Sortieren durch Mischen ("MergeSort")

Aufgabe:

Gegeben ist eine Liste L = {a[0], a[2], a[3],...., a[n-1]}
von n Datenelementen, flr die die Ordnungsrelationen <, >, <, > erklart
sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daB gilt:
a[0] =a[2] =..... < a[n-1].
Wir fassen die Elemente der Liste auf als Komponenten eines arrays a.

Strategie: "Divide et impera”
Eine Liste, die nur ein einziges Element enthalt, ist bereits sortiert.

Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, laBt sich in 4 Schritten
bewaltigen:

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten
2). Sortiere die erste Teilliste gemaB den Schritten 1). - 4).
3). Sortiere die zweite Teilliste geman den Schritten 1). - 4).

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste

Falls left < right wahr ist, sortiert die rekursiv definierte Funktion
sort (array, left, right)

die Liste

array[left], , array[right]

unter Verwendung der Funktion merge.

Die Funktion

merge (array, left, middle, right)

mischt die sortierten Teillisten

array[left], , array[middle]
und
array[middle+l], , array[right]

zu der sortierten Gesamtliste

array[left], , array[right]

Quellcode der Funktion sort in Python:

def sort(array, left, right):
if left >= right:
return
middle = (left + right)//2
sort (array, left, middle)
sort (array, middle + 1, right)
merge (array, left, middle, right)

Aufruf zum Sortieren der aus den n Komponenten

a[0], a[2], al3]1, , a[n-1]
bestehenden Liste a:

sort(a, 0, len(a)-1)

Aufwandsbetrachtung:

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus
n Komponenten bestehende Liste zu sortieren.

Dann gilt:

A(n) = 2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen
+ Aufwand zum Mischen zweier sortierter Teillisten

A(n) = A(n/2) + A(n/2)
+ Aufwand zum Mischen zweier sortierter Teillisten

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wachst linear mit der Anzahl n der zu sortierenden Datenelemente; somit
erhalten wir fir den Funktionsterm A(n) die Funktionalgleichung (c = Konstante
= Proportionalitatsfaktor)

(*Y A(n) =A(n/2) + A(n/2) + c- n mit der Bedingung
(**) A(1) =0.

Behauptung: Die Funktion
A(n) = c-n-log,(n)

ist Losung der Funktionalgleichung (*) mit der Anfangsbedingung (**).

Beweis:
A(n/2) + A(n/2) + c-n = 2-A(nh/2) +c-n
= 2-.-¢c-n/2-logx(n/2) + c-n
= c-n-(logz(n) — logx(2)) + c-n
= c-n-(logz(n)— 1) +c-n
= C-n-logx(n)
= A(n)

Damit ist (*) erfullt; wegen log,(1) = 0 genlgt A(n) auch der Bedingung (**).

Bemerkung: Mit Methoden der Analysis 148t sich die Eindeutigkeit der Lésung des
Problems (*), (**) zeigen, somit ist mit A(n) = ¢ - n -log,(n) die einzige Lésung
der Funktionalgleichung gefunden.

Allgemein 1aBt sich beweisen, daB der Aufwand zum Sortieren von n Datensatzen
grundsatzlich mindestens von der Ordnung n - log,(n) wachst. In diesem Sinne
kann das Sortierverfahren ,MergeSort" als optimales Vefahren gelten.

Erganzende Betrachtung zum Speicherplatzbedarf:

Nachdem wir festgestellt haben, daB der Aufwand zum Sortieren von n
Datenelementen von der Ordnung n - log,(n) wachst und damit ein Optimum
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn
rekursive Algorithmen haben grundsatzlich den Nachteil, daB sie wahrend der
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. DaB3 dieser Effekt bei
MergeSort nicht oder nur unwesentlich ins Gewicht fallt, zeigt folgende
Uberlegung:

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.

