
Sortieren durch Mischen ("MergeSort")

Aufgabe:

Gegeben ist eine Liste L = {a[0], a[2], a[3], , a[n-1]}

von n Datenelementen, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt

sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daß gilt:

a[0] ≤ a[2] ≤. ≤ a[n-1] .

Wir fassen die Elemente der Liste auf als Komponenten eines arrays a.

Strategie: "Divide et impera"

Eine Liste, die nur ein einziges Element enthält, ist bereits sortiert.

Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, läßt sich in 4 Schritten
bewältigen:

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten

2). Sortiere die erste Teilliste gemäß den Schritten 1). - 4).

3). Sortiere die zweite Teilliste gemäß den Schritten 1). - 4).

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste

Falls left < right wahr ist, sortiert die rekursiv definierte Funktion

sort(array, left, right)

die Liste

array[left], , array[right]

unter Verwendung der Funktion merge.

Die Funktion

merge(array, left, middle, right)

mischt die sortierten Teillisten

array[left], , array[middle]

und

array[middle+1], , array[right]

zu der sortierten Gesamtliste

array[left], , array[right] .

Quellcode der Funktion sort in Python:

 2

def sort(array, left, right):
 if left >= right:
 return
 middle = (left + right)//2
 sort(array, left, middle)
 sort(array, middle + 1, right)
 merge(array, left, middle, right)

Aufruf zum Sortieren der aus den n Komponenten

 a[0], a[2], a[3], , a[n-1]

bestehenden Liste a:

 sort(a, 0, len(a)-1)

Aufwandsbetrachtung:

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus
n Komponenten bestehende Liste zu sortieren.

Dann gilt:

A(n) = 2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen
+ Aufwand zum Mischen zweier sortierter Teillisten

A(n) = A(n/2) + A(n/2)
+ Aufwand zum Mischen zweier sortierter Teillisten

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wächst linear mit der Anzahl n der zu sortierenden Datenelemente; somit
erhalten wir für den Funktionsterm A(n) die Funktionalgleichung (c = Konstante
= Proportionalitätsfaktor)

(*) A(n) = A(n/2) + A(n/2) + c  n mit der Bedingung
(**) A(1) = 0 .

Behauptung: Die Funktion

A(n) = c  n  log2(n)

ist Lösung der Funktionalgleichung (*) mit der Anfangsbedingung (**).

Beweis:

A(n/2) + A(n/2) + c  n = 2  A(n/2) + c  n

= 2  c  n/2  log2(n/2) + c  n
= c  n  (log2(n)  log2(2)) + c  n
= c  n  (log2(n)  1) + c  n
= c  n  log2(n)
= A(n)

Damit ist (*) erfüllt; wegen log2(1) = 0 genügt A(n) auch der Bedingung (**).

 3

Bemerkung: Mit Methoden der Analysis läßt sich die Eindeutigkeit der Lösung des
Problems (*), (**) zeigen, somit ist mit A(n) = c  n  log2(n) die einzige Lösung
der Funktionalgleichung gefunden.

Allgemein läßt sich beweisen, daß der Aufwand zum Sortieren von n Datensätzen
grundsätzlich mindestens von der Ordnung n  log2(n) wächst. In diesem Sinne
kann das Sortierverfahren „MergeSort“ als optimales Vefahren gelten.

Ergänzende Betrachtung zum Speicherplatzbedarf:

Nachdem wir festgestellt haben, daß der Aufwand zum Sortieren von n
Datenelementen von der Ordnung n  log2(n) wächst und damit ein Optimum
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn
rekursive Algorithmen haben grundsätzlich den Nachteil, daß sie während der
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. Daß dieser Effekt bei
MergeSort nicht oder nur unwesentlich ins Gewicht fällt, zeigt folgende
Überlegung:

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.

O. B. d. A. sei n eine Zweierpotenz, d. h. n=2k, k{0, 1, 2, 3, }.

Bemerkung: Der Pfeil bedeutet: „ruft auf“

n = 1: sort(a,0,0) 1 Aufruf

n = 2: sort(a,0,1)

 sort(a,0,0) sort(a,1,1)

 1 + 2  1 = 3 Aufrufe

n = 4: sort(a,0,3)

 sort(a,0,1) sort(a,2,3)

 sort(a,0,0) sort(a,1,1) sort(a,2,2) sort(a,3,3)

 1 + 2  3 = 7 Aufrufe

 4

n = 8: sort(0,7)

 sort(0,3) sort(4,7)

 sort(0,1) sort(2,3) sort(4,5) sort(6,7)

 sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

 1 + 2  7 = 15 Aufrufe

f(1) = 1 = 1 = 2  1 – 1

f(2) = 1 + 2  1 = 3 = 2  2 – 1

f(4) = 1 + 2  3 = 7 = 2  4 – 1

f(8) = 1 + 2  7 = 15 = 2  8 – 1

f(16) = 1 + 2  15 = 31 = 2  16 – 1

f(32) = 1 + 2  31 = 63 = 2  32 – 1

allgemein:

f(n) = 2  n – 1

Offensichtlich ist f(n) Lösung der rekursiv definierten Funktionalgleichung

 f(n) = 1 + 2  f(n/2)

mit der Anfangsbedingung f(1) = 1 .

Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der
Speicherplatzbedarf während der Laufzeit wächst somit linear mit n, also
wesentlich schwächer als die Anzahl A(n) elementarer Rechenoperationen.

Die rekursiv veranlaßten Aufrufe der Funktion sort zerlegen die zu sortierende
Liste in Teillisten jeweils der Länge 1, die als ein-elementige Listen bereits
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils
einer sortierten Liste gemäß folgendem Diagramm:

Bemerkung: Der Pfeil bedeutet: „wird gemischt“

 5

 merge(0,3,7)

 a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Für die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar:

g(1) = 0
g(n) = 1 + 2  g(n/2) falls n = 2k, k > 1

Lösung der vorstehenden Funktionalgleichung:

g(n) = n  1

Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe
der Funktion merge wachsen jeweils linear mit n.

