
Sortieren durch Mischen ("MergeSort")  
 
Aufgabe:  
 
Gegeben ist eine Liste L = {a[0], a[2], a[3], . . . . , a[n-1]}  

von n Datenelementen, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt  

sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daß gilt:  

a[0] ≤ a[2] ≤. . . . . ≤ a[n-1] . 

Wir fassen die Elemente der Liste auf als Komponenten eines arrays a. 

 
 
Strategie: "Divide et impera"  
 
Eine Liste, die nur ein einziges Element enthält, ist bereits sortiert. 
 
Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, läßt sich in 4 Schritten 
bewältigen:  
 

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten  
 

2). Sortiere die erste Teilliste gemäß den Schritten 1). - 4).  
 

3). Sortiere die zweite Teilliste gemäß den Schritten 1). - 4).  
 

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste 
 
 
Falls left < right wahr ist, sortiert die rekursiv definierte Funktion 
 

sort(array, left, right)  
 

die Liste  
 

array[left], . . . . , array[right] 
 

unter Verwendung der Funktion merge. 
 

Die Funktion 
  

merge(array, left, middle, right) 
 

mischt die sortierten Teillisten  
 

array[left], . . . . , array[middle] 
 

und 
 

array[middle+1], . . . . , array[right] 
 

zu der sortierten Gesamtliste 
 

array[left], . . . . , array[right] . 
 
Quellcode der Funktion sort in Python: 
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def sort(array, left, right):   
     if left >= right:   
          return   
     middle = (left + right)//2   
     sort(array, left, middle)   
     sort(array, middle + 1, right)   
     merge(array, left, middle, right) 
 
 
Aufruf zum Sortieren der aus den n Komponenten  
 

 a[0], a[2], a[3], . . . . , a[n-1] 
 

bestehenden Liste a: 
 

 sort(a, 0, len(a)-1) 
 
 
 
Aufwandsbetrachtung: 
 

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie 
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus 
n Komponenten bestehende Liste zu sortieren. 
 

Dann gilt: 
 

A(n)  =  2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen  
+ Aufwand zum Mischen zweier sortierter Teillisten 

 

A(n)  =  A(n/2) + A(n/2)  
+ Aufwand zum Mischen zweier sortierter Teillisten 

 

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wächst linear mit der Anzahl n der zu sortierenden Datenelemente; somit 
erhalten wir für den Funktionsterm A(n) die Funktionalgleichung (c = Konstante 
= Proportionalitätsfaktor) 
 

(*)  A(n)  = A(n/2) + A(n/2) + c  n   mit der Bedingung 
(**)  A(1)  = 0 . 

 

Behauptung: Die Funktion  
 

A(n) = c  n  log2(n) 
 

ist Lösung der Funktionalgleichung (*) mit der Anfangsbedingung (**). 
 
Beweis: 
 
A(n/2) + A(n/2) + c  n   =  2  A(n/2) + c  n   

=  2  c  n/2  log2(n/2) + c  n  
=  c  n  (log2(n)   log2(2)) + c  n 
=  c  n  (log2(n)   1) + c  n 
=  c  n  log2(n)  
=  A(n)  
 

Damit ist (*) erfüllt; wegen log2(1) = 0 genügt A(n) auch der Bedingung (**). 
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Bemerkung: Mit Methoden der Analysis läßt sich die Eindeutigkeit der Lösung des 
Problems (*), (**) zeigen, somit ist mit A(n) = c  n  log2(n) die einzige Lösung 
der Funktionalgleichung gefunden. 
 
Allgemein läßt sich beweisen, daß der Aufwand zum Sortieren von n Datensätzen 
grundsätzlich mindestens von der Ordnung n  log2(n) wächst. In diesem Sinne 
kann das Sortierverfahren „MergeSort“ als optimales Vefahren gelten.  
 
 
Ergänzende Betrachtung zum Speicherplatzbedarf:  
 

Nachdem wir festgestellt haben, daß der Aufwand zum Sortieren von n 
Datenelementen von der Ordnung n  log2(n) wächst und damit ein Optimum 
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber 
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn 
rekursive Algorithmen haben grundsätzlich den Nachteil, daß sie während der 
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. Daß dieser Effekt bei 
MergeSort nicht oder nur unwesentlich ins Gewicht fällt, zeigt folgende 
Überlegung:  
 

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion 
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.  
 

O. B. d. A. sei n eine Zweierpotenz, d. h.  n=2k,  k{0, 1, 2, 3, . . . . . . }.  
 
Bemerkung: Der Pfeil                    bedeutet: „ruft auf“ 
 
n = 1:                              sort(a,0,0)                                       1 Aufruf 
 
 
n = 2:                              sort(a,0,1) 
 
 
 
                             sort(a,0,0)        sort(a,1,1)                          
 
                                                                            1 + 2  1 = 3 Aufrufe 
 
 
 
n = 4:                                 sort(a,0,3) 
 
 
 
                          sort(a,0,1)                  sort(a,2,3)                       
 
 
 
 
         sort(a,0,0)        sort(a,1,1)         sort(a,2,2)       sort(a,3,3) 
 
                                                                             1 + 2  3 = 7 Aufrufe 
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n = 8:                                          sort(0,7) 
 
 
 
                                sort(0,3)                                           sort(4,7)                       
 
 
 
 
                  sort(0,1)                sort(2,3)                    sort(4,5)                   sort(6,7) 
 
 
 
   sort(0,0)     sort(1,1)    sort(2,2)   sort(3,3)       sort(4,4)    sort(5,5)     sort(6,6)     sort(7,7) 
 
 
                                                                             1 + 2  7 = 15 Aufrufe 
 
 
 
f(1)  = 1  =   1  =  2  1  – 1  

f(2)  = 1 + 2  1  =   3  =  2  2  – 1  

f(4)  = 1 + 2  3  =   7  =  2  4  – 1  

f(8)  = 1 + 2  7  =  15  =  2  8  – 1  

f(16) = 1 + 2  15 =  31  =  2  16 – 1  

f(32) = 1 + 2  31  =  63  =  2  32 – 1  

 
allgemein:  
 
f(n) = 2  n – 1  
 
Offensichtlich ist f(n) Lösung der rekursiv definierten Funktionalgleichung  

 f(n) = 1 + 2  f(n/2)  

mit der Anfangsbedingung  f(1) = 1 .  

 
Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der 
Speicherplatzbedarf während der Laufzeit wächst somit linear mit n, also 
wesentlich schwächer als die Anzahl A(n) elementarer Rechenoperationen. 
 
 
 
Die rekursiv veranlaßten Aufrufe der Funktion sort zerlegen die zu sortierende 
Liste in Teillisten jeweils der Länge 1, die als ein-elementige Listen bereits 
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils 
einer sortierten Liste gemäß folgendem Diagramm: 
 
 
Bemerkung: Der Pfeil                    bedeutet: „wird gemischt“ 
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                                                                   merge(0,3,7) 
  

                                            a[0]   a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]       
 

 
Für die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar: 

 
g(1) = 0 
g(n) = 1 + 2  g(n/2)      falls   n = 2k,  k > 1 
 
Lösung der vorstehenden Funktionalgleichung: 
 
g(n) = n  1 

 
 
Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe 
der Funktion merge wachsen jeweils linear mit n. 

