Grenzen der Berechenbarkeit

Jedes mathematische Problem muB einer strengen Erledigung fédhig sein; sei es, daB
eine Antwort auf die gestellte Frage gelingt; sei es, daBB die Unmdglichkeit einer L6-
sung und damit die Notwendigkeit des MiBlingens aller Lésungsversuche dargetan
wird.

An anderer Stelle:

Diese Uberzeugung von der Léslichkeit eines jeden mathematischen Problems ist uns

ein kraftiger Ansporn wédhrend der Arbeit; wir héren in uns den steten Zuruf: Da ist

das Problem, suche die Lésung. Du kannst sie durch reines Denken finden; denn in
der Mathematik gibt es kein IGNORABIMUS!

David Hilbert

1862 - 1943

Hilbert stellte im Jahre 1900 auf dem Internationalen Mathematiker-KongreB in Pa-
ris 23 Probleme vor, die zu diesem Zeitpunkt ungelést waren; darunter

Hilberts zehntes Problem:

Gibt es ein Verfahren, das fiir eine beliebige diophantische Gleichung ent-
scheidet, ob sie losbar ist?

Diophantische Gleichungen sind Gleichungen der Form f(x;, x5, ..., x,) = 0, wobei f ein
Polynom in mehreren Variablen und mit ganzzahligen Koeffizienten ist und nur ganze Zah-
len als Lésungen betrachtet werden. Ein bekanntes Beispiel ist die Gleichung f(x,y,z) = 0
mit f(x,y,z) = x2 + y2 — z2, die mit dem Satz des Pythagoras zusammenhéngt. Diophanti-
sche Gleichungen spielen in der Geschichte der Mathematik eine wichtige Rolle, und viele
groBe Mathematiker haben sich intensiv mit diesen Fragen beschéftigt.

Die Antwort (Nein!) wurde erst 1970 von dem russischen Mathematiker Juri W. Mati-
jassewitsch (*1947) gefunden!

Um uns dem Problem der Entscheidbarkeit zu nahern, betrachten wir zunachst fol-
gendes in Python codiertes Beispiel (pumuckl.py):

[a}=:
i = int{input{'i = "})
1=8
i=1i// 2
k=1 4+ 1
j 4= 1
print{'i =",1i)
print { ="', k)
print ()
k. =
print{"j3 =", 7}
os.system('pause')

Anhand von Testdurchlaufen laBt sich vermuten und mittels einer Analyse des Pro-
grammtextes auch absichern, daB das Programm fiir jede Eingabe einer natlrlichen
Zahl i in eine Endlosschleife gerat, somit nicht terminiert.

Frage: Gibt es ein allgemeines Verfahren, um fir jeden Algorithmus a priori zu ent-
scheiden, ob er fir zulassige Eingabedaten terminiert?

Bevor wir uns dieser Problemstellung (,,Halteproblem™) widmen, vertiefen wir den
Begriff Entscheidbarkeit anhand einiger Beispiele.

Definition: Eine Teilmenge M der Menge der N der natlrlichen Zahlen heiBt ent-
scheidbar genau dann, wenn es einen Algorithmus gibt, der fir jede na-
tlrliche Zahl n entscheidet, ob sie Element der Menge M ist oder ob sie
nicht Element der Menge M ist; falls M durch die Eigenschaft E gegeben
ist, heiBt die Eigenschaft E entscheidbar, falls M entscheidbar ist.

Bemerkung: Diese Definition beschreibt ein zweiseitiges Entscheidungsverfahren,
da festgestellt wird, ob die Eigenschaft E zutrifft oder nicht zutrifft.

Primzahleigenschaft

Eine natlrliche Zahl n, n > 2, ist eine Primzahl genau dann, wenn sie nur durch 1
und durch sich selbst ohne Rest teilbar ist (wenn also 1 und n die einzigen Teiler von
n sind).