Februar 2021

Bemerkung:
Für den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten
wir bei

- SelectionSort: A(n)  n2
- MergeSort: A(n)  n  log2(n)
- Fibonacchi-Folge: A(n)  2n (bei rekursiver Berechnung)
- BinarySearch: A(n)  log2(n)

Entsprechend haben

- SelectionSort quadratische Komplexität,
- MergeSort linear-logarithmische Komplexität,
- die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexität,
- BinarySearch logarithmische Komplexität.

Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar.

Arbeitsauftrag für die Doppelstunde am 09.09.2021 inf12
Die aus den n Komponenten a[0], a[1], , a[n-1] bestehende Liste a
soll aufsteigend sortiert werden.

1. Gegeben ist der Quelltext SelectionSort.txt zum Algorithmus „Sortieren durch

direkte Auswahl“; nach Eingabe einer natürlichen Zahl n wird eine aus n
Zufallszahlen bestehende Liste a erzeugt und anschließend aufsteigend sortiert.

 Wir modifizieren diesen Quelltext so, daß das Sortieren nach dem Algorithmus
„MergeSort“ erfolgt; ersetze hierzu denjenigen Programmteil, der den Sortiervorgang
veranlaßt, in geeigneter Weise durch die Funktionen sort und merge. Benutze hierzu
das Skriptum MergeSort_01-09-2021.pdf und den Quelltext function_merge.txt
der Funktion merge.
Aufruf der Funktion sort zum Sortieren der Liste a: sort(a, 0, len(a)-1)

2. Vergleiche die Algorithmen SelectionSort und MergeSort experimentell hinsichtlich
ihrer zeitlichen Effizienz.

3. Implementiere Variable x und y, um die Anzahl der Aufrufe der Funktionen sort und
merge jeweils zu zählen, und bestätige die diesbezüglichen Ergebnisse aus dem
Skriptum.

4. Hausaufgabe:

Um den Aufwand bei SelectionSort zu ermitteln, betrachten wir denjenigen
Programmteil, der das Sortieren ausführt:

 j = 0
 while j <= n-2:
 i = j + 1
 min = a[j]
 while i < n:
 if a[i] < min:
 min = a[i]
 a[i] = a[j]
 a[j] = min
 i = i + 1
 j = j + 1

 Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife dieses

Programmauszugs gedanklich zum Anweisungsblock A zusammen
(markiere Block A im obenstehenden Programmtext).
Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu
sortieren, fragen wir, wie oft Block A in Abhängigkeit von n abgearbeitet wird.

a) Vervollständige die Einträge in folgender Tabelle, wobei z(j) angibt, wie oft Block A
in Abhängigkeit von j abgearbeitet wird.

b) Die Gesamtzahl z der Abarbeitungen von Block A ergibt sich als

 z = z(0) + z(1) + z(2) + z(3) + + z(n-3) + z(n-2)

 Vereinfache diese Summe und zeige so, daß z quadratisch mit n wächst!

 Hinweis: Für die Summe der ersten n natürlichen Zahlen gilt bekanntlich:
 1 + 2 + + n = ½  n  (n + 1)

Index j Index i z(j)

j = 0  i 

j = 1  i 

j = 2  i 

....

j = n-3  i 

j = n-2  i 

Komplexität zur Laufzeit (Sorting and Searching)

SelectionSort - BinarySearch

Array mit 10.000 Komponenten:

Array mit 20.000 Komponenten:

MergeSort - BinarySearch

Array mit 20.000 Komponenten:

Array mit 1.000.000 Komponenten:

Array mit 4.000.000 Komponenten:

Informatik 12
September 2021

Boolesche Terme und Schaltalgebra

1. Datentyp boolean

Eine Boolesche Variable oder ein Boolescher Ausdruck (Term) nimmt nur zwei Werte an:
True oder False
(abkürzend: 1 oder 0; in Python sind True oder False zu verwenden)

Insbesondere sind folgende Terme Boolesche Ausdrücke, deren Wert sich auch einer
Variablen zuweisen läßt:

8 > 5 hat den Wert True
7 == 8 hat den Wert False
7 != 8 hat den Wert True
x hat den Wert True nach der Wertzuweisung x = 7 < 12
x hat den Wert False nach der Wertzuweisung x = (0 == 6)
a or b hat den Wert True genau dann, wenn mindestens eine der Variablen a, b

den Wert True hat; andernfalls hat a or b den Wert False.

Mit a = 7 != 8 oder a = (7 != 8) wird in Python der Booleschen Variablen a
der Wert des Booleschen Terms 7 != 8 (hier: True) zugewiesen.

Wir definieren die Verknüpfungen and und or sowie die Operation not jeweils über eine
Wahrheitstafel:

a b a or b a b a and b a not a

False False False False False False False True

False True True False True False True False

True False True True False False

True True True True True True

Abkürzende Schreibweisen (a, b, c sind Boolesche Variable oder Boolesche Terme):

 a and b = a  b = a  b = a b
 a or b = a  b = a + b
 not a =  a = a

Dabei gelte auch die aus der Algebra bekannte Vereinbarung “Punkt vor Strich”, d. h.
 a + (b  c) = a + b  c = a + b c
Die AND-Verknüpfung nennen wir auch Konjunktion,
die OR-Verknüpfung Disjunktion.

2. Rechenregeln für Boolesche Variable

 Kommutativgesetz

 (1) a + b = b + a (1’) a  b = b  a

Assoziativgesetz

 (2) a + (b + c) = (a + b) + c (2’) a  (b  c) = (a  b)  c

 Distributivgesetz

 (3) a  (b + c) = a  b + a  c (3’) a + b  c = (a + b)(a + c)

 2

Absorptionsgesetz

(4) a(a + b) = a (4’) a + ab = a

 Tautologie

 (5) a  a = a (5’) a + a = a

 Gesetz über die Negation

 (6) a a = 0 (6’) a + a = 1

 Doppelte Negation

 (7) a a

 Gesetz von De Morgan

 (8) a b a b   (8’) a+b a b 

 Operationen mit 0 und 1

 (9.1) a  1 = a (9.1’) a + 0 = a

 (9.2) a  0 = 0 (9.2’) a + 1 = 1

 (9.3) not 0 = 1 (9.3’) not 1 = 0

Bemerkung: Die jeweils in einer Zeile stehenden Gesetze sind duale Gesetze
voneinander; Beispiel: (3’) ist das duale Gesetz von (3), (3) das duale Gesetz von (3’).

