Elemente der Graphentheorie

Definition 1:

Ein Graph besteht aus Knoten (engl. vertex, vertices) und Kanten (engl. edge, edges).
Die Menge der Knoten bezeichnen wir mit V, diejenige der Kanten mit E.

Der Graph heit zusammenhangend, wenn er keine isolierte Knoten hat, d. h. wenn es
zwischen je zwei Knoten stets eine Kante gibt.

Unter dem Grad eines Knotens verstehen wir bei einem ungerichteten Graph die Anzahl
der Kanten, die von diesem Knoten ausgehen. (Hinweis: Bei gerichteten Graphen
unterscheidet man zwischen Eingangsgrad und Ausgangsgrad.)

Zwei Knoten eines ungerichteten Graphen heiBen adjazent, wenn sie durch eine Kante
verbunden sind.

Beispiel flir einen ungerichteten Graphen mit Mehrfachkanten:

@ VvV ={A, B, C, D}

\ Grad(A) = 5
Grad(B) = Grad(C) = Grad(D) = 3

Definition 2:

Ein Graph, dessen Kanten in nur einer Richtung durchlaufen werden kénnen, hei3t
gerichteter Graph.

Beispiel (Die Kanten werden als Pfeile dargestelit.):

(2) V={1,23,4}

Eine von Knoten 4 nach Knoten 2 gerichtete Kante
kdénnen wir als geordnetes Paar (4,2) beschreiben.

E= { (3/4)1 (412)1 (312)1 (411) }

G ()

Definition 3:

a) Unter einem Eulerweg verstehen wir einen Weg, der alle Kanten des ungerichteten
Graphen genau einmal durchlauft.

b) Unter einem Eulerkreis verstehen wir einen geschlossenen Eulerweg, also einen
Eulerweg, bei dem Start- und Zielknoten identisch sind.

c) Ein Eulerscher Graph ist ein Graph, der einen Eulerkreis besitzt.

d) Ein Graph, der einen Eulerweg, aber keinen Eulerkreis besitzt, heiBt semi-eulersch
(semi-eulerian).

Definition 4:
a) Unter einem Hamiltonweg verstehen wir einen Weg, der jeden Knoten des Graphen
genau einmal besucht. Dabei diirfen Kanten auch mehrfach durchlaufen werden.

b) Unter einem Hamiltonkreis verstehen wir einen geschlossenen Hamiltonweg, also
einen Hamiltonweg, bei dem Start- und Zielknoten identisch sind.

c) Ein Hamiltonscher Graph ist ein Graph, der einen Hamiltonkreis besitzt.

d) Ein Graph, der einen Hamiltonweg, aber keinen Hamiltonkreis besitzt, heiBt semi-
hamiltonsch (semi-hamiltonian).
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Satz von Euler (Leonard Euler 1736; strenger Beweis von Carl Hierholzer 1873):

Ein ungerichteter zusammenhangender Graph G hat einen Eulerweg genau dann,
wenn die Anzahl der Knoten mit ungeradem Grad den Wert 0 oder 2 hat.

Ein ungerichteter zusammenhangender Graph G hat einen Eulerkreis genau dann,
wenn jeder Knoten einen geraden Grad hat.

Die Struktur eines Graphen laBt sich mittels einer Adjazenzmatrix abbilden, welche die
Verarbeitung durch einen Algorithmus ermdglicht.

Beispiel einer 3 x 3 — Matrix:

adjj € R
“II “tj 'ul.'l i = Zeilenindex, j = Spaltenindex
d,, dy sy Die Komponente a3 steht in der

2. Zeile und der 3. Spalte.

Ay dy A,

Sind die Knoten des Graphen G mit1, 2,3, ... .. , N bezeichnet, definieren wir:
Bei ungerichteten Graphen:
a;; = Anzahl der Kanten zwischen den Knoten i und j
Falls der Graph Mehrfachkanten nicht enthélt und die Kanten gewichtet sind (z. B. mit
den Entfernungen der jeweiligen adjazenten Knoten i und j):
a;; = Entfernung der adjazenten Knoten i und j
Bei gerichteten Graphen (ohne gleichgerichtete Mehrfachkanten):
a; = 1, falls die Kante von Knoten i in Richtung Knoten j verlauft;
a; = 0, falls die Kante von Knoten j in Richtung Knoten i verlauft oder keine Kante
zwischen den Knoten i und j existiert.