 
 

Februar 2021 
 
 
 

 
Bemerkung:  
Für den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten 
wir bei 
 

- SelectionSort:  A(n)  n2 
- MergeSort:        A(n)  n  log2(n) 
- Fibonacchi-Folge:  A(n)  2n  (bei rekursiver Berechnung) 
- BinarySearch: A(n)  log2(n) 

 
 
Entsprechend haben 
 

- SelectionSort quadratische Komplexität, 
- MergeSort linear-logarithmische Komplexität, 
- die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexität, 
- BinarySearch logarithmische Komplexität. 

 
Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar. 





Arbeitsauftrag für die Doppelstunde am 09.09.2021                    inf12                           
Die aus den n Komponenten a[0], a[1], . . . . . , a[n-1] bestehende Liste a 
soll aufsteigend sortiert werden. 
 
1. Gegeben ist der Quelltext SelectionSort.txt zum Algorithmus „Sortieren durch 

direkte Auswahl“; nach Eingabe einer natürlichen Zahl n wird eine aus n 
Zufallszahlen bestehende Liste a erzeugt und anschließend aufsteigend sortiert. 

  

 Wir modifizieren diesen Quelltext so, daß das Sortieren nach dem Algorithmus 
„MergeSort“ erfolgt; ersetze hierzu denjenigen Programmteil, der den Sortiervorgang 
veranlaßt, in geeigneter Weise durch die Funktionen sort und merge. Benutze hierzu 
das Skriptum MergeSort_01-09-2021.pdf und den Quelltext function_merge.txt 
der Funktion merge.  
Aufruf der Funktion sort zum Sortieren der Liste a:  sort(a, 0, len(a)-1) 

 

2. Vergleiche die Algorithmen SelectionSort und MergeSort experimentell hinsichtlich 
ihrer zeitlichen Effizienz. 

 

3. Implementiere Variable x und y, um die Anzahl der Aufrufe der Funktionen sort und 
merge jeweils zu zählen, und bestätige die diesbezüglichen Ergebnisse aus dem 
Skriptum. 

  
4. Hausaufgabe: 

Um den Aufwand bei SelectionSort zu ermitteln, betrachten wir denjenigen 
Programmteil, der das Sortieren ausführt: 

  
         j = 0 
          while j <= n-2: 
              i = j + 1 
              min = a[j] 
              while i < n: 
                  if a[i] < min: 
                     min = a[i] 
                     a[i] = a[j] 
                     a[j] = min 
                  i = i + 1 
              j = j + 1 
 
 Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife dieses 

Programmauszugs gedanklich zum Anweisungsblock A zusammen  
(markiere Block A im obenstehenden Programmtext). 
Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu 
sortieren, fragen wir, wie oft Block A in Abhängigkeit von n abgearbeitet wird. 

 

a)  Vervollständige die Einträge in folgender Tabelle, wobei z(j) angibt, wie oft Block A 
in Abhängigkeit von j abgearbeitet wird.  

 
 

 

 
  

 
 
 
 
 
 
 
 
 
 

b) Die Gesamtzahl z der Abarbeitungen von Block A ergibt sich als  
 

 z = z(0) + z(1) + z(2) + z(3) + . . . . . . . . .  + z(n-3) + z(n-2) 
 

 Vereinfache diese Summe und zeige so, daß z quadratisch mit n wächst! 
 

 Hinweis:  Für die Summe der ersten n natürlichen Zahlen gilt bekanntlich: 
  1 + 2 + . . . . . . . + n =  ½  n  (n + 1) 

Index j Index i z(j) 

j = 0  i    

j = 1  i    

j = 2  i    

.... .... .... 

j = n-3  i    

j = n-2  i    



Komplexität zur Laufzeit (Sorting and Searching) 
 
SelectionSort   -   BinarySearch  
 
Array mit 10.000 Komponenten: 

 
 
Array mit 20.000 Komponenten: 

 
 



MergeSort   -   BinarySearch  
 
Array mit 20.000 Komponenten: 

 
 
Array mit 1.000.000 Komponenten: 

 
 



Array mit 4.000.000 Komponenten: 
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Boolesche Terme und Schaltalgebra 
 
1. Datentyp boolean 
 
Eine Boolesche Variable oder ein Boolescher Ausdruck (Term) nimmt nur zwei Werte an: 
True oder False   
(abkürzend: 1 oder 0; in Python sind True oder False zu verwenden) 
 

Insbesondere sind folgende Terme Boolesche Ausdrücke, deren Wert sich auch einer 
Variablen zuweisen läßt: 
 
8 > 5     hat den Wert True 
7 == 8 hat den Wert False 
7 != 8 hat den Wert True 
x hat den Wert True     nach der Wertzuweisung x =  7 < 12  
x hat den Wert False   nach der Wertzuweisung x = (0 == 6) 
a or b hat den Wert True genau dann, wenn mindestens eine der Variablen  a, b 

den Wert True hat; andernfalls hat   a or b  den Wert False. 
 
Mit a = 7 != 8   oder   a = (7 != 8) wird in Python der Booleschen Variablen a 
der Wert des Booleschen Terms 7 != 8 (hier: True) zugewiesen. 
 
Wir definieren die Verknüpfungen and und or sowie die Operation not jeweils über eine 
Wahrheitstafel: 
 
a b a or b  a b a and b  a not a 

False False False  False False False  False True 

False True True  False True False  True False 

True False True  True False False    

True True True  True True True    

 
Abkürzende Schreibweisen (a, b, c sind Boolesche Variable oder Boolesche Terme): 
 

 a and b  =  a  b  =  a  b  =  a b 
 a or b   =  a  b  =  a + b 
 not a    =   a  =  a 
 

Dabei gelte auch die aus der Algebra bekannte Vereinbarung “Punkt vor Strich”, d. h. 
 a + (b  c) = a + b  c = a + b c 
Die AND-Verknüpfung nennen wir auch Konjunktion,  
die OR-Verknüpfung Disjunktion. 
 
2.  Rechenregeln für Boolesche Variable 
 

 Kommutativgesetz 
 

 (1)  a + b = b + a                   (1’)  a  b = b  a 
  

Assoziativgesetz 
 

 (2)  a + (b + c) = (a + b) + c       (2’)  a  (b  c) = (a  b)  c  
 
 Distributivgesetz 
 

 (3)  a  (b + c) = a  b  +  a  c     (3’)  a + b  c = (a + b)(a + c) 
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Absorptionsgesetz 
 

(4)  a(a + b) = a                    (4’)  a + ab = a 
 
      Tautologie 
 

    (5)  a  a = a                        (5’)  a + a = a 
 
    Gesetz über die Negation 
 

    (6) a a = 0                           (6’)  a + a = 1 
 
   Doppelte Negation 
 

    (7) a a  
 
    Gesetz von De Morgan 
 

    (8)  a b a b                         (8’)  a+b a b   
 
    Operationen mit 0 und 1 
 

    (9.1)   a  1 = a                     (9.1’)   a + 0 = a 
 
    (9.2)   a  0 = 0                     (9.2’)   a + 1 = 1 
 
    (9.3)   not 0 = 1                     (9.3’)   not 1 = 0 
 
Bemerkung: Die jeweils in einer Zeile stehenden Gesetze sind duale Gesetze 
voneinander; Beispiel: (3’) ist das duale Gesetz von (3), (3) das duale Gesetz von (3’). 
 
