
Arbeitsblatt Nr. 2 inf13 08.02.2023

Sorting and Searching

I. Imperative und funktionale Formulierung eines Algorithmus

IMPERATIVER ANSATZ:

Der in einer Programmiersprache formulierte Quellcode besteht aus einer Folge

von ausführbaren Anweisungen, die in vorgegebener Reihenfolge nacheinander

abgearbeitet werden; wesentliche Kontrollstruktur: Iteration

Bei einer for-Schleife ist die Anzahl der Schleifendurchläufe a priori bekannt.

Bei einer while-Schleife erfolgt die Abfrage der als Boolescher Term formulierten

Bedingung vor Eintritt in den Schleifenrumpf (kopfgesteuerte Schleife), die

repeat-Schleife (nicht in Python; in Java: do . . . while) fragt die Bedingung nach

Durchlaufen des Schleifenrumpfs ab (fußgesteuerte Schleife).

Der Nachweis der Korrektheit des iterativ formulierten Algorithmus gestaltet sich

mitunter schwierig; mögliche Methode: Auffinden und Formulierung einer

Schleifeninvariante, Nachweis der Richtigkeit der Schleifeninvariante durch das

Beweisverfahren Vollständige Induktion.

FUNKTIONALER ANSATZ:

Die Formulierung des Programmtexts (Quellcodes) orientiert sich der inneren, in

der Regel mathematischen Struktur eines Algorithmus.

Wesentliche Kontrollstruktur: Rekursion

Vorteile:

- Elegante Formulierung des Quellcodes

- Da der funktional formulierte Algorithmus im wesentlichen eine am

Problem orientierte Funktion (oder Prozedur) auswertet, gestaltet sich der

Nachweis der Korrektheit vergleichsweise einfach.

Nachteil:

- Im Vergleich zu iterativen Lösungen in der Regel erhöhter

Speicherplatzbedarf zur Laufzeit (Beispiel: Fibonacci-Folge mit

exponentiellem Wachstum der Anzahl der Funktionsaufrufe)

Beispiel:

Programmspezifikation: nach Eingabe einer nicht negativen reellen Zahl a und

einer natürlichen Zahl n ist die Potenz an zu berechnen.

Iterative Formulierungen:

a) b)

 2

Bemerkung: Die Korrektheit des Algorithmus b) erschließt sich nicht auf den ersten Blick;

hier läßt sich aber eine Schleifeninvariante angeben, deren Korrektheit man beweisen

kann.

Arbeitsaufträge:

- Schreibe und teste ein Python-Programm gemäß Struktogramm b).

- Schreibe und teste ein funktional (insbesondere rekursiv) formuliertes

Python-Programm.

Vereinbarung: Die folgenden Algorithmen zu Sorting and Searching operieren

jeweils auf einem aus n Komponenten bestehenden array a (in Python als Liste

realisiert) mit den Komponenten a[0], . . . , a[n-1].

II. SelectionSort (Sortieren durch direkte Auswahl)

Die auf der Teilliste x mit den Komponenten a[j], . . , a[n-1] , j = 0, . . . , n-2,

operierende Funktion min(x,j) bestimmt das kleinste Element und weist

dieses der Komponente a[j] zu, der ursprüngliche Inhalt von a[j] wird nach

Zwischenspeicherung in der Variablen temp derjenigen Komponente zugewiesen,
der das Minimum entnommen wurde; nachdem min(x,j) für alle Werte von j

ausgeführt wurde, ist die Gesamtliste sortiert.

Arbeitsaufträge:
- Markiere den Schleifenrumpf A innerhalb der Funktion min.

- Ermittle anhand folgender Tabelle die Gesamtzahl der Abarbeitungen des
Schleifenrumpfs A; dabei gebe die Variable z(j) die Anzahl der Durchläufe

für jeden Index j an.

Index j Index i z(j)

j = 0  i 

j = 1  i 

j = 2  i 

j = 3  i 

....

j = n-3  i 

j = n-2  i 

 3

Bemerkung:

Als imperativ formulierter Algorithmus bedient sich SelectionSort wesentlich der

Iteration (hier: zwei ineinander verschachtelte Schleifen).

Dagegen ist MergeSort ein typischer Vertreter des funktionalen Ansatzes.

III. MergeSort (Sortieren durch Mischen)

Arbeitsaufträge:

- Formuliere den Algorithmus MergeSort in Worten.

- Untersuche den Algorithmus hinsichtlich des Aufwands zum Sortieren von

n Datenelementen.

- Zeige, daß der Speicherbedarf zur Laufzeit im Vergleich zum

Gesamtaufwand zu vernachlässigen ist.

Bemerkung:

Der zeitliche Aufwand A(n) zum Sortieren von n Datenelementen wächst linear-

logarithmisch bei MergeSort:

 A(n) ~ n  log2(n)

Damit ist MergeSort wesentlich effizienter als SelectionSort mit quadratischer

Komplexität; allgemein läßt sich beweisen, daß es kein Sortierverfahren gibt,

dessen Aufwand zur Laufzeit schwächer als linear-logarithmisch wächst.

IV. BinarySearch (Binäre Suche)