Beispiel 1

Das Konigsberger Briickenproblem (1735)
Gibt es einen Weg, der jede der 7 Briicken a, b, . . ., g genau ein Mal lberschreitet?

Aquivalente Formulierung:
Hat der Graph G mit der Knotenmenge V = {A, B, C, D} einen Eulerweg?

TR
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Wir erganzen die Adjazenzmatrix um eine weitere, mit # bezeichnete Spalte, welche
den Grad des jeweiligen Knotens angibt:

Ol0O|m| >

HIN|N O] >
H |l OO | N
= OlO|IN|O
ol |~ |+~ |0
W w w|u | H*

Die Anzahl der Knoten mit ungeradem Grad betragt 4 und hat daher weder den Wert 0
noch den Wert 2, folglich hat der Graph G keinen Eulerweg und erst recht keinen
Eulerkreis.

Beispiel 2
Haus des Nikolaus

Adjazenzmatrix:

= Ol | = | O]k

H O/l O|~]|IN

Ol r | O|OC|HM

AN W|W]|H

Ta | A WIN|E=
R, Ol | R |lW
Ol | R, |FH | R |lWU

€ z

Da die Anzahl der Knoten mit ungeradem Grad den Wert 2 hat, gibt es nach dem Satz
von Euler einen Eulerweg, aber keinen Eulerkreis.

Mdéglicher Eulerweg:

125355515354 ->5->52

Beispiel 3

Quadrat mit Diagonalen
Adjazenzmatrix:

(& (3 1] 2

R W|N|F
R V|~ |O
M = | O|
H Ol |~ ]|W
O|lr|RLr|IkRLr]|A
Wl W w wlH
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Die Anzahl der Knoten mit ungeradem Grad betragt 4 und hat daher weder den Wert 0
noch den Wert 2, folglich hat der Graph G keinen Eulerweg und erst recht keinen
Eulerkreis.

Beispiel 4
Haus des Nikolaus mit Keller

Adjazenzmatrix:

N ojun | ~h|WIN|H

Ol |H Ol | R | lO|H
Rl OlRr|lO|lR|O|R]|N
o|lo|lr| RO IFL]W
o|lo|r|lO|lRr|O|lOC|H
OO0 | O || |~=|WU
R OO 0ojl0Oo|lO|FR,]O
Ol OO0 | O |+ |0O|N
NINIAIN DDA HE

Da jeder Knoten einen geradzahligen Grad hat, gibt es nach dem Satz von Euler einen
Eulerkreis.

Méglicher Eulerkreis:

6»>7-2-5-3-55515255-54 535156

Algorithmen zum Auffinden von Eulerwegen und -kreisen:

Wenn nach dem Satz von Euler die Existenz eines Eulerwegs oder einer Eulerkreises
gesichert ist, liefern folgende Algorithmen nach Eingabe des Graphen (z. B. als
Adjazenzmatrix) einen Eulerweg oder einen Eulerkreis:

Algorithmus von Fleury
Der Aufwand wachst mit dem Quadrat der Anzahl der Kanten, demnach hat der
Algorithmus von Fleury quadratische Komplexitat.

Algorithmus von Hierholzer (1873)
Der Aufwand wachst linear mit der Anzahl der Kanten, demnach hat der Algorithmus von
Hierholzer lineare Komplexitat.

Algorithmus zum Satz von Euler

Der Satz von Euler ist ein Existenzsatz, denn er stellt notwendige und hinreichende
Kriterien bereit, um zu entscheiden, ob ein zusammenhangender ungerichteter Graph G
einen Eulerweg oder einen Eulerkreis hat.

Als Beispiel nachfolgend ein in Pascal codierter Algorithmus, der nach Eingabe des
Graphen G in Form der Adjazenzmatrix entscheidet, ob Graph G einen Eulerweg oder
einen Eulerkreis oder keinen von beiden hat:
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Nach Eingabe des Graphen G als Adjazenzmatrix entscheidet dieser Algorithmus,
ob G einen Eulerweg oder einen Eulerkreis oder keinen von beiden hat.