Menge der Primzahlen: M = {ne N | nist Primzahl}

Ein Algorithmus, der eine Zahl n auf Primzahleigenschaft untersucht, testet, ob die
Zahl n Teiler aus dem ganzzahligen Bereich [2,, n//2] hat. Falls ein Teiler ge-
funden wird, hat n nicht die Primzahleigenschaft, und der Algorithmus bricht ab. Falls
ein Teiler nicht gefunden wird, hat n die Primzahleigenschaft, und der Algorithmus
bricht nach n//2 - 1 Divisionsoperationen ab.

Die Eigenschaft, Primzahl zu sein, ist fir jede natlrliche Zahl n entscheidbar.
Folgender in Python codierte Algorithmus entscheidet nach Eingabe einer natirlichen

Zahl n, welche Zahlen aus der Menge {2, . . ., n} die Primzahleigenschaft haben:
Primzahltest
Nach Eingabe einer natuerlichen Zahl n, n>1l, entscheidet dieser
Algorithmus, welche Zahlen aus der Menge {2, 3, . . ,n} Primzahlen sind.
n = int({input{'n = "))
print {'Gib eine natuerliche Zahl n mit n>l ein!')
n <= 1
print{'Gib eine natuerliche Zahl n mit =1 =23nl")
f prim(x) :
1f x — 2:
i =u2
Y ical= X fif 2
1E =% a s
CER - |
r m in range{2,ntl}:
if prim{m): print{m,"' i Primzahl')

i

'ﬁ_
- = Twami==127 "
ne Primzahl')

n W

K

print{m, ' i

i

Hinweis: 2136279841 _ 1 aine Zahl mit 41 024 320 Stellen, ist die z. Zt. gréBte be-
kannte Primzahl (November 2024).

Die Goldbachsche Vermutung:

~Jede gerade natiirliche Zahl, die groBer als 2 ist, 1aBt sich als Summe zwei-
er Primzahlen schreiben.™

Wir Definieren die Goldbach-Eigenschaft wie folgt:
Eine Zahl n € N hat die Goldbacheigenschaft G genau dann, wenn es Primzahlen p
und q gibt mitn =p + q.

M = {ne N | n hat die Eigenschaft G}

Die Menge M ist entscheidbar, denn es |aBt sich flir jede natirliche Zahl feststellen,
ob sie die Goldbacheigenschaft hat oder nicht hat.

Die Goldbachsche Vermutung kann man auch folgendermafBen formulieren:
~Jede gerade natiirliche Zahl n mit n>2 hat die Goldbacheigenschaft."

Der Algorithmus ,,Goldbach-Test" in Python:

Goldbachsche Vermutung
Nach Eingabe einer geraden natuerlichen Zahl n, n>Z2,
entscheidet dieser Algorithmus, cb n sich als Summe
zweier Primzahlen darstellen laesst.
ef prim{x)
if x = return True
1 =2
18 4 = =i
if x % i = 0: re E =
1 +=1
n = int{input{'n = "})
print{'Gib eine gerade natuerliche Zahl n mit n>2 einl!')
1if n <= n % 2 1=0
print {'Gib eine gerade natuerliche Zahl n mit n>2 einl!')
k=1
k+=1
if prim(k) and prim{n-k}:
print {n, '"hat Goldbacheigenschaft mit"'}
print{n, '=',k, "+',n-k)
if k = nf/2 or {(prim{k} and prim{n-k}}: break
print {}
print {'weiter? <y> <n>"')
ans = input ()

1f a8ns 1= "y": br

Dieser Algorithmus greift auf die Boolesche Funktion prim zurlick, die nach Eingabe
einer beliebigen natiirlichen Zahl x entscheidet, ob x Primzahl ist oder nicht ist.

Da die Entscheidung Uber die Goldbacheigenschaft einer geraden natirlichen Zahl n
an die Entscheidung lber die Primzahleigenschaft der Summanden k und n-k, in die
n zerlegt wird, anknUpft, ist die Goldbacheigenschaft fiir jede gerade natiirliche Zahl
n entscheidbar. Dagegen ist bis heute nicht entschieden, ob jede gerade natlrliche
Zahl n = 4 die Goldbacheigenschaft hat, sich somit als Summe zweier Primzahlen
darstellen laBt.