0. B. d. A. sei n eine Zweierpotenz, d. h. n=2%, ke{0,1,2,3,...... ¥.
Bemerkung: Der Pfeil ——— bedeutet: ,ruft auf"

n=1: sort(a,0,0) 1 Aufruf

n=2: sort(a,0,1)

SN

sort(a,0,0) sort(a,1,1)

1+ 2.1 = 3 Aufrufe

n=4: sort(a,0,3)
sort(a,0,1) sort(a,2,3)
sort(a,0,0) sort(a,1,1) sort(a,2,2) sort(a,3,3)

1+ 2.3 =7 Aufrufe

n = 8: sort(0,7)
sort(0,3) sort(4,7)
sort(0,1) sort(2,3) sort(4,5) sort(6,7)

SN /N SN N

sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

1+ 2.7 =15 Aufrufe

f(1) =1 =1 =2.1-1
f2) =1+2-1 = 3 =2.2 -1
f(4) =1+2.3 = 7 =2.4 -1
f(8) =1+4+2.7 =15 = 2.8 -1
f(16)=1+2-15= 31 = 2.16-1
f(32)=1+2-31 =63 =2-32-1

allgemein:
f(n)=2.n-1

Offensichtlich ist f(n) Losung der rekursiv definierten Funktionalgleichung
f(n) =1+ 2.f(n/2)
mit der Anfangsbedingung f(1)=1.

Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der
Speicherplatzbedarf wahrend der Laufzeit wachst somit linear mit n, also
wesentlich schwacher als die Anzahl A(n) elementarer Rechenoperationen.

Die rekursiv veranlaBten Aufrufe der Funktion sort zerlegen die zu sortierende
Liste in Teillisten jeweils der Lange 1, die als ein-elementige Listen bereits
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils
einer sortierten Liste gemaB folgendem Diagramm:

Bemerkung: Der Pfeili —— bedeutet: ,wird gemischt"

al0] al1] al2] al3] al4] als] ale] al7]
merge(0,0,1) merge(2,2,3) merge(4,4,5) merge(6,6,7)
alo] a[1l al2] a[3] al4] a[s] a[6] a[7]
merge(0,1,3) merge(4,5,7)
alo] al1] al2] a[3) al4] a[5] al6] al7]

\./

merge(0,3,7)
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Fir die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar:

g(1) =0
g(n)=1+4+2.g(n/2) falls n=2% k>1

Lésung der vorstehenden Funktionalgleichung:

g(n)=n-1

Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe
der Funktion merge wachsen jeweils linear mit n.

Februar 2021
Bemerkung:

Fiar den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten
wir bei

- SelectionSort: A(n) ~ n?

- MergeSort: A(n) ~n - logy(n)

- Fibonacchi-Folge: A(n) ~ 2" (bei rekursiver Berechnung)
- BinarySearch: A(n) ~ logy(n)

Entsprechend haben

- SelectionSort quadratische Komplexitat,

MergeSort linear-logarithmische Komplexitat,

die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexitdt,
BinarySearch logarithmische Komplexitat.

Algorithmen mit exponentieller Komplexitdt erweisen sich in der Praxis als unbrauchbar.

T4 (1124 0ed 0ee 0Te 0o¢ OeT 08T 0LT 09T 0sT 0FT 0eT 0<tT 01T 00T

06

08

0L

09

0%

0¥

113

0Z

0T

wnisydepr sadJeauL|

x=A

(x)bo| #x=A

wnisysepm saydsLwyiLaeho|—aesauL|

wnaisys>em ssydsiiedpenb

00T

00z

00t

00t

00s

009

004

008

006

000T

00TT

00T

00ET

00+T

00ST

009T

004T

008T

006T

Arbeitsauftrag flr die Doppelstunde am 09.09.2021 inf12
Die aus den n Komponenten a[0], a[l1l], , a[n-1] bestehende Liste a
soll aufsteigend sortiert werden.

1.

Gegeben ist der Quelltext SelectionSort.txt zum Algorithmus ,Sortieren durch
direkte Auswahl®; nach Eingabe einer natirlichen Zahl n wird eine aus n

Zufallszahlen bestehende Liste a erzeugt und anschlieBend aufsteigend sortiert.

Wir modifizieren diesen Quelltext so, daB das Sortieren nach dem Algorithmus
~MergeSort" erfolgt; ersetze hierzu denjenigen Programmteil, der den Sortiervorgang
veranlaBt, in geeigneter Weise durch die Funktionen sort und merge. Benutze hierzu
das Skriptum MergeSort_01-09-2021.pdf und den Quelltext function_merge.txt
der Funktion merge.