Beweis von Rechengesetz (3):

a b c b + c a(b + c) ab ac ab + ac
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

Da die Spalten zu a(b + c) und ab + ac übereinstimmen, gilt: a(b + c) = ab + ac .

Aufgaben:

1. Beweise das Distributivgesetz (3’).

2. Beweise die Gesetze von De Morgan.
Hinweis: Wahrheitstafel; außer den Spalten für a und b (4 Zeilen) erstelle Spalten für

a  b, a b , a, b , a b für Regel (8).

3. Unter der Disjunktion a or b versteht man das nichtausschließende oder („non-
exclusive or“), d. h., a or b ist genau dann True, falls a oder b oder sowohl a
als auch b True sind („oder“ im Sinne von lat. vel).

 Unter der Verknüpfung a xor b (andere Schreibweise: a  b) versteht man

das ausschließende oder (exclusive or), d. h., a  b ist genau dann True, falls
entweder a oder b den Wert True hat.

 Zeige: a  b = a b + a b

 3

z = a b (c + c) + b c (a + a)

 = a b 1 + b c 1

 = a b + b c

 = a+b + b c

   

   

 



BEISPIEL 1

Die Boolesche Funktion
z = f(a,b,c)
ist durch nebenstehende
Wahrheitstafel
gegeben:

a) Ermittle die disjunktive Normalform (DNF; Disjunktion von Konjunktionen) für z.

b) Vereinfache den Funktionsterm unter Anwendung der Booleschen Rechengesetze.

c) Zeichne den Schaltplan für die optimierte Funktion z.

Lösung:

a) z = a b c + a b c + a b c + a b c       

b) Kommutativ- und Distributivgesetz

 de Morgan’s Gesetz

c) z = a b + b c  (oben) z = a+b + b c (unten)

a b c z
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

 4

BEISPIEL 2

Gegeben ist folgende digitale Schaltung mit den Eingangsvariablen a, b und der
Ausgangsvariablen z:

a) Ermittle den Booleschen Term für die Boolesche Funktion z = f(a,b,c). Hinweis:
Notiere am Ausgang jedes Gatters jeweils den Booleschen Term (Beispiel: a b am
Ausgang des NAND-Gatters).

b) Vereinfache den in a) erhaltenen Term unter Verwendung der Rechenregeln für

Boolesche Ausdrücke;

c) Erstelle die Wahrheitstafel und zeichne das Schaltbild für den vereinfachten

Funktionsterm; teste beide Schaltungsvarianten mit einem
Digitalsimulationsprogramm.

Lösung:

zu a):

 5

zu b):

z = a b a b  

 = a b (a b)   (2-mal de Morgan)

 = a b a b   (wegen a a)

 = a b a b   (Kommutativgesetze)

 = a b a b 1    (wegen a a 1 )

 = a b (a 1)   (Distributivgesetz)

 = a b (wegen a 1 1 )

 = a b (de Morgan)

zu c):

optimierte Schaltung: Wertetabelle:

Typen von Logikgattern und Symbolik

Logikgatter werden mit Schaltsymbolen bezeichnet, die nach unterschiedlichen, mehr oder
weniger parallel existierenden Standards definiert sind.

Symbol in Schaltplan Name Funktion

IEC 60617-12 :
1997 &

ANSI/IEEE Std
91/91a-1991

ANSI/IEEE Std
91/91a-1991

DIN 40700 (vor
1976)

Wahrheits-
tabelle

Und-Gatter
(AND)

Y=AB

A B Y
0 0 0

0 1 0

1 0 0

1 1 1

Oder-Gatter
(OR)

Y=A+B

A B Y
0 0 0

0 1 1

1 0 1

1 1 1

Nicht-Gatter
(NOT)

Y= A

A Y
0 1

1 0

NAND-Gatter
(NICHT
UND)
(NOT AND)

Y= A B

A B Y
0 0 1

0 1 1

1 0 1

1 1 0

NOR-Gatter
(NICHT
ODER)
(NOT OR)

Y= A+B

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

XOR-Gatter
(Exklusiv-
ODER,
Antivalenz)
(eXclusiveOR)

Y=AB

A B Y
0 0 0

0 1 1

1 0 1

1 1 0

XNOR-
Gatter
(Exklusiv-
Nicht-ODER,
Äquivalenz)
(eXclusive
Not OR)

Y= A B

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

Früher waren auf dem europäischen Kontinent die deutschen Symbole (rechte Spalte)
verbreitet; im englischen Sprachraum waren und sind die amerikanischen Symbole (mittlere
Spalte) üblich. Die IEC-Symbole sind international auf beschränkte Akzeptanz gestoßen und
werden in der amerikanischen Literatur (fast) durchgängig ignoriert.

JK-Flipflop

Ein Flip-Flop (bistabile Kippstufe oder bistabiler Multivibrator) hat zwei stabile Zustände am
Ausgang Q; die Zustände heißen „gesetzt“ (set) oder „zurückgesetzt“ (reset). Ein 1-Bit-
Speicher läßt sich somit als FlipFlop realisieren.

Ein JK-FlipFlop ist ein taktgesteuertes FlipFlop: die an den Eingängen J und K liegende
Information wird mit einer Flanke (hier: der steigenden Flanke) des an C liegenden

Taktsignals auf die Ausgänge Q und Q übernommen.

Mit dem Taktsignal (clock, C) und der Eingangsbelegung J = 1 und K = 0 wird am Ausgang
Q eine 1 erzeugt und gespeichert, alternativ eine 0 bei J = 0 und K = 1.

Bei der Realisierung des JK-Flipflops als taktflankengesteuertes Flipflop kann der Eingang C
für steigende Flanken (Wechsel von 0 auf 1) oder für fallende Flanken (Wechsel von 1 auf 0)
ausgelegt sein.