}

program euler;
uses crt;

type matrix = array[l..20,1..20] of integer;
vektor = array[l..20] of integer;

var i, j, n, anzahl : integer;
a : matrix;

g : vektor;
begin
clrscr;

write ('Anzahl (maximal 20) der Knoten: ');
readln(n) ;

{Eingabe der Adjazenzmatrix}
for i:=1 to n do begin
for j:=1 to n do begin

write('a(',i,',',3,") = ");
readln(a[i,j])
end

end;

{Berechnung des Grades von jedem der n Knoten}
for i := 1 to n do g[i] := 0; {Initialisierung der Werte von g}
for i := 1 to n do for j:=1 to n do g[i] := g[i] + al[i,]j];

{Ausgabe der Adjazenzmatrix}
writeln;

writeln ('Adjazenzmatrix:');
for i:=1 to n do begin

writeln;
for j:=1 to n do write(al[i,j],' ")
end;
writeln;
writeln;

{Ausgabe des Grades eines jeden Knotens}
writeln ('Knotengrade:');

for i:=1 to n do writeln(g[i]):

writeln;

{Entscheidung gemaess dem Satz von Euler}
i:=0;
anzahl := 0;
repeat

i = i+1;

if odd(g[i]) then anzahl := anzahl + 1
until i=n;

if (anzahl=0) or (anzahl=2) then
begin
if anzahl=0 then begin
writeln('Der Grad jedes Knotens ist geradzahlig,');
writeln('folglich hat der Graph einen Eulerkreis.')
end;
if anzahl=2 then begin
writeln('Der Grad von genau zwei Knoten ist ungerade,');
writeln('folglich besitzt der Graph einen Eulerweg,');
writeln('aber keinen Eulerkreis.')
end
end
else begin
if anzahl=1 then writeln('Da ',anzahl,' Knoten einen ungeraden Grad hat,')
else writeln('Da ',anzahl,' Knoten einen ungeraden Grad haben,');
writeln('besitzt der Graph weder einen Eulerkreis noch einen Eulerweg.')
end;

while not keypressed do

end.

Quellcode in Python fir den Algorithmus, der entscheidet, ob ein durch die Adjazenz-
matrix A gegebener ungerichteter Graph G einen Eulerweg, einen Eulerkreis oder keinen
von beiden besitzt:



# Eulerweg Eulerkreis

# Dieser Algorithmus liefert eine Entscheidung, cb ein ungerichteter

# zusammenhingender Graph einen Eulerweg oder einen Eulerkreis

# oder keinen wvon beiden besitzt.

# Voraussetzungen:

# Die n Enoten des Graphen werde fortlaufend mit 0, 1, 2, . . . , n-1 bezeichnet.
# Die Kanten des Graphen sind ungerichtet, so dass

# die Adjazenzmatrix symmetrisch ist: a[il[j] = aljl[i]l-: 0 <= i, j <= n-1
# Der Graph enthidlt keine Schlingen als Eanten,

# folglich besteht die Diagonale der Adjazenzmatrix aus lauter Nullen.

# a = [[0] * m for 1 in range(n)]

# erzeugt eine zweildimensicnale Liste mit n Komponenten, wobeli jede dieser
# Fomponenten ihrerseits eine Liste mit m EKomponenten ist; jede EKomponente
# alil[jl, 0 <= 1 <= n-1, 0 <= j <= m-1, erhaelt den Wert 0 zugewiesen.

# 1 = Zeilenindex, j = Spaltenindex

n = int (input ('Anzahl der ERnoten: '}}

# Erzeugen einer n ¥ n - Matrix mit lauter Nullen
a = [[0] * n for 1 in range(n}]

# Eingabe der Adjazenzmatrix
for i in range(n):
for j in range(itl,n):
print{'a(',i,"',",J,") = ', end = "")
a[il[j]1 = int (input(})
aljl[4il alil[3]

# Rusgabe der Adjazenzmatrix
print('Adjazenzmatrix:"'}
print(a}

for 1 in range{n): print{af[i])}

Berechnung des Grades von Jjedem der n EKnoten

Der Grad esines jeden der n Enoten wird in der

aus n Komponenten bestehenden Liste g abgelegt.

g = [0]*n # Erzeugen der Liste g mit lauter Nullen
for 1 in range(n}:

for j in range(n}: gl[i] = gl[i] + a[i]ll[3]