Aufruf der Funktion sort zum Sortieren der Liste a: sort(a, 0, len(a)-1)

Vergleiche die Algorithmen SelectionSort und MergeSort experimentell hinsichtlich
ihrer zeitlichen Effizienz.

Implementiere Variable x und y, um die Anzahl der Aufrufe der Funktionen sort und
merge jeweils zu zdhlen, und bestdtige die diesbeziliglichen Ergebnisse aus dem
Skriptum.

Hausaufgabe:
Um den Aufwand bei SelectionSort zu ermitteln, betrachten wir denjenigen
Programmteil, der das Sortieren ausfiihrt:

j=0
while j <= n-2:
i=3+1

min = al[j]
while i < n:
if a[i] < min:
min = a[i]

a[i] = a[j]
al[j] = min
i=1i+1
=3 +1

Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife dieses
Programmauszugs gedanklich zum Anweisungsblock A zusammen

(markiere Block A im obenstehenden Programmtext).

Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu
sortieren, fragen wir, wie oft Block A in Abhangigkeit von n abgearbeitet wird.

a) Vervollstédndige die Eintrdge in folgender Tabelle, wobei z(j) angibt, wie oft Block A
in Abhangigkeit von j abgearbeitet wird.

Index j Index i z(J)
j =0 <i<
j =1 <ic<
j =2 <i<
j = n-3 <ic<
J = n-2 <ic<

b) Die Gesamtzahl z der Abarbeitungen von Block A ergibt sich als
z=z0)+z(1)+z(2Q)+z(3)+......... + z(n-3) + z(n-2)
Vereinfache diese Summe und zeige so, daB z quadratisch mit n wachst!

Hinweis: Fir die Summe der ersten n natlirlichen Zahlen gilt bekanntlich:
14+24+....... +n= %-n-(n+1)

Komplexitat zur Laufzeit (Sorting and Searching)

SelectionSort - BinarySearch

Array mit 10.000 Komponenten:
Laenge des arrays: 10000

Wieviele Elemente sollen angezeigt werden? 3

5016012
64359526
6543928

Sortierte Liste:

428
1045
1894

SelectionsSort

Zeitaufwand zum Sortieren wvon 10000 Elementen: 17.687 5
Anzahl Durchlaeufe der inneren Schleife: 49995000
gesuchtes Element: 6543339

6543339 wurde nicht gefunden

Zeitaufwand BinarySearch bei 10000 Elementen: 0.000 s
Anzahl Aufrufe binarysearch: 14

Array mit 20.000 Komponenten:
Laenge des arrays: 20000

Wieviele Elemente sollen angezeigt werden? 3
6910309

3265111
5248564

Sortierte Liste:

312

549

h55

Selectionsort

Zeitaufwand zum Sortieren wvon 20000 Elementen: €5.406 s
Anzahl Durchlaeufe der inneren Schleife: 199990000
gesuchtes Element: 4268819

4268819 wurde nicht gefunden

Zeitaufwand BinarySearch bei 20000 Elementen: 0.000 s
Anzahl Aufrufe binarysearch: 14

MergeSort - BinarySearch

Array mit 20.000 Komponenten:
Laenge des arrays: 20000

Wieviele Elemente sollen angezeigt werden? 3

7263549
56385990
5059315

Sortierte Liste:

454
596
1319

MergeSort

Zeitaufwand zum Sortieren wvon 20000 Elementen: 0.118 s
Anzahl Aufrufe sort: 39999

Anzahl Aufrufe merge: 19999

gesuchtes Element: 7374881
7374881 wurde nicht gefunden

Zeitaufwand BinarySearch bei 20000 Elementen: 0.000 s
Anzahl Aufrufe binarysearch: 14

Array mit 1.000.000 Komponenten:
Laenge des arrays: 1000000

Wieviele Elemente sollen angezeigt werden? 3

43593058
1549575
2241821

Sortierte Liste:
1

9
1z

MergeSort

Zeitaufwand zum Sortieren von 1000000 Elementen: 8.841 s
Anzahl Aufrufe sort: 1555999