Name und
Schaltzeichen

Signal-Zeit-Diagramm Funktionstabelle

Flanken-
gesteuertes
JK-Flipflop

Übernahme der Eingangsinformation durch
steigende Flanke an C (clock) bis zur nach der

 … n-ten Taktflanke

J K Qn
0 0 Qn−1 (unverändert)

0 1 0 (zurückgesetzt)

1 0 1 (gesetzt)

1 1 NOT Qn−1 (gewechselt)

(Wikipedia)

Halbaddierer und Volladdierer

Die Ziffern einer im Dezimalsystem geschriebenen Zahl a ergeben sich als Aneinanderrei-
hung der Koeffizienten aus der Dezimalzerlegung (Summe von Zehnerpotenzen) von a;
entsprechend erhalten wir die Darstellung von a im Dualsystem als Aneinanderreihung der
Koeffizienten aus der Dualzerlegung (Summe von Zweierpotenzen).

87dezimal = 8  101 + 7  100

87dezimal = 1  26 + 0  25 + 1  24 + 0  23 + 1  22 + 1  21 + 1  20 = 1010111dual

Addition der Dualzahlen
a = a3 2

3 + a2  2
2 + a1  2

1 + a0  2
0 und b = b3 2

3 + b2  2
2 + b1  2

1 + b0  2
0 :

 a3 a2 a1 a0
 + b3 b2 b1 b0
 s4 s3 s2 s1 s0

Den Übertrag („carry“), der sich aus der i-ten Stelle ergibt und der bei der Addition in der
(i + 1)-ten Stelle zu berücksichtigen ist, bezeichnen wir mit ci+1; i  0.

Für die 0-te Stelle genügt ein Halbaddierer mit den Eingängen a0 und b0 und den Ergebnis-
sen s0 und c1; die Addition in der i-ten Stelle, i  1, erfordert einen Volladdierer mit den
Eingängen ai, bi, ci und den Ergebnissen si und ci+1.

Halbaddierer HA

Wahrheitstafel:

a0 b0 s0 c1
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Wir ermitteln für s0 und c1 jeweils die disjunktive Normalform („Disjunktion der Konjunkti-
onen“):

    0 0 0 0 0 0 0 s a b + a b a b

 1 0 0 c a b

Volladdierer VA

Wahrheitstafel:

ai bi ci si ci+1
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Wir ermitteln für si und ci+1 jeweils die disjunktive Normalform („Disjunktion der Konjunk-
tionen“) und vereinfachen ggf. die booleschen Funktionsterme:

 1 1 0 1
+ 1 0 1 1

 1 1 0 0 0

 2

           i i i i i i i i i i i i i s a b c a b c a b c a b c

ohne Index i geschrieben:

            s a b c a b c a b c a b c

           s (a b a b) c a b c a b c

        s (a b) c (a b a b) c

          s (a b) c (0 a b a b 0) c

            s (a b) c (a a a b a b b b) c

        s (a b) c [(a b) (a b)] c

        s (a b) c [(a b) (a b)] c

        s (a b) c [(a b) (a b)] c

        s (a b) c [a b a b] c

      s (a b) c (a b) c

   s (a b) c

mit Index i erhält man:

  i i i i s (a b) c

           i+1 i i i i i i i i i i i i c a b c a b c a b c a b c

        i+1 i i i i i i i i i c (a b a b) c a b (c c)

       i+1 i i i i i i i c (a b a b) c a b 1

    i+1 i i i i i c (a b) c a b

07.06.2021

Halbaddierer (HA) und Volladdierer (VA)

Schaltungen

Addier-Schaltungen für Dualzahlen

1. Paralleladdierer mit seriellem Übertrag (hier: 4-Bit-Addierer)

 Für das Least Significant Bit (LSB) genügt ein Halbaddierer (HA); die höherwertigen Bits
erfordern jeweils einen Volladdierer, da hier der Übertrag aus der vorherigen Stelle zu
berücksichtigen ist.

Dezimal: 09 Hexadezimal: 09 Dual: 0000 1001
 + 10 + 0A + 0000 1010
 19 13 0001 0011

2. Serieller 1-Bit-Addierer für 4-stellige Dualzahlen

 Die Operanden werden jeweils in einem 4-Bit-Schieberegister abgelegt, nach 4 Taktimpulsen
finden wir das Ergebnis (hier: die Summe) in einem weiteren 4-Bit-Schieberegister.

 a3 a2 a1 a0
+ b3 b2 b1 b0

 s4 s3 s2 s1 s0

 2

 Da der Übertrag aus der vorherigen Stelle für die Addition in der aktuellen Stelle zu
berücksichtigen ist, wird er in einem Flip-Flop zwischengespeichert. Dieses Flip-Flop
liefert auch das Most Significant Bit (MSB) des Ergebnisses.

Nach 4 Taktimpulsen (hier: Triggerung der Flip-Flops auf der steigenden Taktflanke):

Dezimal: 07 Hexadezimal: 07 Dual: 0000 0111
 + 14 + 0E + 0000 1110
 21 15 0001 0101

Die wesentlichen Komponenten einer CENTRAL PROCESSING UNIT (CPU) bestehen
aus der CONTROL UNIT (CU) und der ARITHMETIC LOGIC UNIT (ALU).

Die ALU berechnet arithmetische und logische Funktionen, die CU decodiert die
im Arbeitsspeicher abgelegten Befehle und führt sie aus.

In der Minimalkonfiguration beherrscht die ALU die arithmetische Funktion
„Addition“ sowie die logischen Operationen „Negation“ (NOT) und
„Konjunktion“ (AND). Zu Lasten der Rechenzeit lassen sich die übrigen
arithmetischen und logischen Funktionen auf die genannten, minimal verfügbaren
Operationen zurückführen.

1. Subtraktion

Die duale Subtraktion

läßt sich auf eine duale Addition nach folgendem Verfahren zurückführen:

- Bilde das Einerkomplement des Subtrahenden b3 b2 b1 b0 , indem man alle
Ziffern negiert (invertiert; aus 0 wird 1 und aus 1 wird 0).