Programmieraufgabe: Der oben in Python codierte Algorithmus bricht ab, sobald
eine Zerlegung der geraden Zahl n in Primsummanden gefunden wird, und gibt die
Zerlegung an. Erweitere den Quellcode so, daB alle mdéglichen Zerlegungen der Zahl
n in Primsummanden ausgegeben werden.

Wundersame Zahlen (Collatz-Problem)

Gegeben ist eine natirliche Zahl n; wie bilden eine Zahlenfolge {a;} nach folgender
Vorschrift (Collatz-Folge):

(1) aj;= n; nistalso Startwert

(2) ajz1=3-a; +1, falls a; ungerade ist (i=21)

(3) aj;1= a; DIV 2, falls a; gerade ist (i21)

(4) Die Folge {a;} bricht ab, sobald der Wert 1 erreicht wird.

Definition: Eine natirliche Zahl n heiBt wundersam, wenn die gemaB vorstehenden
Vorschriften gebildete Folge nach endlich vielen Schritten den Wert 1 er-
reicht.

Siehe auch: http://de.wikipedia.org/wiki/Collatz-Problem
http.//de.wikipedia.org/wiki/Lothar Collatz

Der Algorithmus zur Berechnung der Collatz-Folge liefert nur die Entscheidung, ob n
zu der Menge

M = {ne N | n ist wundersam}
gehort; falls n allerdings nicht wundersam ist, terminiert der Algorithmus nicht, und
eine Entscheidung wird nicht getroffen. Die Menge M ist daher partiell entscheidbar,
es handelt sich hier um ein einseitiges Entscheidungsverfahren.

Definition: Eine Teilmenge M der Menge N der natlrlichen Zahlen heiBt partiell ent-
scheidbar genau dann, wenn es einen Algorithmus gibt, der fir jede na-
tirliche Zahl n entscheidet, ob sie Element der Menge M ist; falls M
durch die Eigenschaft E gegeben ist, hei3t E partiell entscheidbar, falls
M partiell entscheidbar ist.

Lothar Collatz formulierte 1937 folgende Vermutung:

Jede positive natiirliche Zahl n ist wundersam.
oder:

Fiir jede positive natiirliche Zahl n miindet die Collatz-Folge {a;}
in den Zyklus 4, 2, 1.

Bis heute ist die Collatz-Vermutung weder bewiesen noch widerlegt.

Bisherige Resultate mittels Computerberechnungen:
Die Collatz-Vermutung trifft zu fir

n < 10%° (2017)
n<2%%~2,95.10% (2020)

Ergdanzende Links zum Collatz-Problem:

https://www.spiegel.de/wissenschaft/mensch/collatz-vermutung-deutscher-

mathematiker-meldet-loesung-fuer-zahlenraetsel-a-766643. html/

https://futurezone.at/science/mathematik-collatz-problem-vermutung-3n1-terence-

tao/401862680

https://www.youtube.com/watch?v=Tx sOO G47k

Algorithmus zur Berechnung des Collatzfolge mit Ausgabe der Anzahl der Folgenglie-
der, bis die Folge zum ersten Mal den Wert 1 annimmt; als Datenstruktur flr die Fol-
ge wird ein dynamisches Array gewahlt, welches in Python als Liste realisiert wird:

H= == S Sk

1f ans 1=

Collatz—-Folge
Nach Eingabe einer natuerlichen Zahl n,
dieser Algorithmus die Collatz-Folge mit Startwert n
und berechnet deren Laenge.

try: n = int{inputi{'n = "})
print{'Gib eine natuerliche
1T no£—= 0
print {"Gib eine natuerliche

print (a)
print {'Laenge der Collatz-Folge:

print i)
print {'weiter? <y> <n>')
ans =

input ()

yv': break

n>0, ermittelt

Zahl n mit n>0 ein! ")

Zzhl n mit n>0 ein! ')

= 0
af[i]l] = n
hile a[1] = 1:
if a[i]l] % 2 1= 0: a.append(3*a[i] + 1)
else: a.append(alil] //2)
i +=1
print{'Collatz-Folge mit Startwert n =', n,"':")

rlen(a))

Grenzen der Berechenbarkeit zeigen sich darin,
- daB der zeitliche Aufwand, um ein Problem zu l6sen, zu stark anwdchst (z. B.