Anzahl Aufrufe merge: 9595995

gesuchtes Element: 6338229

6338229 wurde nicht gefunden

Zeitaufwand BinarySearch bei 1000000 Elementen: 0.037 s
Anzahl Aufrufe binarysearch: 20

Array mit 4.000.000 Komponenten:

Laenge des arrays: 4000000
Wieviele Elemente sollen angezeigt werden? 8

9320507
2318458
2925900
542557

1231914
3414556
8504507
8492286

Sortierte Liste:

4

10
12
16
22
24
24
30

MergesSort

Zeitaufwand zum Sortieren wvon 4000000 Elementen:

Anzahl Aufrufe sort: 7999999
Anzahl Aufrufe merge: 3999999

gesuchtes Element: 3456789
3456789 wurde nicht gefunden

Zeltaufwand BinarySearch bei 4000000 Elementen:
Anzahl Aufrufe binarysearch: 22

30388 5

219 S

Informatik 12
September 2021

Boolesche Terme und Schaltalgebra

1. Datentyp boolean

Eine Boolesche Variable oder ein Boolescher Ausdruck (Term) nimmt nur zwei Werte an:
True oder False

(abkirzend: 1 oder 0; in Python sind True oder False zu verwenden)

Insbesondere sind folgende Terme Boolesche Ausdriicke, deren Wert sich auch einer
Variablen zuweisen |aBt:

8 >5
== 8
1= 8

w X X 3

Mita =

der Wert des Booleschen Terms 7

or b

hat den Wert True
hat den Wert False
hat den Wert True

hat den Wert True nach der Wertzuweisung x

hat den Wert False nach der Wertzuweisung x

den Wert True hat; andernfalls hat a or b

= 7 <12
== 6)
hat den Wert True genau dann, wenn mindestens eine der Variablen a, b
den Wert False.

7 '= 8 oder a = (7 '= 8) wird in Python der Booleschen Variablen a

'= 8 (hier: True) zugewiesen.

Wir definieren die Verknipfungen and und or sowie die Operation not jeweils Gber eine
Wahrheitstafel:

a b aorb a b a and b a not a
False | False False False False False False True
False True True False True False True False
True | False True True False False
True True True True True True

Abklirzende Schreibweisen (a, b, c sind Boolesche Variable oder Boolesche Terme):

aand b = aAb = a-b = ab
aorb = avb = a+b
not a = —a = a

Dabei gelte auch die aus der Algebra bekannte Vereinbarung “Punkt vor Strich”, d. h.

a

+ (b:-c) =a+b-c=a+bc

Die AND-Verknipfung nennen wir auch Konjunktion,
die OR-Verknipfung Disjunktion.

2. Rechenregeln fiir Boolesche Variable

Kommutativgesetz
(1) a+b=>b+ a (1’) a-b=>b:
Assoziativgesetz
(2) a+ (b+c) = (a+Db) +c (2’) a - (b : c)

Distributivgesetz

(3)

a-(b+c)=a-b + a-c (3’) a+b - -c

(a - b)

(a + b)-(a + ¢)

Absorptionsgesetz

(4) a(a + b) = a (4’) a + ab = a
Tautologie
(5) a-a=a (5) a + a=a

Gesetz iiber die Negation

(6) a-a=0 (6') a+a=1
Doppelte Negation

(7) z =a

Gesetz von De Morgan

8) a-b=a+b (8") a+b=a-b
Operationen mit 0 und 1

(9.1) a-1=a (9.1") a+0=a
(9.2) a-0=0 (9.2") a+l-=1
(9.3) not 0 =1 (9.3") not 1 =0

Bemerkung: Die jeweils in einer Zeile stehenden Gesetze sind duale Gesetze
voneinander; Beispiel: (3') ist das duale Gesetz von (3), (3) das duale Gesetz von (3').