- Addiere das Einerkomplement und die Zahl 1 zum Minuenden.
- Das Ergebnis ist die gesuchte Differenz; dabei bleibt der Überlauf

unberücksichtigt.

a) Verdeutliche das genannte Verfahren anhand einiger selbst gewählter

Beispiele (ein Beweis des Verfahrens ist nicht erforderlich.).

b) Ergänze die Schaltung „4-bit-Paralleladdierer.dsim“ so, daß man nach

entsprechender Umschaltung wahlweise eine duale Addition oder eine duale
Subtraktion durchführen kann.
Hinweise:
- Ersetze den HA für das least significant bit (LSB) durch einen VA, um

erforderlichenfalls eine „1“ als Summand einspeisen zu können (wie?).
- Die Invertierung der Ziffern des Subtrahenden gelingt z. B. durch den

geeigneten Einsatz von XOR-Gattern.

2. Weitere Rechenoperationen

Gegeben sind die (im einfachsten Fall positiven ganzzahligen) Operanden a und
b. Um zu verdeutlichen, wie man die „höheren“ Rechenoperationen mittels
geeigneter Iteration auf die Grundoperationen „Addition“ und „Subtraktion“
zurückführen kann, schreibe und teste ein Python-Programm, welches die
Operationen „Multiplikation“ (a*b), „Division“ (a/b, ganzzahlige Division) und
„Potenzierung“ (a**b) realisiert.

3. Logische Operationen

Zeige examplarisch, daß sich die logischen Verknüpfungen

a) a + b
b) a  b
c) a (b+c)

auf die Operationen NOT und AND zurückführen lassen.

 a3 a2 a1 a0
  b3 b2 b1 b0

 d3 d2 d1 d0

Algorithmus “Grundrechenarten” mit GUI

In der ALU einer CPU sind in der Regel nur die Rechenoperationen “Addition” und
“Subtraktion” hardwaremäßig implementiert; die “höheren” Rechenoperationen
“Multiplikation”, “Potenzierung” und “Division” werden als iterativ formulierte
Maschinenprogramme, also als Software, realisiert. Wir simulieren diese
Vorgänge mit dem in Python codierten Algorithmus Grundrechenarten_GUI.py,
in welchem für die höheren Rechenoperationen iterativ geschriebene Funktionen
definiert werden.
Wir führen

- die Multiplikation auf wiederholte Addition,
- die Potenzierung auf wiederholte Multiplikation und
- die (ganzzahlige) Division auf wiederholte Subtraktion

zurück.

Programmtext in Python:

 2

 3

Nach Ausführen des Programms erhalten wie folgende graphische
Benutzeroberfläche (GUI); die jeweils dazugehörenden Programmtextauszüge
sind in nahezu derselben Farbe (hellgrau, türkis, orange, grün, blau, rot, gelb,
purpur) gehalten wie in der GUI:

 4

label1 = Label(master=fenster,
 bg='lightgrey',fg='purple',
 text='1. Operand',font=("Arial", 20))
label1.place(x=10, y=10, width=230, height=50)

label2 = Label(master=fenster,bg='lightgrey',fg='purple',
 text='2. Operand',font=("Arial", 20))
label2.place(x=250, y=10, width=230, height=50)

entry1 = Entry(master=fenster, bg='turquoise', font=("Arial", 20))
entry1.place(x=10, y=70, width=230, height=50)

entry2 = Entry(master=fenster, bg='orange', font=("Arial", 20))
entry2.place(x=250, y=70, width=230, height=50)

label3 = Label(master=fenster,
 bg='lightgrey',
 fg='purple',
 text='Operation',
 font=("Arial", 20))
label3.place(x=10, y=140, width=490, height=50)

 5

button = Button(master=fenster, bg='green', text='+',
 font=("Arial", 30), command = addiere)
button.place(x=10, y=200, width=90, height=50)

button = Button(master=fenster, bg='blue', text='-',
 font=("Arial", 30), command = subtrahiere)
button.place(x=110, y=200, width=90, height=50)

button = Button(master=fenster, bg='red', text='*',
 font=("Arial", 30), command = multipliziere)
button.place(x=210, y=200, width=90, height=50)

button = Button(master=fenster, bg='yellow', text='^',
 font=("Arial", 30), command = potenziere)
button.place(x=310, y=200, width=90, height=50)

button = Button(master=fenster, bg='purple', text='/',
 font=("Arial", 30), command = dividiere)
button.place(x=410, y=200, width=90, height=50)

label4 = Label(master=fenster,
 bg='lightgrey',
 fg='purple',
 text='Resultat',
 font=("Arial", 20))
label4.place(x=10, y=280, width=490, height=50)

label5 = Label(master=fenster,
 bg='lightblue',
 fg='black',
 text='',
 font=("Arial", 20))
label5.place(x=10, y=340, width=490, height=50)

Binäre Suche Informatik 12 Januar 2022

Gegeben: Ein sortiertes Array a mit den n Komponenten a[0], , a[n-1]
Aufgabe: Entscheide, ob ein für die Variable value eingegebener Wert als Wert einer Komponente des Arrays a

vorkommt.

Beispiel

value = 13
n = len(a) = 10

Wir übergeben value und die Liste a[0], . . . , a[9] der Booleschen Funktion binarysearch,
welche a[0], . . . , a[9] als lokale Liste array[0], . . . , array[9] fortführt.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21

array[0] array [1] array [2] array [3] array [4] array [5] array [6] array [7] array [8] array [9]

3 4 5 5 7 8 11 13 19 21

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 5

2. Schritt:
midvalue = array[len(array)//2] = array[10//2] = array[5] = 8
Wir vergleichen value mit midvalue:

 2

Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste a[0], . . . , a[4] links von a[5]
Falls value > midvalue: suche in der Liste a[6], . . . , a[9] rechts von a[5]

hier: wegen 13 > 8 suchen wir in der Liste a[6], . . . , a[9]

Suche value in der Liste a[6], . . . , a[9]

a[6] a[7] a[8] a[9]

11 13 19 21

Diese Liste a[6], . . , a[9] und value übergeben wir der Booleschen Funktion binarysearch,
welche a[6], . . , a[9] als lokale Liste array[0], . . . , array[3] fortführt.

array[0] array[1] array[2] array[3]

11 13 19 21

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 4//2 = 2

2. Schritt:
midvalue = array[len(array)//2] = array[4//2] = array[2] = 19
Wir vergleichen value mit midvalue:

 3

Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0], . . . , array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suchen wir in der Liste array[0], . . . , array[1]

Suche value in der Liste array[0], . . . , array[1]

array[0] array[1]

11 13

Diese Liste array[0], . . . , array[1] und value übergeben wir der Booleschen Funktion binarysearch,
welche array[0], . . . , array[1] als lokale Liste array[0], . . . , array[1] fortführt.