Beweis von Rechengesetz (3): 
  

a b c b + c a(b + c) ab ac ab + ac 
0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 
0 1 0 1 0 0 0 0 
0 1 1 1 0 0 0 0 
1 0 0 0 0 0 0 0 
1 0 1 1 1 0 1 1 
1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 

  
Da die Spalten zu  a(b + c) und  ab + ac  übereinstimmen, gilt:  a(b + c) = ab + ac . 
 
Aufgaben: 
 
1. Beweise das Distributivgesetz (3’). 
 

2.  Beweise die Gesetze von De Morgan.  
Hinweis: Wahrheitstafel; außer den Spalten für a und b (4 Zeilen) erstelle Spalten für 

a  b,   a b ,   a,   b ,   a b   für Regel (8). 
 

3. Unter der Disjunktion  a or b  versteht man das nichtausschließende oder („non-
exclusive or“),  d. h., a or b  ist genau dann True, falls a oder b oder sowohl a 
als auch b  True sind („oder“ im Sinne von lat. vel). 

 Unter der Verknüpfung   a xor b  (andere Schreibweise:  a  b )  versteht man 

das ausschließende oder (exclusive or), d. h., a  b  ist genau dann True, falls 
entweder a  oder  b  den Wert True hat. 

 Zeige:         a  b   =     a b + a b  
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z = a b (c + c) + b c (a + a)

  = a b 1 + b c 1

  = a b + b c

  = a+b + b c

   

   

 



BEISPIEL 1 
 

Die Boolesche Funktion   
z = f(a,b,c)  
ist durch nebenstehende  
Wahrheitstafel  
gegeben: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

a) Ermittle die disjunktive Normalform (DNF; Disjunktion von Konjunktionen) für z. 
 

b) Vereinfache den Funktionsterm unter Anwendung der Booleschen Rechengesetze. 
 

c) Zeichne den Schaltplan für die optimierte Funktion z. 
 
Lösung: 
 

a) z = a b c + a b c + a b c + a b c         
 
b)                                                                            Kommutativ- und Distributivgesetz  
 
 
 
 
 
                                                                               de Morgan’s Gesetz      
 
   
 

c)  z = a b + b c     (oben)                       z = a+b + b c     (unten) 
 

 
 

a b c z 
0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 
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BEISPIEL 2 
 
Gegeben ist folgende digitale Schaltung mit den Eingangsvariablen a, b und der 
Ausgangsvariablen z: 
 

 
 

a) Ermittle den Booleschen Term für die Boolesche Funktion z = f(a,b,c). Hinweis: 
Notiere am Ausgang jedes Gatters jeweils den Booleschen Term (Beispiel: a b  am 
Ausgang des NAND-Gatters). 

 
b) Vereinfache den in a) erhaltenen Term unter Verwendung der Rechenregeln für 

Boolesche Ausdrücke;  
 
c) Erstelle die Wahrheitstafel und zeichne das Schaltbild für den vereinfachten 

Funktionsterm; teste beide Schaltungsvarianten mit einem 
Digitalsimulationsprogramm. 

 
 
Lösung: 
 
zu a): 
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zu b): 
 

z    =   a b a b    
  

 = a b (a b)                 (2-mal de Morgan) 
 

 = a b a b    (wegen a a ) 
 
 = a b a b    (Kommutativgesetze) 
 

 = a b a b 1     (wegen a a 1  ) 
 

 = a b (a 1)    (Distributivgesetz) 
 
 = a b  (wegen a 1 1  ) 
 
 = a b  (de Morgan) 
 
 
 
zu c): 
 
 
optimierte Schaltung:  Wertetabelle: 
 
 

 
 
 
 
 
 
 
 



Typen von Logikgattern und Symbolik 

Logikgatter werden mit Schaltsymbolen bezeichnet, die nach unterschiedlichen, mehr oder 
weniger parallel existierenden Standards definiert sind.  

Symbol in Schaltplan  Name  Funktion 

IEC 60617-12 : 
1997 & 

ANSI/IEEE Std 
91/91a-1991  

ANSI/IEEE Std 
91/91a-1991  

DIN 40700 (vor 
1976)  

Wahrheits- 
tabelle  

Und-Gatter 
(AND)  

 
 
 
Y=AB 

 
 
 

   

A B Y 
0 0 0  

0 1 0  

1 0 0  

1 1 1   

Oder-Gatter 
(OR)  

 
Y=A+B 
    

A B Y 
0 0 0  

0 1 1  

1 0 1  

1 1 1   

Nicht-Gatter 
(NOT)  

 
 

Y= A  
 
 

   

A Y 
0 1  

1 0   

NAND-Gatter 
(NICHT 
UND) 
(NOT AND)  

 
 
 

Y= A B  
 
 
 

   

A B Y 
0 0 1  

0 1 1  

1 0 1  

1 1 0   

NOR-Gatter 
(NICHT 
ODER) 
(NOT OR)  

 
 

Y= A+B  
 
 

   

A B Y 

0 0 1  

0 1 0  

1 0 0  

1 1 0   

XOR-Gatter 
(Exklusiv-
ODER, 
Antivalenz) 
(eXclusiveOR) 

 
Y=AB 
    

A B Y 
0 0 0  

0 1 1  

1 0 1  

1 1 0   



XNOR-
Gatter 
(Exklusiv-
Nicht-ODER, 
Äquivalenz) 
(eXclusive 
Not OR)  

 
 
 

Y= A B  
 
 
 

   

A B Y 

0 0 1  

0 1 0  

1 0 0  

1 1 1   

 

Früher waren auf dem europäischen Kontinent die deutschen Symbole (rechte Spalte) 
verbreitet; im englischen Sprachraum waren und sind die amerikanischen Symbole (mittlere 
Spalte) üblich. Die IEC-Symbole sind international auf beschränkte Akzeptanz gestoßen und 
werden in der amerikanischen Literatur (fast) durchgängig ignoriert.  

 
 

JK-Flipflop 
 

Ein Flip-Flop (bistabile Kippstufe oder bistabiler Multivibrator) hat zwei stabile Zustände am 
Ausgang Q; die Zustände heißen „gesetzt“ (set)  oder „zurückgesetzt“ (reset). Ein 1-Bit-
Speicher läßt sich somit als FlipFlop realisieren. 
 

Ein JK-FlipFlop ist ein taktgesteuertes FlipFlop: die an den Eingängen J und K liegende 
Information wird mit einer Flanke (hier: der steigenden Flanke) des an C liegenden 

Taktsignals auf die Ausgänge Q und Q  übernommen. 
 

Mit dem Taktsignal (clock, C) und der Eingangsbelegung J = 1 und K = 0 wird am Ausgang 
Q eine 1 erzeugt und gespeichert, alternativ eine 0 bei J = 0 und K = 1. 
 