Beweis von Rechengesetz (3):

a b c b + ¢ a(b + c) ab ac ab + ac
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

Da die Spalten zu a(b + ¢) und ab + ac Ubereinstimmen, gilt: a(b + ¢) = ab + ac .
Aufgaben:

1. Beweise das Distributivgesetz (3).

2. Beweise die Gesetze von De Morgan.
Hinweis: WahrljeitsEafeI; auBer den Spalten fir a und b (4 Zeilen) erstelle Spalten fir
a-b, a-b, a, b, a+b firRegel (8).

3. Unter der Disjunktion a or b versteht man das nichtausschlieBende oder (,,non-

exclusive or"), d. h., a or b ist genau dann True, falls a oder b oder sowohl a
als auch b True sind (,oder" im Sinne von lat. vel).

Unter der Verknipfung a xor b (andere Schreibweise: a @ b) versteht man
das ausschlieBende oder (exclusive or), d. h., a @ b ist genau dann True, falls
entweder a oder b den Wert True hat.

Zeige: a®b = a-b+ab

BEISPIEL 1

Die Boolesche Funktion
z = f(a,b,c)

ist durch nebenstehende
Wahrheitstafel

gegeben:

PP OO0O0CO0O|Y
P R OO|RrHRO|IO|T
= OO |IOR|OfO
OO0 (Rr Ok |]IN

a) Ermittle die disjunktive Normalform (DNF; Disjunktion von Konjunktionen) fir z.
b) Vereinfache den Funktionsterm unter Anwendung der Booleschen Rechengesetze.
c) Zeichne den Schaltplan flr die optimierte Funktion z.

Losung:
ay z=a-b-c+ab.c+ab-c+ab-c
by Z = SB(E + C) + bc(é + a) Kommutativ- und Distributivgesetz
=a-b-1+b-c-1
=a-b+b-c
=a+b +b-cC de Morgan’s Gesetz
c) Z=5-E+b-C (oben) Z=a+b + b-c (unten)
. 1
./i -
a &
& 1
l/' : +>:1
b A N ® Z
J &
B 5 '
a 1 ==1
"V ®
) ‘:=-:1
b . i @ Z
&

BEISPIEL 2

Gegeben ist folgende digitale Schaltung mit den Eingangsvariablen a, b und der
Ausgangsvariablen z:

=1

NOT(ab)

a) Ermittle den Booleschen Term flir die Boolesche Funktion z = f(a,b,c). Hinweis:
Notiere am Ausgang jedes Gatters jeweils den Booleschen Term (Beispiel: a-b am
Ausgang des NAND-Gatters).

b) Vereinfache den in a) erhaltenen Term unter Verwendung der Rechenregeln fir
Boolesche Ausdriicke;

c) Erstelle die Wahrheitstafel und zeichne das Schaltbild flir den vereinfachten
Funktionsterm; teste beide Schaltungsvarianten mit einem
Digitalsimulationsprogramm.

Lésung:
Zu a):
\ 1 a
a - .
L2510 a+b
1
T :
=1
. & 4. z
&

ZU C):

optimierte Schaltung:

NAND

&

@

(2-mal de Morgan)
(wegen 3 =a)
(Kommutativgesetze)
(wegen a=a-1)
(Distributivgesetz)
(wegen a+1=1)

(de Morgan)

Wertetabelle:
a b
0 0
0 1
z
1 0
1 1

Typen von Logikgattern und Symbolik

Logikgatter werden mit Schaltsymbolen bezeichnet, die nach unterschiedlichen, mehr oder
weniger parallel existierenden Standards definiert sind.

Name Funktion Symbol in Schaltplan Wahrheits-
IEC 60617-12 : tabelle
1997 & ANSI/IEEE Std DIN 40700 (vor
ANSI/IEEE Std 91/91a-1991 1976)

91/91a-1991

ABY
Und-Gatt A— & A i)7 010
nd-Gatter Y=A.B -] T
(AND) o\ ¥ B_D—Dut o | Y 010
100
111
ABY
000
} A —) =1 A —
Oder-Gatter V=A+B Ly A out Y 011
(OR) B — B 5
101
111
Nicht-G 1 o1
icht-Gatter | _— A —] O—v A out A Y o1
(NOT)
10
ABY
NAND-Gatter 001
(NICHT — A/ & A— ¢ T
= . Y
UND) Y=A B o\ C— B — oLl | 011
(NOT AND) Lol
110
ABY
NOR-Gatter 001
(NICHT — A— 2t A ¢ AT
ODER) Y=A+B 5 — O—Y B ou m | Y 010
(NOT OR) boo
110
XOR-Gatter ABY
(Exklusiv- A— =1 A A — 000
ODER, Y=A®B — Y B out @ Y 011
Antivalenz) B—] == 101
(eXclusiveOR)