= == ==

# Rusgabe des Grades eines jeden Enotens
print {"'Enotengrade: '}

print(g)

print(}

# Decision according to Euler's Theorem

anzahl = 0
for i in range {n):
if g[i] % 2 != 0: anzahl = anzahl + 1
if anzahl == 0 or anzahl == 2:
if anzahl == 0:

print ('Der Grad jedes Enotens ist geradzahlig, ')

print('folglich hat der Graph einen Eulerkreis.')
else:

print {'Der Grad won genau zwei Knoten ist ungerade, '}

print ('folglich besitzt der Graph einen Eulerweqg,');

print {('aber keinen Eulerkreis.')

f anzahl == 1: print('Da ',anzahl,' EKnoten einen ungeraden Grad hat, ')
lse: print{'Da ',anzahl,' Knoten einen ungeraden Grad haben, '}
print('besitzt der Graph weder einen Eulerkreis noch einen Eulerweg.')

print{"\n")}
input ("press ENTER to leave ')
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Der Satz von Euler formuliert notwendige und hinreichende Bedingungen, um zu
entscheiden, ob ein ungerichteter zusammenhangender Graph G einen Eulerweg oder
einen Eulerkreis besitzt.

Einen vergleichbaren Satz, der die Frage nach der Existenz eines Hamiltonweges oder
Hamiltonkreises entscheidet, gibt es nicht. Allerdings stellt der Satz von Gabriel Andrew
Dirac ein hinreichendes Kriterium fir die Existenz eines Hamiltonkreises bereit:

Satz von Dirac (1952):

Falls jeder der n Knoten des einfachen Graphen G einen Grad von mindestens
n/2 hat, besitzt Graph G einen Hamiltonkreis.

Hinweis: Unter einem einfachen Graphen versteht man einen ungerichteten Graph ohne
Mehrfachkanten und ohne Schlingen.

Falls Graph G einen Eulerweg bzw. Eulerkreis hat, ermitteln die Algorithmen von Fleury
und Hierholzer einen solchen Weg mit polynomialer Zeitkomplexitdt (quadratisch bei
Fleury, linear bei Hierholzer).

Dagegen gibt es keinen effizienten Algorithmus, um in einem aus n Knoten bestehenden
einfachen Graph G einen Hamiltonweg oder —kreis zu ermitteln; die Komplexitdt ist von
der Ordnung n!, der zeitliche Aufwand wachst also schneller als exponentiell
(hyperexponentielles Wachstum).

Hinweis: _—
Gemé&B der Stirlingschen Formel — n! ~ +/2mn (—) ; n— 0o,
e

gilt fiir groBe Werte von n: n! >> 2"

Beispiel 5:
Reise auf dem Dodekaeder
Graph G mit n = 20:

Jeder der 20 Knoten hat den Grad 3, folglich gibt es nach dem Satz von Euler keinen
Eulerweg (und damit keinen Eulerkreis).

Hamiltonkreis fir Graph G:
1-25345556->7-517-518-519-520-5016-515-514513 512 >
11510595851

Die Existenz eines Hamiltonkreises fir Graph G zeigt, daB das hinreichende Kriterium von
Dirac keineswegs notwendig ist!



Beispiel 6:
G@th_ Adjazenzmatrix:
mit n = 8:
[0, 1, O, O, O, O, 0O, 1]
(1, 0, 0, 1, 0, 1, 1, 0]
[0, 0, O, 1, O, 1, 0, 0]
[0y 2y X, U A, Ay 0, 0]
[0, O, O, 1, O, 1, 0O, O]
[0, 1, 1, 1, 1, O, 0, 0]
[0, 1, 0, 0, O, O, 0, 1]
(1, o, 0, 0, 0, 0O, 1, 0]
No Hamiltonian circle
Enotengrade:
[2, 4, 2, 4, 2; 4; 2, 2]
Der Grad jedes Knotens ist geradzahlig,
folglich hat der Graph einen Eulerkreis.
Eulerkreis:
0 -> 1
R
3 =52
2y
5 -» 4
4 —-> 3
3 =25
o Rl |
1 =="5
g =3
¥ o=
Wenn die Knoten mit 1, 2,...., 8 (statt mit 0, 1, ..., 7) bezeichnet werden, erhalten

wir als Eulerkreis fir Graph G:

1-254535655-5456-5257-58->51

Graph G hat keinen Hamiltonkreis!