Bei der Realisierung des JK-Flipflops als taktflankengesteuertes Flipflop kann der Eingang C 
für steigende Flanken (Wechsel von 0 auf 1) oder für fallende Flanken (Wechsel von 1 auf 0) 
ausgelegt sein. 
 

Name und 
Schaltzeichen  

Signal-Zeit-Diagramm  Funktionstabelle  

Flanken-
gesteuertes 
JK-Flipflop 

 

Übernahme der Eingangsinformation durch 
steigende Flanke an C (clock) bis zur       nach der  

     … n-ten Taktflanke  

J  K             Qn  
0  0  Qn−1 (unverändert)  

0  1  0 (zurückgesetzt)  

1  0  1 (gesetzt)  

1  1  NOT Qn−1 (gewechselt)   

 
(Wikipedia) 
 



Halbaddierer und Volladdierer 
 
Die Ziffern einer im Dezimalsystem geschriebenen Zahl a ergeben sich als Aneinanderrei-
hung der Koeffizienten aus der Dezimalzerlegung (Summe von Zehnerpotenzen) von a; 
entsprechend erhalten wir die Darstellung von a im Dualsystem als Aneinanderreihung der 
Koeffizienten aus der Dualzerlegung (Summe von Zweierpotenzen). 
 

87dezimal = 8  101 + 7  100 
 

87dezimal = 1  26 + 0  25 + 1  24 + 0  23 + 1  22 + 1  21 + 1  20 = 1010111dual 

 
Addition der Dualzahlen 
a = a3 2

3 + a2  2
2 + a1  2

1 + a0  2
0    und   b = b3 2

3 + b2  2
2 + b1  2

1 + b0  2
0  : 

                                              
  a3 a2 a1 a0 
 +  b3 b2 b1 b0 
  s4 s3 s2 s1 s0 
 
Den Übertrag („carry“), der sich aus der i-ten Stelle ergibt und der bei der Addition in der 
(i + 1)-ten Stelle zu berücksichtigen ist, bezeichnen wir mit ci+1; i  0. 
 
Für die 0-te Stelle genügt ein Halbaddierer mit den Eingängen a0 und b0 und den Ergebnis-
sen s0 und c1; die Addition in der i-ten Stelle, i  1, erfordert einen Volladdierer mit den 
Eingängen ai, bi, ci und den Ergebnissen si und ci+1. 
 
 
 
Halbaddierer HA 
 
Wahrheitstafel:  
 

a0 b0 s0 c1 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

 
Wir ermitteln für s0 und c1 jeweils die disjunktive Normalform („Disjunktion der Konjunkti-
onen“): 
 

    0 0 0 0 0 0 0 s a b  + a b a b  
 

 1 0 0 c a b  
 
 
 
Volladdierer VA 
 
Wahrheitstafel:  
 

ai bi ci si ci+1 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 
 
Wir ermitteln für si und ci+1 jeweils die disjunktive Normalform („Disjunktion der Konjunk-
tionen“) und vereinfachen ggf. die booleschen Funktionsterme: 
 

  1 1 0 1 
+  1 0 1 1 

 1 1 0 0 0 
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           i i i i i i i i i i i i i s a b c a b c a b c a b c  
 
ohne Index i geschrieben: 
 

            s a b c a b c a b c a b c  
 

           s (a b a b) c a b c a b c  

 

        s (a b) c (a b a b) c  

 

          s (a b) c (0 a b a b 0) c  

 

            s (a b) c (a a a b a b b b) c  

 

        s (a b) c [(a b) (a b)] c  

 

        s (a b) c [(a b) (a b)] c  

 

        s (a b) c [(a b) (a b)] c  

 

        s (a b) c [a b a b] c  

 

      s (a b) c (a b) c  

 

   s (a b) c  

 
mit Index i erhält man: 
 

  i i i i s (a b) c  

 

 
           i+1 i i i i i i i i i i i i c a b c a b c a b c a b c  

 

        i+1 i i i i i i i i i c (a b a b) c a b (c c)  

 

       i+1 i i i i i i i c (a b a b) c a b 1  

 

    i+1 i i i i i c (a b) c a b  
 

 
07.06.2021 



Halbaddierer (HA) und Volladdierer (VA) 
 
Schaltungen 
 

 
 
 
 

 



Addier-Schaltungen für Dualzahlen 
 

 
 
 

1.  Paralleladdierer mit seriellem Übertrag (hier: 4-Bit-Addierer) 
 

 Für das Least Significant Bit (LSB) genügt ein Halbaddierer (HA); die höherwertigen Bits 
erfordern jeweils einen Volladdierer, da hier der Übertrag aus der vorherigen Stelle zu 
berücksichtigen ist. 

 

 
 
 

Dezimal:  09  Hexadezimal:  09    Dual: 0000 1001 
        + 10              + 0A        + 0000 1010 
          19                13          0001 0011 

  
 

 
2. Serieller 1-Bit-Addierer für 4-stellige Dualzahlen  
 

 Die Operanden werden jeweils in einem 4-Bit-Schieberegister abgelegt, nach 4 Taktimpulsen 
finden wir das Ergebnis (hier: die Summe) in einem weiteren 4-Bit-Schieberegister. 

 

  a3 a2 a1 a0 
+  b3 b2 b1 b0 

  s4 s3 s2 s1 s0 
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 Da der Übertrag aus der vorherigen Stelle für die Addition in der aktuellen Stelle zu 
berücksichtigen ist, wird er in einem Flip-Flop zwischengespeichert. Dieses Flip-Flop  
liefert auch das Most Significant Bit (MSB) des Ergebnisses. 

 
 
 

 
 
 
Nach 4 Taktimpulsen (hier: Triggerung der Flip-Flops auf der steigenden Taktflanke): 
 
 
 

 
 
 
Dezimal:  07  Hexadezimal:  07    Dual:  0000 0111 
        + 14              + 0E         + 0000 1110 
          21                15           0001 0101 

  
 





Die wesentlichen Komponenten einer CENTRAL PROCESSING UNIT (CPU) bestehen 
aus der CONTROL UNIT (CU) und der ARITHMETIC LOGIC UNIT (ALU). 
 
Die ALU berechnet arithmetische und logische Funktionen, die CU decodiert die 
im Arbeitsspeicher abgelegten Befehle und führt sie aus. 
 
In der Minimalkonfiguration beherrscht die ALU die arithmetische Funktion 
„Addition“ sowie die logischen Operationen „Negation“ (NOT) und 
„Konjunktion“ (AND). Zu Lasten der Rechenzeit lassen sich die übrigen 
arithmetischen und logischen Funktionen auf die genannten, minimal verfügbaren 
Operationen zurückführen. 
 
 
1. Subtraktion 
 
Die duale Subtraktion  
 
 
 
läßt sich auf eine duale Addition nach folgendem Verfahren zurückführen: 

- Bilde das Einerkomplement des Subtrahenden b3 b2 b1 b0 , indem man alle 
Ziffern negiert (invertiert; aus 0 wird 1 und aus 1 wird 0). 