110

XNOR-

Gatter ABY
(Exklusiv- A —] A 2 _j 001
Nicht-ODER, Y=A®B O— Y %— out @ Y 010
Aquivalenz)] a==] 100
(eXclusive 111
Not OR)

Friither waren auf dem européischen Kontinent die deutschen Symbole (rechte Spalte)
verbreitet; im englischen Sprachraum waren und sind die amerikanischen Symbole (mittlere
Spalte) iiblich. Die IEC-Symbole sind international auf beschrankte Akzeptanz gestoen und
werden in der amerikanischen Literatur (fast) durchgingig ignoriert.

JK-Flipflop

Ein Flip-Flop (bistabile Kippstufe oder bistabiler Multivibrator) hat zwei stabile Zustinde am
Ausgang Q; die Zusténde heillen ,,gesetzt* (set) oder ,,zuriickgesetzt™ (reset). Ein 1-Bit-
Speicher 146t sich somit als FlipFlop realisieren.

Ein JK-FlipFlop ist ein taktgesteuertes FlipFlop: die an den Eingéngen J und K liegende
Information wird mit einer Flanke (hier: der steigenden Flanke) des an C liegenden

Taktsignals auf die Ausgidnge Q und 6 iibernommen.

Mit dem Taktsignal (clock, C) und der Eingangsbelegung J = 1 und K = 0 wird am Ausgang
Q eine 1 erzeugt und gespeichert, alternativ eine 0 beiJ =0und K = 1.

Bei der Realisierung des JK-Flipflops als taktflankengesteuertes Flipflop kann der Eingang C
fiir steigende Flanken (Wechsel von 0 auf 1) oder fiir fallende Flanken (Wechsel von 1 auf 0)
ausgelegt sein.

S glzllrtl:e?cl;lden Signal-Zeit-Diagramm Funktionstabelle
Flanken- Ubernahme der Eingangsinformation durch

gesteuertes steigende Flanke an C (clock) bis zur nach der
JK-Flipflop I 1 I | ... n-ten Taktflanke

clock ;K o,
-1 o] — I 0 0 Qu (unverdndert)
-+ - K | - L 0 1 0 (zuriickgesetzt)
1< ° @ T T T 1 0 1 (gesetzt)

Q 1 1 NOT Q, | (gewechselt)
T = toggle

(Wikipedia)

Halbaddierer und Volladdierer

Die Ziffern einer im Dezimalsystem geschriebenen Zahl a ergeben sich als Aneinanderrei-
hung der Koeffizienten aus der Dezimalzerlegung (Summe von Zehnerpotenzen) von a;
entsprechend erhalten wir die Darstellung von a im Dualsystem als Aneinanderreihung der
Koeffizienten aus der Dualzerlegung (Summe von Zweierpotenzen).

87dezimal = 8 - 101+ 7 . 10°
87dezimal = 1-2°+0-2°+1-2*+0-22+1-2241-2'+1-2°=1010111¢4y

Addition der Dualzahlen
a=a3-23+a2-22+a1-21+a0-20 und b=b3'23+b2'22+b1'21+b0'20:

a3 a ap Qo 1 1 0 1
+ bs b, by bg + 1 0 1 1
S4 S3 Sy S1 So 1 1 0 0 0

Den Ubertrag (,carry"), der sich aus der i-ten Stelle ergibt und der bei der Addition in der
(i + 1)-ten Stelle zu berticksichtigen ist, bezeichnen wir mit ¢;;q; i > 0.

Flr die O-te Stelle geniigt ein Halbaddierer mit den Eingangen ap und by und den Ergebnis-

sen sg und c;; die Addition in der i-ten Stelle, i > 1, erfordert einen Volladdierer mit den
Eingangen a;, b;, c;und den Ergebnissen s; und ¢, ;.