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 2//2 = 1

2. Schritt:
midvalue = array[len(array)//2] = array[2//2] = array[1] = 13
Wir vergleichen value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0] links von array[1]
Falls value > midvalue: suche in der leeren Liste [] rechts von array[1], dann: binarysearch gibt den Wert

False zurück; nicht gefunden!

hier: wegen 13 = value = midvalue = 13: binarysearch gibt den Wert True zurück; gefunden!

 4

Der Booleschen Funktion binarysearch werden das aus n Komponenten bestehende
sortierte Feld a (in Python: Liste) und der zu suchende Wert value übergeben;
binarysearch liefert den Wert True, falls eine Komponente von a mit value
übereinstimmt, andernfalls den Wert False.
Die Variable z ermittelt die Anzahl der Aufrufe von binarysearch.

Quelltext in Python:

.

z = 0
.

def binarysearch(array,value):
 global z
 z += 1
 print(array)
 if array == [] or (len(array) == 1 and array[0] != value):
 return False
 else:
 midvalue = array[len(array)//2]
 if midvalue == value:
 return True
 elif value < midvalue:
 return binarysearch(array[:len(array)//2],value)
 else:
 return binarysearch(array[len(array)//2 + 1:],value)

Aufruf der Funktion binarysearch:

binarysearch(a,value)

Komplexität des Algorithmus binarysearch:

Die Komplexität und damit der Rechenaufwand A(n) wird wesentlich bestimmt durch die
Anzahl z der Aufrufe der rekursiv definierten Funktion binarysearch; o. B. d. A. sei n
eine Potenz von 2, d. h. n = 2k mit k = 0, 1, 2, 3,
Beachte: die maximale Anzahl von Aufrufen (worst case) tritt ein, falls die Suche
ergebnislos ist.

k = 0  n = 1

k = 3  n = 8

k = 4  n = 16

 5

Eine Verdopplung von n impliziert höchstens einen weiteren Aufruf von binarysearch!

Offensichtlich gilt:

z = k

Wegen n = 2k  k = log2(n) folgt:

z = log2(n)

Somit hat der Algorithmus binarysearch logarithmische Komplexität:

A(n)  log2(n)

Bemerkung:
Falls im ungünstigsten Fall binarysearch noch die leere Liste [] übergeben wird, gilt: z = k + 1

Modifikation des Algorithmus binarysearch:
Die rekursive Funktion binarysearch liefert den booleschen Wert False, falls value
nicht gefunden wird, andernfalls den Index index der betreffenden Komponente.
Außer a und value sind die Indices begin und end an die Funktion binarysearch
zu übergeben, so daß binarysearch die Teilliste a[begin] , , a[end]
durchsucht.
Beachte: index wird innerhalb des Funktionsrumpfs als globale Variable definiert.

z = 0
.

def binarysearch(array, value, begin, end):
 global index
 global z
 z += 1
 print(array[begin:end+1])
 if begin > end: return False
 middle = (begin + end) // 2
 print('mittleres Element: a[',middle,'] = ',array[middle])
 if array[middle] == value:
 index = middle
 elif array[middle] < value:
 return binarysearch(array, value, middle + 1, end)
 else:
 return binarysearch(array, value, begin, middle - 1)

Aufruf der Funktion binarysearch zur Suche von value in der sortierten Liste
a[0], , a[n-1]:

binarysearch(a, value, 0, len(a)-1)

Gütekriterien bei Algorithmen

1. Effizienz
 Verlangt werden Effizienz bzgl. des zeitlichen Aufwands und des Speicherbedarfs

während der Laufzeit; beide Forderungen sind häufig nicht gleichzeitig erfüllbar.

2. Korrektheit
 Das Programm liefert die Lösung eines Problems entsprechend seiner Spezifikation, in

der die Eingabedaten und die Ausgabedaten vorgeschrieben werden.

3. Zuverlässigkeit
 Ein zuverlässiges Programm korrigiert Fehler infolge falscher Anwendung oder

falscher oder sinnloser Eingabe.

4. Wartungsfreundlichkeit
 Ein wartungsfreundliches Programm läßt sich leicht ändern, korrigieren oder

erweitern (wichtig für upgrades!); die Wartungsfreundlichkeit setzt allerdings eine
entsprechende Dokumentation des Quelltextes voraus.

5. Benutzerfreundlichkeit
 Der Anwender kann ohne Konsultation des Programmautors oder eines Handbuchs

mit dem Programm erfolgreich umgehen; diese Fertigkeit wird selbstverständlich
auch unterstützt von der Intuition und Erfahrung des Anwenders.

1. Effizienz

Sei n := Anzahl der Datensätze, die der Algorithmus zu verarbeiten hat

Algorithmus Sortieren

durch
direkte
Auswahl

Sortieren
durch
Mischen
(mergesort)

Türme von
Hanoi

Erfassen
von
Adressen

Suchen in
einer
sortierten
Liste

Anzahl der
Rechenope-
rationen und
damit
zeitlicher
Bedarf zur
Laufzeit des
Programms
proportional
zu

n2 n ⋅ log2(n) 2n − 1 n log2(n)

Art des
Wachstums

polynomial exponentiell linear logarithmisch

Algorithmen, deren zeitlicher Aufwand exponentiell oder stärker als exponentiell
(Ackermann-Funktion!) anwächst, sind in der Praxis unbrauchbar.

 2

2. Korrektheit

Jeder Programmierer macht die Erfahrung, daß ein Programm weder bezüglich der
Syntax der verwendeten Programmiersprache noch bezüglich der erwarteten
Verarbeitung der Daten auf Anhieb korrekt ist.

Insbesondere gilt dies für überaus komplexe Programme wie Betriebssysteme (winXP
oder win2k3; die alten winDOS-Systeme (win3.11, win95, win98, winME) erwiesen sich
als besonders unzuverlässig).