Ackermannfunktion, Travelling-Salesman-Problem: hyperexponentielles
Wachstum; rekursive Berechnung der Fibonacci-Folge: exponentielles Wachs-
tum),

- daB es Probleme gibt, die prinzipiell nicht entscheidbar sind, sich also einer
algorithmischen Ldsung entziehen.

Das Halteproblem

Vorbemerkung:

Jeder in einer Programmiersprache codierte Algorithmus (im Folgenden Programm
genannt) wird als Quelltext p geschrieben, also in Form einer Zeichenkette (string);
ebenso kdnnen wir die Eingabedaten fiir diesen Algorithmus als Zeichenkette x auf-
fassen.

Der praktischen Informatik stellt sich folgende Frage:

Gibt es eine Prozedur oder Funktion, die als Eingabe den Quelltext eines be-
liebigen Programms p sowie dessen Eingabedaten x erhdlt und die entschei-
den kann, ob das Programm p mit Eingabedaten x nach endlich vielen
Schritten terminiert oder nicht terminiert?

Tatsdchlich 1aBt sich in Einzelféllen (Beispiele: Potenzierungsalgorithmus, agyptische
Multiplikation, MergeSort) entscheiden, ob das jeweils gegebene Programm bei jeder
Eingabe terminiert und korrekt im Sinne der Spezifikation arbeitet, indem man z. B.
eine Schleifeninvariante verifiziert oder die mathematische Struktur des Algorithmus
(MergeSort) analysiert.

Alan Turing zeigte bereits 1936, griindend auf sein Modell der Turingmaschine, daB
es keinen Algorithmus gibt, der im allgemeinen das Halteproblem fiir beliebige Pro-
gramme p und deren Eingabewerte x |6st.

Link: http://de.wikipedia.org/wiki/Halteproblem
Turings Originalarbeit: https://www.cs.virginia.edu/~robins/Turing Paper 1936.pdf

Behauptung: Es gibt kein allgemeines Entscheidungsverfahren, welches als Einga-
be den Quelltext eines beliebigen Programms p sowie dessen Einga-
bedaten x hat und entscheidet, ob das Programm p mit Eingabeda-
ten x nach endlich vielen Schritten terminiert oder nicht terminiert.

Der exakte Beweis griindet auf dem Modell der Turingmaschine; bei unserer Plausibi-
litdtsbetrachtung lehnen wir uns an eine hdéhere Programmiersprache (hier: Python)
an.

Wir fihren den Beweis indirekt, indem wir unter der Annahme, dal3 es ein solches
Entscheidungsverfahren gibt, einen Widerspruch zur Annahme herleiten.

Den Algorithmus, der die Entscheidung Uber die Terminierung eines Programms p
mit Eingabedaten x liefert, formulieren wir als boolesche Funktion ,stop™, welche als
Eingabe das Programm p sowie dessen Eingabedaten x erhélt; ,stop" liefert den
Wert True, falls p angewendet auf x terminiert, andernfalls den Wert False:

def stop(p, x):

if <p terminiert angewandt auf x> == True: return True
else: return False
f:
stop(p, X) e
falls
Quelltext p das Python-Programm p

+ |:> |:> < bei der Verarbeitung

Caten ® der Daten x halt,
sonst

Das folgende Programm ,strange™ hat als Eingabe ein Programm p (formuliert als
Quelltext p) und benutzt die boolesche Funktion ,,stop".