Halbaddierer HA

Wahrheitstafel:

dg bg I So Ci
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Wir ermitteln flr sq und c; jeweils die disjunktive Normalform (,,Disjunktion der Konjunkti-
onen“):

So = ao-bo + @ -bo = a ® bo

C: =ao-bo

Volladdierer VA

Wahrheitstafel:

Qi b; Ci S Citr1
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Wir ermitteln fur s; und ¢;;1 jeweils die disjunktive Normalform (,Disjunktion der Konjunk-
tionen™) und vereinfachen ggf. die booleschen Funktionsterme:

Si :a'E'Ci+a'bi'a+ai'a'a+ai'bi‘Ci
ohne Index i geschrieben:

s -a-b-c+ta-b-c+a-b-c+a-b-c

s =(a-b+a-b)-c+a-b-c+a-b-c

s =(a®b)-c+(a-b+a-b)-c

s =(@a®b)-c+(0+a-b+a-b+0)-c

s =(@a®b)-c+(a-a+a-b+a-b+b-b)-c
s =(@a®b)-c+[(a+b)-(a+b)]-c

s =(@a®b) c+[(@a+b)-(a+b)]-c

s =(a®b) c+[(a-b)-(a-b)] -c

s —(a®b).c+[a-b+a-b]-c

s =(@a®b)-c+(@ad®b)-c
s =(a®b)®c

mit Index i erhadlt man:

s =(@®b)®c

Cis1 =a'bi'Ci+ai'E'Ci+ai'bi'a+ai'bi'Ci
Cis1 =(a'bi-i-ai'a)'Ci+ai'bi'(a+Ci)
Cir1 =(a-bi+ai-5)-0+ai-bi-1

Ci+1 = (ai@bi)'Ci-l-ai'bi

‘W 1Bit-vOLLADDIERER (89 2~ 1Bit-voLLADDIERER BMl-% 1Bit-VOLLADDIERER 5
< 5 . 4 8

=

e
w2

VA

07.06.2021

Halbaddierer (HA) und Volladdierer (VA)

Schaltungen

R i’b’»ﬁ?ﬂ'ﬁ:dv <

e

s okt B SR
: : S 5, A O
; b8 0#& *‘4— f‘W' i i'ﬂ"fbt-tm 'f:‘:"" ovéiM. Vi"!"‘ A et , 4
£ o= (“‘i; @ !’e',) @ cC; : : ,'f‘c, Qahzs kff“:‘:‘-}ru f‘ruﬁ-.’
Coy = R by + {a:.® b)ec, 5
‘)ff{-'t & /{fhﬂf“ s

@ ”"“““““"""”;%&mif*f 1)~ @:«:_@.'_*...eﬁl e;

: =1
¥ ® S
a . = &
==1
& L
1 7.@ C
b ot Tr——

Addier-Schaltungen fur Dualzahlen

as dr ai do
+ bs b, b, bg
S4 S3 S, S So

1. Paralleladdierer mit seriellem Ubertrag (hier: 4-Bit-Addierer)

Fir das Least Significant Bit (LSB) genlgt ein Halbaddierer (HA); die héherwertigen Bits
erfordern jeweils einen Volladdierer, da hier der Ubertrag aus der vorherigen Stelle zu
bertcksichtigen ist.

S3 52 57 S

+ + |

0

03 by 9, by 9y by 9 by
i, . , . e
L] Val . »
I Y e Jva| 1o —
(] 1L]
|_. : :ooo.
SHBG—E: § : ..=
'\’ 1 L 1
Dezimal: 09 Hexadezimal: 09 Dual: 0000 1001
+ 10 + 0A + 0000 1010
19 13 0001 0011

2. Serieller 1-Bit-Addierer fiir 4-stellige Dualzahlen

Die Operanden werden jeweils in einem 4-Bit-Schieberegister abgelegt, nach 4 Taktimpulsen
finden wir das Ergebnis (hier: die Summe) in einem weiteren 4-Bit-Schieberegister.