- Addiere das Einerkomplement und die Zahl 1 zum Minuenden. 
- Das Ergebnis ist die gesuchte Differenz; dabei bleibt der Überlauf 

unberücksichtigt. 
 
a) Verdeutliche das genannte Verfahren anhand einiger selbst gewählter 

Beispiele (ein Beweis des Verfahrens ist nicht erforderlich.). 
 
b) Ergänze die Schaltung „4-bit-Paralleladdierer.dsim“ so, daß man nach 

entsprechender Umschaltung wahlweise eine duale Addition oder eine duale 
Subtraktion durchführen kann. 
Hinweise: 
- Ersetze den HA für das least significant bit (LSB) durch einen VA, um 

erforderlichenfalls eine „1“ als Summand einspeisen zu können (wie?). 
- Die Invertierung der Ziffern des Subtrahenden gelingt z. B. durch den 

geeigneten Einsatz von XOR-Gattern. 
 
 
2. Weitere Rechenoperationen 
 
Gegeben sind die (im einfachsten Fall positiven ganzzahligen) Operanden a und 
b. Um zu verdeutlichen, wie man die „höheren“ Rechenoperationen mittels 
geeigneter Iteration auf die Grundoperationen „Addition“ und „Subtraktion“ 
zurückführen kann, schreibe und teste ein Python-Programm, welches die 
Operationen „Multiplikation“ (a*b), „Division“ (a/b, ganzzahlige Division) und 
„Potenzierung“ (a**b) realisiert. 
 
 
3. Logische Operationen 
 
Zeige examplarisch, daß sich die logischen Verknüpfungen 
 

a) a + b 
b) a  b 
c) a (b+c)  

 

auf die Operationen NOT und AND zurückführen lassen. 

  a3 a2 a1 a0 
   b3 b2 b1 b0 

   d3 d2 d1 d0 



Algorithmus “Grundrechenarten” mit GUI 
 

In der ALU einer CPU sind in der Regel nur die Rechenoperationen “Addition” und 
“Subtraktion” hardwaremäßig implementiert; die “höheren” Rechenoperationen 
“Multiplikation”, “Potenzierung” und “Division” werden als iterativ formulierte 
Maschinenprogramme, also als Software, realisiert. Wir simulieren diese 
Vorgänge mit dem in Python codierten Algorithmus Grundrechenarten_GUI.py, 
in welchem für die höheren Rechenoperationen iterativ geschriebene Funktionen 
definiert werden.  
Wir führen 

- die Multiplikation auf wiederholte Addition, 
- die Potenzierung auf wiederholte Multiplikation und 
- die (ganzzahlige) Division auf wiederholte Subtraktion 

zurück. 
 
Programmtext in Python: 
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Nach Ausführen des Programms erhalten wie folgende graphische 
Benutzeroberfläche (GUI); die jeweils dazugehörenden Programmtextauszüge 
sind in nahezu derselben Farbe (hellgrau, türkis, orange, grün, blau, rot, gelb, 
purpur) gehalten wie in der GUI: 
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label1 = Label(master=fenster, 
              bg='lightgrey',fg='purple', 
              text='1. Operand',font=("Arial", 20)) 
label1.place(x=10, y=10, width=230, height=50) 
 
label2 = Label(master=fenster,bg='lightgrey',fg='purple', 
              text='2. Operand',font=("Arial", 20)) 
label2.place(x=250, y=10, width=230, height=50) 
 
 
 
entry1 = Entry(master=fenster, bg='turquoise', font=("Arial", 20)) 
entry1.place(x=10, y=70, width=230, height=50) 
 
 
entry2 = Entry(master=fenster, bg='orange', font=("Arial", 20)) 
entry2.place(x=250, y=70, width=230, height=50) 
 
 
 
label3 = Label(master=fenster, 
              bg='lightgrey', 
              fg='purple', 
              text='Operation', 
              font=("Arial", 20)) 
label3.place(x=10, y=140, width=490, height=50) 
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button = Button(master=fenster, bg='green', text='+', 
                font=("Arial", 30), command = addiere) 
button.place(x=10, y=200, width=90, height=50) 
 
 
button = Button(master=fenster, bg='blue', text='-', 
                font=("Arial", 30), command = subtrahiere) 
button.place(x=110, y=200, width=90, height=50) 
 
 
button = Button(master=fenster, bg='red', text='*', 
                font=("Arial", 30), command = multipliziere) 
button.place(x=210, y=200, width=90, height=50) 
 
 
button = Button(master=fenster, bg='yellow', text='^', 
                font=("Arial", 30), command = potenziere) 
button.place(x=310, y=200, width=90, height=50) 
 
 
button = Button(master=fenster, bg='purple', text='/', 
                font=("Arial", 30), command = dividiere) 
button.place(x=410, y=200, width=90, height=50) 
 
 
 
label4 = Label(master=fenster, 
              bg='lightgrey', 
              fg='purple', 
              text='Resultat', 
              font=("Arial", 20)) 
label4.place(x=10, y=280, width=490, height=50) 
 
 
label5 = Label(master=fenster, 
              bg='lightblue', 
              fg='black', 
              text='', 
              font=("Arial", 20)) 
label5.place(x=10, y=340, width=490, height=50) 



Binäre Suche                                                                  Informatik 12                Januar 2022        
 
Gegeben:  Ein sortiertes Array a mit den n Komponenten a[0], . . . . , a[n-1]  
Aufgabe:  Entscheide, ob ein für die Variable value eingegebener Wert als Wert einer Komponente des Arrays a 

vorkommt. 
 
Beispiel 
 

value = 13 
n = len(a) = 10 
 

Wir übergeben value und die Liste a[0], . . . , a[9] der Booleschen Funktion binarysearch,  
welche a[0], . . . , a[9] als lokale Liste array[0], . . . , array[9] fortführt. 
 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

3 4 5 5 7 8 11 13 19 21 

 

array[0] array [1] array [2] array [3] array [4] array [5] array [6] array [7] array [8] array [9] 

3 4 5 5 7 8 11 13 19 21 

 
 
1. Schritt: 
Wir bestimmen den mittleren Index des Arrays array:     len(array)//2 = 5 
 
2. Schritt: 
midvalue = array[len(array)//2] = array[10//2] = array[5] = 8 
Wir vergleichen value mit midvalue: 
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Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden! 
Falls value < midvalue: suche in der Liste a[0], . . . , a[4] links von a[5] 
Falls value > midvalue: suche in der Liste a[6], . . . , a[9] rechts von a[5] 
 
hier: wegen 13 > 8 suchen wir in der Liste a[6], . . . , a[9]  
 
 
Suche value in der Liste a[6], . . . , a[9] 
 
 

a[6] a[7] a[8] a[9] 

11 13 19 21 

 
Diese Liste a[6], .  . , a[9] und value übergeben wir der Booleschen Funktion binarysearch,  
welche a[6], . . , a[9] als lokale Liste array[0], . . . , array[3] fortführt. 
 

array[0] array[1] array[2] array[3] 

11 13 19 21 

 
 
1. Schritt: 
Wir bestimmen den mittleren Index des Arrays array:     len(array)//2 = 4//2 = 2 
 
2. Schritt: 
midvalue = array[len(array)//2] = array[4//2] = array[2] = 19 
Wir vergleichen value mit midvalue: 
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Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden! 
Falls value < midvalue: suche in der Liste array[0], . . . , array[1]  links von array[2] 
Falls value > midvalue: suche in der Liste array[3] rechts von array[2] 
 
hier: wegen 13 < 19 suchen wir in der Liste array[0], . . . , array[1] 
 
Suche value in der Liste array[0], . . . , array[1] 
 

array[0] array[1] 

11 13 

 
Diese Liste array[0], . . . , array[1] und value übergeben wir der Booleschen Funktion binarysearch,  
welche array[0], . . . , array[1] als lokale Liste array[0], . . . , array[1] fortführt. 
 
