorithmus a priori zu ent-
scheiden, ob er für zulässige Eingabedaten terminiert? 
Bevor wir uns dieser Problemstellung („Halteproblem“) widmen, vertiefen wir den 
Begriff Entscheidbarkeit anhand einiger Beispiele. 
 

Definition: Eine Teilmenge M der Menge der N der natürlichen Zahlen heißt ent-
scheidbar genau dann, wenn es einen Algorithmus gibt, der für jede na-
türliche Zahl n entscheidet, ob sie Element der Menge M ist oder ob sie 
nicht Element der Menge M ist; falls M durch die Eigenschaft E gegeben 
ist, heißt die Eigenschaft E entscheidbar, falls M entscheidbar ist. 

 

Bemerkung:  Diese Definition beschreibt ein zweiseitiges Entscheidungsverfahren, 
da festgestellt wird, ob die Eigenschaft E zutrifft oder nicht zutrifft. 

 
 
Primzahleigenschaft 
 

Eine natürliche Zahl n, n  2, ist eine Primzahl genau dann, wenn sie nur durch 1 
und durch sich selbst ohne Rest teilbar ist (wenn also 1 und n die einzigen Teiler von 
n sind). 
 

Menge der Primzahlen:     M = {n N | n ist Primzahl} 
 

Ein Algorithmus, der eine Zahl n auf Primzahleigenschaft untersucht, testet, ob die 
Zahl n Teiler aus dem ganzzahligen Bereich [2, . . . . , n//2] hat. Falls ein Teiler ge-
funden wird, hat n nicht die Primzahleigenschaft, und der Algorithmus bricht ab. Falls 
ein Teiler nicht gefunden wird, hat n die Primzahleigenschaft, und der Algorithmus 
bricht nach n//2  1 Divisionsoperationen ab. 
 

Die Eigenschaft, Primzahl zu sein, ist für jede natürliche Zahl n entscheidbar. 
 

Folgender in Python codierte Algorithmus entscheidet nach Eingabe einer natürlichen 
Zahl n, welche Zahlen aus der Menge {2, . . . , n} die Primzahleigenschaft haben: 
 
 

 
 
Hinweis:  2136279841  1, eine Zahl mit 41 024 320 Stellen, ist die z. Zt. größte be-

kannte Primzahl (November 2024). 
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Die Goldbachsche Vermutung: 
 

„Jede gerade natürliche Zahl, die größer als 2 ist, läßt sich als Summe zwei-
er Primzahlen schreiben.“ 
 

Wir Definieren die Goldbach-Eigenschaft wie folgt: 
Eine Zahl n  N hat die Goldbacheigenschaft G genau dann, wenn es Primzahlen p 
und q gibt mit n = p + q. 
 

M = {n N | n hat die Eigenschaft G} 
 

Die Menge M ist entscheidbar, denn es läßt sich für jede natürliche Zahl feststellen, 
ob sie die Goldbacheigenschaft hat oder nicht hat. 
 

Die Goldbachsche Vermutung kann man auch folgendermaßen formulieren: 
 

„Jede gerade natürliche Zahl n mit n>2 hat die Goldbacheigenschaft.“ 
 
Der Algorithmus „Goldbach-Test“ in Python: 
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Dieser Algorithmus greift auf die Boolesche Funktion prim zurück, die nach Eingabe 
einer beliebigen natürlichen Zahl x entscheidet, ob x Primzahl ist oder nicht ist. 
 

Da die Entscheidung über die Goldbacheigenschaft einer geraden natürlichen Zahl n 
an die Entscheidung über die Primzahleigenschaft der Summanden k und n-k, in die 
n zerlegt wird, anknüpft, ist die Goldbacheigenschaft für jede gerade natürliche Zahl 
n entscheidbar. Dagegen ist bis heute nicht entschieden, ob jede gerade natürliche 
Zahl n ≥ 4 die Goldbacheigenschaft hat, sich somit als Summe zweier Primzahlen 
darstellen läßt. 
 
Programmieraufgabe: Der oben in Python codierte Algorithmus bricht ab, sobald 
eine Zerlegung der geraden Zahl n in Primsummanden gefunden wird, und gibt die 
Zerlegung an. Erweitere den Quellcode so, daß alle möglichen Zerlegungen der Zahl 
n in Primsummanden ausgegeben werden. 
 