Begrindung: Um die Knoten 1, 8, 7 in dieser oder in umgekehrter Reihenfolge zu
durchlaufen, muB der Knoten 2, der von Knoten 6 oder Knoten 4 aus erreicht werden
kann, zwei Mal besucht werden.
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Python-Quellcode zu einem Algorithmus, der zu einem einfachen Graphen G (ohne
Mehrfachkanten und Schlingen) einen Hamiltonkreis ermittelt:

# Berechnung sines Hamiltonkreises fiir einen einfachen Graphen G

# Die n Enoten des ungerichteten zusammenhingenden Graphen G
f werden mit 1, 2, . . . , n bezeichnet.
§ https://www.geeksforgeeks.org/hamiltonian-path-cycle-in-python/
class Graph() :
def @ dinit (self, wertices]):
self.adjacency matrix = [[0 for column in range (vertices)]
for row in range(vertices) ]

self.vertices count = wvertices

is_safe_tc_add{self, v, pos, path):

if self.adjacency_matrix[path[pos—l]][v] == 0: return False
for wertex in path:

if vertex = w: return False
return True

hamiltonian cycle util (self, path, pos):

if pos = self.vertices count:
if self.adjacency matrix[path[pos-1]] [path[0]] == 1l: return
elzse: return Palse

for v in range(l, self.vertices count):
if self.is safe to add(v, pos, path):

pathl[pos] = w

if self.hamiltonian cycle util (path, pos+l): return True
path[pos] = -1
return False

f find hamiltonian cycle (self):
path = [-1] * self.vertices count
path[0] = 0
if not self.hamiltonian cycls util (path, 1):
print ('No Hamiltonian cycle \n")

return False
self.print solution(path)
return True

f print solution(self, path):
print ('Hamiltonian cycle exists:')
for wertex in path: print(vertex + 1)

n = int {input{'Anzahl der Enoten: "))
f Erzeugen einer n x n — Matrix mit lauter Nullen
a= [[0] *n for 1 in range(n)]

Eingabe der Adjazenzmatrix

H &R

or 1 in range (n) :
for j in range(i+l,n):
print('a(',i+1,',',j+1,') = ", end = "V}
al[il [j] = int (input())
a[jl ] = =[] Ey]

print('Adjarenzmatrix:")
for i in range(n): print{a[i])

g = Graph(n)
g.adjacency matrix = a
g.find hamiltonian cycle()
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Nachtrag zum Eulerschen Satz: Der folgende in Python codierte Algorithmus

beriicksichtigt auch Graphen, die Schlingen als Kanten enthalten.

LR

oder keinen von beiden besitzt.

Voraussetzungen:
Die n Enoten des Graphen werden fortlaufend mit 0,

Lol

Schlingen sind als Fanten zugelassen.

=]

= int (input ("Anzahl der Enoten: "))

Erzeugen einer n x n — Matrix mit lauter Nullen
= [[0] * n for i in range(n)]

Erzeugen der Liste g mit lauter Nullen

= [0]*n

O

¥ Eingabe der Adjazenzmatrix
for i in range(n):
for j in range(i,n):
PrintPal et e ey ) = N end = ™M)
al[i][j] = int{input())
alj1[4] alil[3]]

# Zusgabe der Adjazenzmatrix
print ("Adjazenzmatrix:")
for 1 in range(n): print(a[i])

$ Berechnung des Grades wvon jedem der n Enoten
for i in range(n):
for j in range(n):
£f 1= j: gli] = gli]l + 2*a[1][]]
1se: glil = gfil + ali}ljl

He

$ Zusgabe des Grades eines jeden Enotens
print ("Enotengrade: ')

print (g)

print ()

# Decision according to Euler's Theorem
anzahl = 0
for 1 in range(n):

if g[i] % 2 != 0: anzahl = anzahl + 1
if anzahl == 0 or anzahl == 2:
if anzahl == 0:

print ('Der Grad jedes Enotens ist geradzahlig, ')
print ("'folglich hat der Graph einen Eulerkreis.')

il

print ('Der Grad von genau zwel Knoten ist ungerade, ')

print ("folglich besitzt der Graph einen Eulerweg,");

print ('aber keinen Eulerkreis.")

1:

r

Dieser Algorithmus liefert eine Entscheidung, ob ein ungerichteter
zusammenhaengender Graph einen Eulerweg oder einen Fulerkreis

n-1 bezeichnet.

if anzahl == 1: print('Da ',anzahl,' Enoten einen ungeraden Grad hat, ')

else: print('Da ',anzahl,' Enoten einen ungeraden Grad haben, ")
print ('besitzt der Graph weder einen Eulerkreis noch einen Eulerweg.')