1. Schritt: 
Wir bestimmen den mittleren Index des Arrays array:     len(array)//2 = 2//2 = 1 
 
2. Schritt: 
midvalue = array[len(array)//2] = array[2//2] = array[1] = 13 
Wir vergleichen value mit midvalue: 
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden! 
Falls value < midvalue: suche in der Liste array[0] links von array[1] 
Falls value > midvalue: suche in der leeren Liste [] rechts von array[1],  dann:  binarysearch gibt den Wert 

False zurück; nicht gefunden! 
 
hier: wegen 13 = value = midvalue = 13: binarysearch gibt den Wert True zurück; gefunden! 
 



 4 

Der Booleschen Funktion binarysearch werden das aus n Komponenten bestehende 
sortierte Feld a (in Python: Liste) und der zu suchende Wert value übergeben; 
binarysearch liefert den Wert True, falls eine Komponente von a mit value 
übereinstimmt, andernfalls den Wert False. 
Die Variable z ermittelt die Anzahl der Aufrufe von binarysearch. 
 
Quelltext in Python: 
 
. . . . . . . . 
 
z = 0 
. . . . . 
 
def binarysearch(array,value): 
     global z 
     z += 1 
     print(array) 
     if array == [] or (len(array) == 1 and array[0] !=  value): 
         return False 
     else: 
         midvalue = array[len(array)//2] 
         if midvalue == value: 
             return True 
         elif value < midvalue: 
             return binarysearch(array[:len(array)//2],value) 
         else: 
             return binarysearch(array[len(array)//2 + 1:],value) 
 
 
Aufruf der Funktion binarysearch: 
 
binarysearch(a,value) 
 
 
 
Komplexität des Algorithmus binarysearch: 
 

Die Komplexität und damit der Rechenaufwand A(n) wird wesentlich bestimmt durch die 
Anzahl z der Aufrufe der rekursiv definierten Funktion binarysearch; o. B. d. A. sei n 
eine Potenz von 2, d. h. n = 2k mit k = 0, 1, 2, 3, . . . . . 
Beachte: die maximale Anzahl von Aufrufen (worst case) tritt ein, falls die Suche 
ergebnislos ist. 
 
k = 0      n = 1       

 
 
k = 3      n = 8       

 
 
k = 4      n = 16       
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Eine Verdopplung von n impliziert höchstens einen weiteren Aufruf von binarysearch!  
 

Offensichtlich gilt:  
 

z = k    
 

Wegen  n = 2k    k = log2(n) folgt: 
 

z = log2(n) 
 

Somit hat der Algorithmus binarysearch logarithmische Komplexität: 
 

A(n)  log2(n) 
 

Bemerkung:  
Falls im ungünstigsten Fall binarysearch noch die leere Liste [ ] übergeben wird, gilt: z = k + 1 
 
 
Modifikation des Algorithmus binarysearch:  
Die rekursive Funktion binarysearch liefert den booleschen Wert False, falls value 
nicht gefunden wird, andernfalls den Index index der betreffenden Komponente. 
Außer a und value sind die Indices begin und end an die Funktion binarysearch 
zu übergeben, so daß binarysearch die Teilliste a[begin] , . . . . , a[end] 
durchsucht.  
Beachte: index wird innerhalb des Funktionsrumpfs als globale Variable definiert. 
 

z = 0 
. . . . . 
 

def binarysearch(array, value, begin, end): 
     global index 
     global z 
     z += 1 
     print(array[begin:end+1]) 
     if begin > end: return False 
     middle = (begin + end) // 2 
     print('mittleres Element:  a[',middle,'] = ',array[middle]) 
     if array[middle] == value: 
        index = middle 
     elif array[middle] < value: 
        return binarysearch(array, value, middle + 1, end) 
     else: 
        return binarysearch(array, value, begin, middle - 1) 
 
Aufruf der Funktion binarysearch zur Suche von value in der sortierten Liste  
a[0], . . . . . , a[n-1]: 
 

binarysearch(a, value, 0, len(a)-1) 
 

 
 

 



Gütekriterien bei Algorithmen 
 
1. Effizienz 
 Verlangt werden Effizienz bzgl. des zeitlichen Aufwands und des Speicherbedarfs 

während der Laufzeit; beide Forderungen sind häufig nicht gleichzeitig erfüllbar.  
 
2. Korrektheit 
 Das Programm liefert die Lösung eines Problems entsprechend seiner Spezifikation, in 

der die Eingabedaten und die Ausgabedaten vorgeschrieben werden. 
 
3. Zuverlässigkeit 
 Ein zuverlässiges Programm korrigiert Fehler infolge falscher Anwendung oder 

falscher oder sinnloser Eingabe. 
 
4. Wartungsfreundlichkeit 
 Ein wartungsfreundliches Programm läßt sich leicht ändern, korrigieren oder 

erweitern (wichtig für upgrades!); die Wartungsfreundlichkeit setzt allerdings eine 
entsprechende Dokumentation des Quelltextes voraus. 

 
5. Benutzerfreundlichkeit 
 Der Anwender kann ohne Konsultation des Programmautors oder eines Handbuchs 

mit dem Programm erfolgreich umgehen; diese Fertigkeit wird selbstverständlich 
auch unterstützt von der Intuition und Erfahrung des Anwenders. 

 
 
 
 
1. Effizienz 
 
Sei n := Anzahl der Datensätze, die der Algorithmus zu verarbeiten hat 
 
 
Algorithmus Sortieren 

durch 
direkte 
Auswahl 

Sortieren 
durch 
Mischen 
(mergesort) 

Türme von 
Hanoi 

Erfassen 
von 
Adressen 

Suchen in 
einer 
sortierten 
Liste 

Anzahl der 
Rechenope-
rationen und 
damit 
zeitlicher 
Bedarf zur 
Laufzeit des 
Programms 
proportional 
zu 

n2 n ⋅ log2(n) 2n − 1 n log2(n) 

Art des 
Wachstums 

polynomial  exponentiell linear logarithmisch 

 
Algorithmen, deren zeitlicher Aufwand exponentiell oder stärker als exponentiell 
(Ackermann-Funktion!) anwächst, sind in der Praxis unbrauchbar. 
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2. Korrektheit 
 
Jeder Programmierer macht die Erfahrung, daß ein Programm weder bezüglich der 
Syntax der verwendeten Programmiersprache noch bezüglich der erwarteten 
Verarbeitung der Daten auf Anhieb korrekt ist. 
 