 
Wundersame Zahlen (Collatz-Problem) 
 

Gegeben ist eine natürliche Zahl n; wie bilden eine Zahlenfolge {ai} nach folgender 
Vorschrift (Collatz-Folge): 
 

(1) a1 = n ; n ist also Startwert 
(2) ai+1 = 3  ai  + 1 ,  falls ai  ungerade ist (i≥1) 
(3) ai+1 = ai  DIV 2 ,   falls ai  gerade ist (i≥1) 
(4) Die Folge {ai} bricht ab, sobald der Wert 1 erreicht wird. 
 

Definition: Eine natürliche Zahl n heißt wundersam, wenn die gemäß vorstehenden 
Vorschriften gebildete Folge nach endlich vielen Schritten den Wert 1 er-
reicht.   

 
Siehe auch: http://de.wikipedia.org/wiki/Collatz-Problem 
                  http://de.wikipedia.org/wiki/Lothar_Collatz 
                   
Der Algorithmus zur Berechnung der Collatz-Folge liefert nur die Entscheidung, ob n 
zu der Menge  

M = {n N | n ist wundersam} 
gehört; falls n allerdings nicht wundersam ist, terminiert der Algorithmus nicht, und 
eine Entscheidung wird nicht getroffen. Die Menge M ist daher partiell entscheidbar, 
es handelt sich hier um ein einseitiges Entscheidungsverfahren. 
 
Definition: Eine Teilmenge M der Menge N der natürlichen Zahlen heißt partiell ent-

scheidbar genau dann, wenn es einen Algorithmus gibt, der für jede na-
türliche Zahl n entscheidet, ob sie Element der Menge M ist; falls M 
durch die Eigenschaft E gegeben ist, heißt E partiell entscheidbar, falls 
M partiell entscheidbar ist. 

 
Lothar Collatz formulierte 1937 folgende Vermutung: 
 

Jede positive natürliche Zahl n ist wundersam. 
 

oder: 
 

Für jede positive natürliche Zahl n mündet die Collatz-Folge {ai}  
in den Zyklus 4, 2, 1.  
 
Bis heute ist die Collatz-Vermutung weder bewiesen noch widerlegt. 
 
Bisherige Resultate mittels Computerberechnungen: 
Die Collatz-Vermutung trifft zu für 
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n  1020 (2017) 
n  268  2,95  1020 (2020) 
 
Ergänzende Links zum Collatz-Problem: 
 

https://www.spiegel.de/wissenschaft/mensch/collatz-vermutung-deutscher-
mathematiker-meldet-loesung-fuer-zahlenraetsel-a-766643.html 
 

https://futurezone.at/science/mathematik-collatz-problem-vermutung-3n1-terence-
tao/401862680 
 

https://www.youtube.com/watch?v=Tx_sOO_G47k 
 
Algorithmus zur Berechnung des Collatzfolge mit Ausgabe der Anzahl der Folgenglie-
der, bis die Folge zum ersten Mal den Wert 1 annimmt; als Datenstruktur für die Fol-
ge wird ein dynamisches Array gewählt, welches in Python als Liste realisiert wird: 
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Grenzen der Berechenbarkeit zeigen sich darin,  
 

- daß der zeitliche Aufwand, um ein Problem zu lösen, zu stark anwächst (z. B. 
Ackermannfunktion, Travelling-Salesman-Problem: hyperexponentielles 
Wachstum; rekursive Berechnung der Fibonacci-Folge: exponentielles Wachs-
tum), 

 

- daß es Probleme gibt, die prinzipiell nicht entscheidbar sind, sich also einer 
algorithmischen Lösung entziehen. 

 
 
 
 
Das Halteproblem 
 

Vorbemerkung:  
Jeder in einer Programmiersprache codierte Algorithmus (im Folgenden Programm 
genannt) wird als Quelltext p geschrieben, also in Form einer Zeichenkette (string); 
ebenso können wir die Eingabedaten für diesen Algorithmus als Zeichenkette x auf-
fassen. 
 

Der praktischen Informatik stellt sich folgende Frage:  
Gibt es eine Prozedur oder Funktion, die als Eingabe den Quelltext eines be-
liebigen Programms p sowie dessen Eingabedaten x erhält und die entschei-
den kann, ob das Programm p mit Eingabedaten x nach endlich vielen 
Schritten terminiert oder nicht terminiert? 
 