Insbesondere ist zulassig, daB ,,strange™ seinen eigenen Quelltext p als Eingabe er-
halt:

strange
def stop(p, x):
if <p terminiert angewandt auf x> == True: return True

else: return False

Eingabe des Quelltextes p
p = input()

if stop(p, p):
while True: pass

print('strange terminiert')

strange

P
[’ halt und liefert False]
stop

falls

False
Quelltext
Quell ':> das Python-Programm bei der
— :> E:} ::> Verarbeitung des eigenen
Quelltextes nicht halt,
=l . @
[halt nicht W

O

Beachte:
Falls ,stop™ den Wert True annimmt, gerat ,strange™ in eine Endlosschleife (in

Python ist pass eine leere Anweisung, bei der nichts geschieht), falls ,,stop™ den
Wert False erhalt, terminiert ,strange™ und gibt den Text ,strange terminiert" aus.

Da ,strange™ als allgemeines Verfahren jeden Quelltext p akzeptiert, ist es insbe-
sondere zuldssig, daB ,,strange" seinen eigenen Quelltext p als Eingabedaten erhdlt,
~strange™ somit auf sich selbst angewendet wird.

Unter der Voraussetzung, daBB es eine Boolesche Funktion stop(p, x) gibt, die
entscheidet, ob das Programm p mit Eingabedaten x terminiert oder nicht terminiert,
untersuchen wir folgenden Falle:

1. Fall:

Annahme:

~strange™ terminiert, falls ,,strange" als Eingabe seinen eigenen Quelltext p erhalt.
= Die Funktion stop (p, p) nimmt den Wahrheitswert True an.

= ,strange" gerdt in die Endlosschleife while True: pass

= ,strange™ terminiert nicht, im Widerspruch zu der Annahme, daf8 , strange™
nach Eingabe seines eigenen Quelltexts anhait.

2. Fall:

Annahme:
~strange™ terminiert nicht, falls ,strange"™ als Eingabe seinen eigenen Quelltext p
erhalt.

= Die Funktion stop (p, p) nimmt den Wahrheitswert False an.

= ,strange"™ terminiert mit Ausgabe des Text-Strings ,strange terminiert®, im
Widerspruch zu der Annahme, daB ,strange™ nach Eingabe seines eigenen
Quelltexts nicht anhalt.

Da sich in beiden Fallen ein Widerspruch zur Annahme ergibt, kann es eine Boole-
sche Funktion stop(p, x), die entscheidet, ob p mit Eingabedaten x terminiert

oder nicht terminiert, nicht geben.

Karl-Heinz Selbach
November 2024

Anhang:
Algorithmus strange in Python

def strange(p):

Annahme: es gibt eine Funktion stop, die den Booleschen Wert
True liefert, falls Programm p mit Eingabedaten x haelt.

Andernfalls liefert stop den Booleschen Wert False.

def stoplp, x}:

ans = input ('Annahme: strange terminiert <y>»es <n>c '}
if ans == '"y': return True
else:

if ans == 'n': return False

if stopi{p., P):
while True: pass

else: return False

Eingabe des Quelltexts p von strange

I:]=|||
def strange(p):

Annahme: es gibt eine Funktion stop, die den Booleschen Wert
True liefert, falls Programm p mit Eingabedaten x haelt.

Andernfalls liefert stop den Booleschen Wert False.

def stopi{p, x):

ans = input ('Annahme: strange terminiert <y> <n> ')
if ans == 'y': return True
else:

if ans == 'n': return False

if stop(p, P):
while True: pass

else: return False

Eingabe des Quelltexts p von strange
p=|||

if strange(p) == False:
print('strange, angewandt auf den sigenen Quelltext, terminiert.')
else:

print ('strange, angewandt auf den eigenen Quelltext, terminiert nicht.')
rrr

if strange({p) == False:
print {'strange, angewandt auf den eigenen Quelltext, terminiert.'}
else:
print {'strange, angewandt auf den eigenen Quelltext, terminiert nicht.'}