Insbesondere gilt dies für überaus komplexe Programme wie Betriebssysteme (winXP 
oder win2k3; die alten winDOS-Systeme (win3.11, win95, win98, winME) erwiesen sich 
als besonders unzuverlässig). 
 
In einigen Fällen, leider beschränkt auf vergleichsweise einfache Algorithmen, läßt sich 
sogar ein mathematischer Beweis für die Korrektheit eines Algorithmus erbringen, indem 
man Schleifeninvarianten findet und diese als korrekt verifiziert. Das hierzu benötigte 
Beweisverfahren ist das Verfahren der Vollständigen Induktion (Die Mathematik kennt 
bekanntlich drei Beweisverfahren: direkter Beweis, indirekter Beweis, vollständige 
Induktion). 
 
 
Verfahren der Vollständigen Induktion: 
 
Sei A(n) eine von der natürlichen Zahl n abhängige Aussage, n ∈ {0, 1, 2, 3, . . . . }. 
 
Um zu beweisen, daß A(n) wahr ist für alle n ∈ {0, 1, 2, 3, . . . . }, verifizieren wir:  
 
 (1)      A(0)    ist wahr (Induktionsanfang) 
 
 (2) Die Implikation [A(n) ⇒ A(n+1)] ist wahr (Induktionsschritt) 
 
 
Bevor wir dieses Verfahren auf den Korrektheitsbeweis von Algorithmen anwenden, 
sollten wir es bei einfachen innermathematischen Problemen einüben und verstehen. 
 
 
 
Aufgabe 1: 
 
Behauptung:  12 + 22 + 32 + . . . . . . . + n2 = n(n+1)(2n+1)/6 
 
Beweis:   
 

Definiere A(n) := „12 + . . . . . + n2 = n(n+1)(2n+1)/6“   
 

(Beachte: A(n) ist eine Gleichung, somit insbesondere eine Aussage, die genau zwei 
boolesche Werte annehmen kann: TRUE oder FALSE.) 
 
 
Induktionsanfang (n=1): 
 
A(1)=TRUE ,  
denn  A(1)   ⇔   [ 12 = 1⋅(1+1)(2⋅1+1)/6 ]   ⇔   [ 1 = 1⋅2⋅3/6 ]   ⇔   [ 1=1 ] 
die letzte Aussage hat trivialerweise den Wert TRUE. 
 
 
Induktionsschritt: 
 
Unter der Annahme, daß A(n) TRUE ist, verifizieren wir, daß dann auch A(n+1) den Wert 
TRUE annimmt. 
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Sei also A(n) TRUE, das heißt 
 
 
12 + 22 + 32 + . . . . . . . + n2 = n(n+1)(2n+1)/6  ist richtig für beliebiges n (diese 
Annahme heißt auch Induktionsvoraussetzung). 
 
Wir betrachten A(n+1), also die Gleichung 
 
12 + 22 + . . . . . . . + (n + 1)2 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6,  
 
die wir unter der Annahme, daß A(n) TRUE ist, als TRUE qualifizieren werden. 
 
 
12 + 22 + . . . . . . . + (n + 1)2   =  [12 + 22 + . . . . . . + n2 ] + (n + 1)2 
 

 

wegen A(n) = TRUE folgt 
 = n(n+1)(2n+1)/6            + (n + 1)2 

 

 = (n + 1)[ n(2n+1)/6 + (n + 1)] 
 

 = (n + 1)[ n(2n+1) + 6(n + 1)]/6 
  

 = (n + 1)[ 2n2+n + 6n + 6)]/6 
  

 = (n + 1)[ 2n2+ 7n + 6)]/6 
 

 = (n + 1)[ (n + 2)(2n + 3)]/6 
 

 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6 
 
Somit folgt unter der Annahme „A(n)=TRUE“, daß „A(n+1)=TRUE“ wahr ist, und in 
Verbindung mit dem Induktionsanfang „A(1)=TRUE“ ergibt sich die Behauptung für alle 
Werte von n. 
 

 
 
 
Als Übungsaufgabe verifiziere man die Behauptungen der Aufgaben 2 und 3: 
 
 
 
 

Aufgabe 2: 
 
Behauptung:  13 + 23 + 33 + . . . . . . . + n3 = n2(n+1)2/4 
 

 
 
 
Aufgabe 3: 
 
Behauptung:   Die Bernoullische Ungleichung    (1 + x)n > 1 + n ⋅ x 
 

 ist wahr für alle natürlichen Zahlen n mit n≥2 und für reelle Zahlen x mit  
 x≠0 und 1+x>0. 
 
 
 
(Vgl. auch das Mathematikbuch; man sieht, daß Informatik und Mathematik durchaus 
verwandte Wissenschaften sind, was man auch nicht anders vermutet hätte.) 
 
 
 
 



 4 

Korrektheitsbeweise bei Algorithmen 
 
 
1. Der Algorithmus elmo 
 

Seien n eine natürliche Zahl, a eine von 0 verschiedene reelle Zahl. 
Gegeben ist folgender Algorithmus als Struktogramm: 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aufgaben: 
 
a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache). 
 
b) Teste das Programm; was bewirkt der Algorithmus vermutlich? 
 
c) Die Vermutung läßt sich anhand eines Trace erhärten; finde eine Beziehung, die sich 

als Schleifeninvariante erweisen könnte. 
 
d) Beweise vermöge vollständiger Induktion, daß die in c) gefundene Beziehung 

tatsächlich Schleifeninvariante ist, und schließe daraus, daß die in b) aufgestellte 
Vermutung, was der Algorithmus bewirkt, richtig ist. 

 
 
 
 
 
 
 
 

 Eingabe a; n

b:=a;   u:=n;   p:=1; 

 
Ausgabe p 

 

while u>0 

                  u ungerade 
+                                       −     
 

u:=u-1 
 

p:=p*b 

 
u:=u div 2 
 

b:=b*b 
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Lösungen: 
 
 
 
zu a): 
 
 
 program elmo; 

uses crt; 
var  n,u  :longint; 
     a,b,p:real; 
 

 
begin 

     clrscr; 
 
   { Eingabe der Werte für a und n } 
     write('a = '); readln(a); 
     write('n = '); readln(n); 
 
     { Initialisierung der Variablen } 
     b:=a; 
     u:=n; 
     p:=1; 
 
     { Verarbeitung der Daten } 
     while u>0 do begin 
                    if odd(u) then begin 
                                     u:=u-1; 
                                     p:=p*b 
                                   end; 
                    u:=u div 2; 
                    b:=sqr(b) 
                  end; 
 
   { Ausgabe } 
     writeln; 
     write ('p = ',p); 
     while not keypressed do 
 
   end. 
 
 
 
zu b):  Kompiliere den Quelltext und führe das Programm aus. 
 