Tatsächlich läßt sich in Einzelfällen (Beispiele: Potenzierungsalgorithmus, ägyptische 
Multiplikation, MergeSort) entscheiden, ob das jeweils gegebene Programm bei jeder 
Eingabe terminiert und korrekt im Sinne der Spezifikation arbeitet, indem man z. B. 
eine Schleifeninvariante verifiziert oder die mathematische Struktur des Algorithmus 
(MergeSort) analysiert.  
Alan Turing zeigte bereits 1936, gründend auf sein Modell der Turingmaschine, daß 
es keinen Algorithmus gibt, der im allgemeinen das Halteproblem für beliebige Pro-
gramme p und deren Eingabewerte x  löst.  
 
Link: http://de.wikipedia.org/wiki/Halteproblem  
Turings Originalarbeit: https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf 
 
 
Behauptung:  Es gibt kein allgemeines Entscheidungsverfahren, welches als Einga-

be den Quelltext eines beliebigen Programms p sowie dessen Einga-
bedaten x hat und entscheidet, ob das Programm p mit Eingabeda-
ten x nach endlich vielen Schritten terminiert oder nicht terminiert. 

 
 
Der exakte Beweis gründet auf dem Modell der Turingmaschine; bei unserer Plausibi-
litätsbetrachtung  lehnen wir uns an eine höhere Programmiersprache (hier: Python) 
an. 
 
Wir führen den Beweis indirekt, indem wir unter der Annahme, daß es ein solches 
Entscheidungsverfahren gibt, einen Widerspruch zur Annahme herleiten. 
 
Den Algorithmus, der die Entscheidung über die Terminierung eines Programms p 
mit Eingabedaten x liefert, formulieren wir als boolesche Funktion „stop“, welche als 
Eingabe das Programm p sowie dessen Eingabedaten x erhält; „stop“ liefert den 
Wert True, falls p angewendet auf x terminiert, andernfalls den Wert False: 
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def stop(p, x): 
   if <p terminiert angewandt auf x> == True: return True 
   else:                                      return False 
 
 

 
 
 
Das folgende Programm „strange“ hat als Eingabe ein Programm p (formuliert als 
Quelltext p) und benutzt die boolesche Funktion „stop“. 
 
Insbesondere ist zulässig, daß „strange“ seinen eigenen Quelltext p als Eingabe er-
hält:  
 
# strange 
 
def stop(p, x): 
   if <p terminiert angewandt auf x> == True: return True 
   else:                                      return False 
 
# Eingabe des Quelltextes p 
p = input() 
 
if stop(p, p):  
   while True: pass 
 
print('strange terminiert') 
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Beachte:  
Falls „stop“ den Wert True annimmt, gerät „strange“ in eine Endlosschleife (in 
Python ist pass eine leere Anweisung, bei der nichts geschieht), falls „stop“ den 
Wert False erhält, terminiert „strange“ und gibt den Text „strange terminiert“ aus. 
 
Da „strange“ als allgemeines Verfahren jeden Quelltext p akzeptiert, ist es insbe-
sondere zulässig, daß „strange“ seinen eigenen Quelltext p als Eingabedaten erhält, 
„strange“ somit auf sich selbst angewendet wird. 
 
 
 
Unter der Voraussetzung, daß es eine Boolesche Funktion stop(p, x)  gibt, die 
entscheidet, ob das Programm p mit Eingabedaten x terminiert oder nicht terminiert, 
untersuchen wir folgenden Fälle: 
 
 
1. Fall:  
 

Annahme:  
„strange“ terminiert, falls „strange“ als Eingabe seinen eigenen Quelltext p erhält. 
 

 Die Funktion stop(p, p) nimmt den Wahrheitswert True an. 
 „strange“ gerät in die Endlosschleife  while True: pass 
 „strange“ terminiert nicht, im Widerspruch zu der Annahme, daß „strange“ 

nach Eingabe seines eigenen Quelltexts anhält. 
 
 
2. Fall:  
 

Annahme:  
„strange“ terminiert nicht, falls „strange“ als Eingabe seinen eigenen Quelltext p 
erhält. 
 

 Die Funktion stop(p, p) nimmt den Wahrheitswert False an. 
 „strange“ terminiert mit Ausgabe des Text-Strings „strange terminiert“, im 

Widerspruch zu der Annahme, daß „strange“ nach Eingabe seines eigenen 
Quelltexts nicht anhält. 

 
 
Da sich in beiden Fällen ein Widerspruch zur Annahme ergibt, kann es eine Boole-
sche Funktion stop(p, x), die entscheidet, ob p mit Eingabedaten x terminiert 
oder nicht terminiert, nicht geben.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Karl-Heinz Selbach 
November 2024 
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Anhang: 
Algorithmus strange in Python 
 
 

 


