Arbeitsblatt Nr. 2 inf13 08.02.2023
Sorting and Searching

I. Imperative und funktionale Formulierung eines Algorithmus

IMPERATIVER ANSATZ:

Der in einer Programmiersprache formulierte Quellcode besteht aus einer Folge
von ausfiihrbaren Anweisungen, die in vorgegebener Reihenfolge nacheinander
abgearbeitet werden; wesentliche Kontrollstruktur: Iteration

Bei einer for-Schleife ist die Anzahl der Schleifendurchlaufe a priori bekannt.

Bei einer while-Schleife erfolgt die Abfrage der als Boolescher Term formulierten
Bedingung vor Eintritt in den Schleifenrumpf (kopfgesteuerte Schleife), die
repeat-Schleife (nicht in Python; in Java: do . . . while) fragt die Bedingung nach
Durchlaufen des Schleifenrumpfs ab (fuBgesteuerte Schleife).

Der Nachweis der Korrektheit des iterativ formulierten Algorithmus gestaltet sich
mitunter schwierig; mdgliche Methode: Auffinden und Formulierung einer
Schleifeninvariante, Nachweis der Richtigkeit der Schleifeninvariante durch das
Beweisverfahren Volistdndige Induktion.

FUNKTIONALER ANSATZ:
Die Formulierung des Programmtexts (Quellcodes) orientiert sich der inneren, in
der Regel mathematischen Struktur eines Algorithmus.
Wesentliche Kontrollstruktur: Rekursion
Vorteile:
- Elegante Formulierung des Quellcodes
- Da der funktional formulierte Algorithmus im wesentlichen eine am
Problem orientierte Funktion (oder Prozedur) auswertet, gestaltet sich der
Nachweis der Korrektheit vergleichsweise einfach.
Nachteil:
- Im Vergleich zu iterativen Lésungen in der Regel erhéhter
Speicherplatzbedarf zur Laufzeit (Beispiel: Fibonacci-Folge mit
exponentiellem Wachstum der Anzahl der Funktionsaufrufe)

Beispiel:

Programmspezifikation: nach Eingabe einer nicht negativen reellen Zahl a und
einer nattrlichen Zahl n ist die Potenz a" zu berechnen.

Iterative Formulierungen:

a) # Potenz a*n iterativ b) Eingabe a; n
a = float(input('a = ")) Pimai wemmi Besls
n = int(input('n = ")) while us0
y =1 _7__"'""--—-.,__,__7__7__7 u ungerade
p = : -
u:=u-1
n===o0rp=1 p:=p*b
_ ¥ z:: n-1: u:=u div 2
p="p a b:=b*b
y =y +1 '
pl"irlt{} Rusgabe p
print (a,'"",n,"' =",p)




Bemerkung: Die Korrektheit des Algorithmus b) erschlieBt sich nicht auf den ersten Blick;
hier 188t sich aber eine Schleifeninvariante angeben, deren Korrektheit man beweisen
kann.
Arbeitsauftrage:
- Schreibe und teste ein Python-Programm gemaB Struktogramm b).
- Schreibe und teste ein funktional (insbesondere rekursiv) formuliertes
Python-Programm.

Vereinbarung: Die folgenden Algorithmen zu Sorting and Searching operieren
jeweils auf einem aus n Komponenten bestehenden array a (in Python als Liste
realisiert) mit den Komponenten a[0], . . ., a[n-1].

II. SelectionSort (Sortieren durch direkte Auswahl)

Die auf der Teilliste x mit den Komponenten a[j], .., a[n-1],j=0, ..., n-2,
operierende Funktion min (x,j) bestimmt das kleinste Element und weist
dieses der Komponente a[j] zu, der urspringliche Inhalt von a[j] wird nach
Zwischenspeicherung in der Variablen temp derjenigen Komponente zugewiesen,
der das Minimum entnommen wurde; nachdem min (x, j) fur alle Werte von j
ausgefihrt wurde, ist die Gesamtliste sortiert.

min(x,])
i range (j+1,1len(x)):
®x[1] < =[j]:
temp = %[]]
%[J]1 = x[1]
%[1] = temp
j=20
J <= n-2:
min(a,]j)
7 +=1

Arbeitsauftrage:
- Markiere den Schleifenrumpf A innerhalb der Funktion min.

- Ermittle anhand folgender Tabelle die Gesamtzahl der Abarbeitungen des
Schleifenrumpfs A; dabei gebe die Variable z(j) die Anzahl der Durchlaufe

fur jeden Index j an.

Index j Index i z(J)
j =0 <i<
3 =1 <i<
j =2 <icx<
j =3 < i<
j = n-3 < i<
J = n-2 <1i<




Bemerkung:

Als imperativ formulierter Algorithmus bedient sich SelectionSort wesentlich der
Iteration (hier: zwei ineinander verschachtelte Schleifen).

Dagegen ist MergeSort ein typischer Vertreter des funktionalen Ansatzes.

III. MergeSort (Sortieren durch Mischen)
Arbeitsauftrage:
- Formuliere den Algorithmus MergeSort in Worten.

- Untersuche den Algorithmus hinsichtlich des Aufwands zum Sortieren von
n Datenelementen.

- Zeige, daB der Speicherbedarf zur Laufzeit im Vergleich zum
Gesamtaufwand zu vernachlassigen ist.

Bemerkung:
Der zeitliche Aufwand A(n) zum Sortieren von n Datenelementen wéchst linear-
logarithmisch bei MergeSort:

A(n) ~ n - logy(n)

Damit ist MergeSort wesentlich effizienter als SelectionSort mit quadratischer
Komplexitat; allgemein 148t sich beweisen, daBB es kein Sortierverfahren gibt,
dessen Aufwand zur Laufzeit schwécher als linear-logarithmisch wéchst.

IV. BinarySearch (Bindare Suche)