In einigen Fällen, leider beschränkt auf vergleichsweise einfache Algorithmen, läßt sich
sogar ein mathematischer Beweis für die Korrektheit eines Algorithmus erbringen, indem
man Schleifeninvarianten findet und diese als korrekt verifiziert. Das hierzu benötigte
Beweisverfahren ist das Verfahren der Vollständigen Induktion (Die Mathematik kennt
bekanntlich drei Beweisverfahren: direkter Beweis, indirekter Beweis, vollständige
Induktion).

Verfahren der Vollständigen Induktion:

Sei A(n) eine von der natürlichen Zahl n abhängige Aussage, n ∈ {0, 1, 2, 3, }.

Um zu beweisen, daß A(n) wahr ist für alle n ∈ {0, 1, 2, 3, }, verifizieren wir:

 (1) A(0) ist wahr (Induktionsanfang)

 (2) Die Implikation [A(n) ⇒ A(n+1)] ist wahr (Induktionsschritt)

Bevor wir dieses Verfahren auf den Korrektheitsbeweis von Algorithmen anwenden,
sollten wir es bei einfachen innermathematischen Problemen einüben und verstehen.

Aufgabe 1:

Behauptung: 12 + 22 + 32 + + n2 = n(n+1)(2n+1)/6

Beweis:

Definiere A(n) := „12 + + n2 = n(n+1)(2n+1)/6“

(Beachte: A(n) ist eine Gleichung, somit insbesondere eine Aussage, die genau zwei
boolesche Werte annehmen kann: TRUE oder FALSE.)

Induktionsanfang (n=1):

A(1)=TRUE ,
denn A(1) ⇔ [12 = 1⋅(1+1)(2⋅1+1)/6] ⇔ [1 = 1⋅2⋅3/6] ⇔ [1=1]
die letzte Aussage hat trivialerweise den Wert TRUE.

Induktionsschritt:

Unter der Annahme, daß A(n) TRUE ist, verifizieren wir, daß dann auch A(n+1) den Wert
TRUE annimmt.

 3

Sei also A(n) TRUE, das heißt

12 + 22 + 32 + + n2 = n(n+1)(2n+1)/6 ist richtig für beliebiges n (diese
Annahme heißt auch Induktionsvoraussetzung).

Wir betrachten A(n+1), also die Gleichung

12 + 22 + + (n + 1)2 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6,

die wir unter der Annahme, daß A(n) TRUE ist, als TRUE qualifizieren werden.

12 + 22 + + (n + 1)2 = [12 + 22 + + n2] + (n + 1)2

wegen A(n) = TRUE folgt
 = n(n+1)(2n+1)/6 + (n + 1)2

 = (n + 1)[n(2n+1)/6 + (n + 1)]

 = (n + 1)[n(2n+1) + 6(n + 1)]/6

 = (n + 1)[2n2+n + 6n + 6)]/6

 = (n + 1)[2n2+ 7n + 6)]/6

 = (n + 1)[(n + 2)(2n + 3)]/6

 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6

Somit folgt unter der Annahme „A(n)=TRUE“, daß „A(n+1)=TRUE“ wahr ist, und in
Verbindung mit dem Induktionsanfang „A(1)=TRUE“ ergibt sich die Behauptung für alle
Werte von n.

Als Übungsaufgabe verifiziere man die Behauptungen der Aufgaben 2 und 3:

Aufgabe 2:

Behauptung: 13 + 23 + 33 + + n3 = n2(n+1)2/4

Aufgabe 3:

Behauptung: Die Bernoullische Ungleichung (1 + x)n > 1 + n ⋅ x

 ist wahr für alle natürlichen Zahlen n mit n≥2 und für reelle Zahlen x mit
 x≠0 und 1+x>0.

(Vgl. auch das Mathematikbuch; man sieht, daß Informatik und Mathematik durchaus
verwandte Wissenschaften sind, was man auch nicht anders vermutet hätte.)

 4

Korrektheitsbeweise bei Algorithmen

1. Der Algorithmus elmo

Seien n eine natürliche Zahl, a eine von 0 verschiedene reelle Zahl.
Gegeben ist folgender Algorithmus als Struktogramm:

Aufgaben:

a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache).

b) Teste das Programm; was bewirkt der Algorithmus vermutlich?

c) Die Vermutung läßt sich anhand eines Trace erhärten; finde eine Beziehung, die sich

als Schleifeninvariante erweisen könnte.

d) Beweise vermöge vollständiger Induktion, daß die in c) gefundene Beziehung

tatsächlich Schleifeninvariante ist, und schließe daraus, daß die in b) aufgestellte
Vermutung, was der Algorithmus bewirkt, richtig ist.

 Eingabe a; n

b:=a; u:=n; p:=1;

Ausgabe p

while u>0

 u ungerade
+ −

u:=u-1

p:=p*b

u:=u div 2

b:=b*b

 5

Lösungen:

zu a):

 program elmo;

uses crt;
var n,u :longint;
 a,b,p:real;

begin

 clrscr;

 { Eingabe der Werte für a und n }
 write('a = '); readln(a);
 write('n = '); readln(n);

 { Initialisierung der Variablen }
 b:=a;
 u:=n;
 p:=1;

 { Verarbeitung der Daten }
 while u>0 do begin
 if odd(u) then begin
 u:=u-1;
 p:=p*b
 end;
 u:=u div 2;
 b:=sqr(b)
 end;

 { Ausgabe }
 writeln;
 write ('p = ',p);
 while not keypressed do

 end.

zu b): Kompiliere den Quelltext und führe das Programm aus.

zu c):

Empirisches Testen des Programms anhand eines Trace

Vereinbarung: S.D. = Schleifendurchlauf

Seien n eine natürliche Zahl, a eine von 0 verschiedene reelle Zahl.