 
 
zu c):  
 
Empirisches Testen des Programms anhand eines Trace 
  
Vereinbarung: S.D. = Schleifendurchlauf 
 
Seien n eine natürliche Zahl, a eine von 0 verschiedene reelle Zahl. 
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α) Trace für n=7: 
 

 n a b u p u=0 

vor dem  
1. S.D. 7 a a 7 1 − 

vor dem  
2. S.D. 7 a a2 3 a − 

vor dem  
3. S.D. 7 a a4 1 a3 − 

nach dem  
3. S.D. 7 a a8 0 a7 + 

 
 
β) Trace für n=18: 
 

 n a b u p u=0 

vor dem  
1. S.D. 18 a a 18 1 − 

vor dem  
2. S.D. 18 a a2 9 1 − 

vor dem  
3. S.D. 18 a a4 4 a2 − 

vor dem  
4. S.D. 18 a a8 2 a2 − 

vor dem  
5. S.D. 18 a a16 1 a2 − 

nach dem  
5. S.D. 18 a a32 0 a18 + 

 
 
γ) Trace für n=52: 
 

 n a b u p u=0 

vor dem  
1. S.D. 52 a a 52 1 − 

vor dem  
2. S.D. 52 a a2 26 1 − 

vor dem  
3. S.D. 52 a a4 13 1 − 

vor dem  
4. S.D. 52 a a8 6 a4 − 

vor dem  
5. S.D. 52 a a16 3 a4 − 

vor dem  
6. S.D. 52 a a32 1 a20 − 

nach dem  
6. S.D. 52 a a64 0 a52 + 



 7 

Vermutung: 
 
Die Beziehung  
 

p⋅bu = an 
 
ist vor und nach jedem Schleifendurchlauf erfüllt, also invariant gegenüber 
Schleifendurchläufen. Eine solche Gleichung heißt auch Schleifeninvariante. 
 
Der Algorithmus bricht ab, sobald u den Wert 0 hat; da u bei jedem Schleifendurchlauf 
um 1 vermindert wird, falls u ungerade ist, in jedem Fall aber durch 2 dividiert wird, ist 
die Abbruchbedingung nach endlich vielen Schleifendurchläufen mit Sicherheit erfüllt. 
 
Für u=0 schreibt sich die Schleifeninvariante: 
 

p⋅b0 = an 

 

⇔ p = an 

 
Damit ist gezeigt, daß bei Abbruch des Algorithmus die Zahl an ausgegeben wird, falls die 
Beziehung p⋅bu = an sich als Schleifeninvariante erweist. 
 
 
 
 
 
Zu d):  
 

Wir führen den Beweis vermöge vollständiger Induktion über den Index i, der den i-ten 
Schleifendurchlauf bezeichnet. 
 
Mit pi , bi  und ui bezeichnen wir die Werte der Variablen p , b und u vor dem i-ten 
Schleifendurchlauf. 
 
 
Induktionsanfang (i=1): 
 

Wegen p1 = 1 ,  b1 = a   und u1 = n gilt: 
 

1 =⋅ = ⋅1
1 1

u n np b a a  , somit ist die Beziehung p⋅bu = an  für i=1 erfüllt. 
 
 
Induktionsschritt: 
 

Wir nehmen an, daß die Beziehung p⋅bu = an vor dem i-ten Schleifendurchlauf erfüllt 
ist, daß somit gilt: 
 

⋅ i
i i  

u np b = a  (*) 
 
Wir  werden verifizieren, daß unter dieser Annahme (*) die Beziehung p⋅bu = an  auch 
nach dem (i + 1)-ten Schleifendurchlauf erfüllt ist. 
 
Dazu drücken wir die Werte pi+1 , bi+1  und ui+1 der Variablen p , b und u durch die Werte 
pi , bi  und ui aus. Da die Eigenschaft von u, gerade oder ungerade zu sein, auf die 
Berechnung der neuen Werte von p , b und u Einfluß hat, müssen wir eine 
Fallunterscheidung vornehmen: 
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α.  u sei ungerade vor dem i-ten Schleifendurchlauf, also odd(ui) = TRUE 
 
 pi+1 = pi ⋅ bi   ⇔ pi = pi+1 / bi 
 

 bi+1 = bi  ⋅ bi   ⇔ bi  = √ bi+1   

 ui+1 = (ui  − 1)/2 ⇔ ui  = 2 ⋅ ui+1 + 1 
 
 Wenn wir in die Gleichung (*) die für pi , bi  und ui  erhaltenen Werte einsetzen, folgt: 
 
 

(pi+1 / bi) ⋅ (√ bi+1)^(2 ⋅ ui+1 + 1)  = (pi+1 / √ bi+1) ⋅ (√ bi+1)^(2 ⋅ ui+1 + 1) 
 

 = pi+1 ⋅ bi+1^ui+1  

 

 
 
β.  u sei gerade vor dem i-ten Schleifendurchlauf, also odd(ui) = FALSE 
 
 Übungsaufgabe! 
  
 
 
 
 
 
2. Der Algorithmus merlin 
 

x und y seien natürliche Zahlen mit x ≥ 0 und y > 0. 
Gegeben ist folgender Algorithmus als Struktogramm: 
 
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aufgaben: 
 
a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache). 
 
b) Teste das Programm; was bewirkt der Algorithmus vermutlich? 

 Eingabe x; y

q:=0;   r:=x;    

 

while r ≥ y 

    q:=q + 1                                    

   r:=r − y 

 Ausgabe q 

 Ausgabe r 
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c) Läßt sich der Algorithmus auch mit einer repeat-Schleife formulieren? 
 
d) Die Vermutung aus b) läßt sich anhand eines Trace erhärten; finde eine 

Beziehung, die sich als Schleifeninvariante erweisen könnte. 
 
e) Beweise vermöge vollständiger Induktion, daß die in d) gefundene Beziehung 

tatsächlich Schleifeninvariante ist, und schließe daraus, daß die in b) aufgestellte 
Vermutung, was der Algorithmus bewirkt, richtig ist. 

 
 
 
 
3. Den Potenzierungsalgorithmus „elmo“ kann man modifizieren, indem man 

die while-Schleife durch folgende Befehlssequenz ersetzt: 
 
 

while u>0 do begin 
               while not odd(u) do begin 
                                     u:=u div 2; 
                b:=b*b 
                                   end; 
               u:=u−1; 
               p:=P*b 
             end; 

 
a) Integriere diese Befehlssequenz in den vorhandenen Programmtext und teste das 

Programm empirisch.  
 
b) Beweise die Korrektheit des auf diese Weise modifizierten Algorithmus! 

 
 
 
4. In einem Buch ist das Struktogramm des folgenden Algorithmus abgedruckt, 

von dem behauptet wird, daß er das Produkt der natürlichen Zahlen a und b 
berechne (dieses − im übrigen nicht schlechte − Buch gibt’s tatsächlich!): 

 
 
  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Eingabe a , b 

u:=a;   v:=b;   s:=0; 

Ausgabe s 

 

while u>0 

                  u gerade 
+                                        −     
 

s:= s+v 

u:=u div 2 
 

s:=2*s 
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a) Verifizieren anhand eines Trace (oder indem man das Pascal-Programm schreibt 
und dieses testet), daß der Algorithmus das verlangte nicht leistet. 

 
b) Korrigiere den Algorithmus, so daß er korrekt im Sinne der Spezifikation arbeitet; 

beweise dessen Korrektheit vermöge vollständiger Induktion. 
 