 6

α) Trace für n=7:

 n a b u p u=0

vor dem
1. S.D. 7 a a 7 1 −

vor dem
2. S.D. 7 a a2 3 a −

vor dem
3. S.D. 7 a a4 1 a3 −

nach dem
3. S.D. 7 a a8 0 a7 +

β) Trace für n=18:

 n a b u p u=0

vor dem
1. S.D. 18 a a 18 1 −

vor dem
2. S.D. 18 a a2 9 1 −

vor dem
3. S.D. 18 a a4 4 a2 −

vor dem
4. S.D. 18 a a8 2 a2 −

vor dem
5. S.D. 18 a a16 1 a2 −

nach dem
5. S.D. 18 a a32 0 a18 +

γ) Trace für n=52:

 n a b u p u=0

vor dem
1. S.D. 52 a a 52 1 −

vor dem
2. S.D. 52 a a2 26 1 −

vor dem
3. S.D. 52 a a4 13 1 −

vor dem
4. S.D. 52 a a8 6 a4 −

vor dem
5. S.D. 52 a a16 3 a4 −

vor dem
6. S.D. 52 a a32 1 a20 −

nach dem
6. S.D. 52 a a64 0 a52 +

 7

Vermutung:

Die Beziehung

p⋅bu = an

ist vor und nach jedem Schleifendurchlauf erfüllt, also invariant gegenüber
Schleifendurchläufen. Eine solche Gleichung heißt auch Schleifeninvariante.

Der Algorithmus bricht ab, sobald u den Wert 0 hat; da u bei jedem Schleifendurchlauf
um 1 vermindert wird, falls u ungerade ist, in jedem Fall aber durch 2 dividiert wird, ist
die Abbruchbedingung nach endlich vielen Schleifendurchläufen mit Sicherheit erfüllt.

Für u=0 schreibt sich die Schleifeninvariante:

p⋅b0 = an

⇔ p = an

Damit ist gezeigt, daß bei Abbruch des Algorithmus die Zahl an ausgegeben wird, falls die
Beziehung p⋅bu = an sich als Schleifeninvariante erweist.

Zu d):

Wir führen den Beweis vermöge vollständiger Induktion über den Index i, der den i-ten
Schleifendurchlauf bezeichnet.

Mit pi , bi und ui bezeichnen wir die Werte der Variablen p , b und u vor dem i-ten
Schleifendurchlauf.

Induktionsanfang (i=1):

Wegen p1 = 1 , b1 = a und u1 = n gilt:

1 =⋅ = ⋅1
1 1

u n np b a a , somit ist die Beziehung p⋅bu = an für i=1 erfüllt.

Induktionsschritt:

Wir nehmen an, daß die Beziehung p⋅bu = an vor dem i-ten Schleifendurchlauf erfüllt
ist, daß somit gilt:

⋅ i
i i

u np b = a (*)

Wir werden verifizieren, daß unter dieser Annahme (*) die Beziehung p⋅bu = an auch
nach dem (i + 1)-ten Schleifendurchlauf erfüllt ist.

Dazu drücken wir die Werte pi+1 , bi+1 und ui+1 der Variablen p , b und u durch die Werte
pi , bi und ui aus. Da die Eigenschaft von u, gerade oder ungerade zu sein, auf die
Berechnung der neuen Werte von p , b und u Einfluß hat, müssen wir eine
Fallunterscheidung vornehmen:

 8

α. u sei ungerade vor dem i-ten Schleifendurchlauf, also odd(ui) = TRUE

 pi+1 = pi ⋅ bi ⇔ pi = pi+1 / bi

 bi+1 = bi ⋅ bi ⇔ bi = √ bi+1

 ui+1 = (ui − 1)/2 ⇔ ui = 2 ⋅ ui+1 + 1

 Wenn wir in die Gleichung (*) die für pi , bi und ui erhaltenen Werte einsetzen, folgt:

(pi+1 / bi) ⋅ (√ bi+1)^(2 ⋅ ui+1 + 1) = (pi+1 / √ bi+1) ⋅ (√ bi+1)^(2 ⋅ ui+1 + 1)

 = pi+1 ⋅ bi+1^ui+1

β. u sei gerade vor dem i-ten Schleifendurchlauf, also odd(ui) = FALSE

 Übungsaufgabe!

2. Der Algorithmus merlin

x und y seien natürliche Zahlen mit x ≥ 0 und y > 0.
Gegeben ist folgender Algorithmus als Struktogramm:

Aufgaben:

a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache).

b) Teste das Programm; was bewirkt der Algorithmus vermutlich?

 Eingabe x; y

q:=0; r:=x;

while r ≥ y

 q:=q + 1

 r:=r − y

 Ausgabe q

 Ausgabe r

 9

c) Läßt sich der Algorithmus auch mit einer repeat-Schleife formulieren?

d) Die Vermutung aus b) läßt sich anhand eines Trace erhärten; finde eine

Beziehung, die sich als Schleifeninvariante erweisen könnte.

e) Beweise vermöge vollständiger Induktion, daß die in d) gefundene Beziehung

tatsächlich Schleifeninvariante ist, und schließe daraus, daß die in b) aufgestellte
Vermutung, was der Algorithmus bewirkt, richtig ist.

3. Den Potenzierungsalgorithmus „elmo“ kann man modifizieren, indem man

die while-Schleife durch folgende Befehlssequenz ersetzt:

while u>0 do begin
 while not odd(u) do begin
 u:=u div 2;
 b:=b*b
 end;
 u:=u−1;
 p:=P*b
 end;

a) Integriere diese Befehlssequenz in den vorhandenen Programmtext und teste das

Programm empirisch.

b) Beweise die Korrektheit des auf diese Weise modifizierten Algorithmus!

4. In einem Buch ist das Struktogramm des folgenden Algorithmus abgedruckt,

von dem behauptet wird, daß er das Produkt der natürlichen Zahlen a und b
berechne (dieses − im übrigen nicht schlechte − Buch gibt’s tatsächlich!):

 Eingabe a , b

u:=a; v:=b; s:=0;

Ausgabe s

while u>0

 u gerade
+ −

s:= s+v

u:=u div 2

s:=2*s

 10

a) Verifizieren anhand eines Trace (oder indem man das Pascal-Programm schreibt
und dieses testet), daß der Algorithmus das verlangte nicht leistet.

b) Korrigiere den Algorithmus, so daß er korrekt im Sinne der Spezifikation arbeitet;

beweise dessen Korrektheit vermöge vollständiger Induktion.