Da der Ubertrag aus der vorherigen Stelle fiir die Addition in der aktuellen Stelle zu
bertcksichtigen ist, wird er in einem Flip-Flop zwischengespeichert. Dieses Flip-Flop
liefert auch das Most Significant Bit (MSB) des Ergebnisses.

—(® @ -]
j
.
*|
*|
.
*|
rd S :‘ R —lfu N = File
i =S i e et :
H
1
“VA
i g
np III+_J_ |
—® @ @ (&
T T e
. E s 1 P
[1c | L b i - i
[H i Laft ®

JJEe e

et
Lo llll]
Lallill]

LY S

—® —® @ —iD
- =
] e —© e lo
o g P o A P
@ e e [® L
Dezimal: 07 Hexadezimal: 07 Dual: 0000 0111
+ 14 + 0E + 0000 1110
21 15 0001 0101

OHIEBE REGIS TE R

’tm"‘#‘

- Dkt ¢ S & $ @
GV it : ,
oV E
&
S o THAKT

diavk ooy toites f..mum Taktfiaks O 1 4 1 0

%&W@bu O 1 01 4

AR "ol oy e (aktftanke O | O 1 O

; é’l'i 2 E’C Plana 1Ak e 4/"’({' JMJM"L (-4%\’&-/!\'“,. (Aat.r
2= At~ J‘h n"’ﬂn,} !ﬂ; PMK&L ot -.3’ 7 odAt v;ﬂ-; Ay

dudrzAver (Rivie zArer)

2§ 2| 2 2 4
et R TR LT L L
B o | 1 Z R RN e e
L bt o 1 @) 1 ¥
i [e] >
3 4§ 0 | 1 ! \ H ' t
4 4 a o ¢ f ———-! |
5 4 4 0 1 4 o ; ; ,1':.
A ; 4 4 0 241 ! :
41 1 { o =
Practomdatateile 2o Holes Vel a’“{ aa du-im- W

BT e dalad by e b Rl D o BT
/fr*&e:,.;‘ﬁ'ﬂ Anan e FLIP- Ftors (Z* 2_7-;.,45___‘,,:4_) ;

a’) Vinurache gaf e,

? i }
| i I] £ [
& j L | e ?,__ Eg‘ B
e rwm*wjﬁ] £ } g a‘
o& & o& 4 ‘& o

Die wesentlichen Komponenten einer CENTRAL PROCESSING UNIT (CPU) bestehen
aus der CONTROL UNIT (CU) und der ARITHMETIC LOGIC UNIT (ALU).

Die ALU berechnet arithmetische und logische Funktionen, die CU decodiert die
im Arbeitsspeicher abgelegten Befehle und fihrt sie aus.

In der Minimalkonfiguration beherrscht die ALU die arithmetische Funktion
~Addition" sowie die logischen Operationen ,,Negation™ (NOT) und
~Konjunktion™ (AND). Zu Lasten der Rechenzeit lassen sich die librigen
arithmetischen und logischen Funktionen auf die genannten, minimal verfigbaren
Operationen zurickfihren.

1. Subtraktion

Die duale Subtraktion as a, a; ag
— b b, by by

d; d, d; do

|aBt sich auf eine duale Addition nach folgendem Verfahren zurickfihren:
- Bilde das Einerkomplement des Subtrahenden bz b, b; by , indem man alle
Ziffern negiert (invertiert; aus 0 wird 1 und aus 1 wird 0).
- Addiere das Einerkomplement und die Zahl 1 zum Minuenden.
- Das Ergebnis ist die gesuchte Differenz; dabei bleibt der Uberlauf
unbericksichtigt.

a) Verdeutliche das genannte Verfahren anhand einiger selbst gewahlter
Beispiele (ein Beweis des Verfahrens ist nicht erforderlich.).

b) Erganze die Schaltung ,4-bit-Paralleladdierer.dsim" so, daB man nach
entsprechender Umschaltung wahlweise eine duale Addition oder eine duale
Subtraktion durchfiihren kann.

Hinweise:

- Ersetze den HA fir das least significant bit (LSB) durch einen VA, um
erforderlichenfalls eine ,1" als Summand einspeisen zu kénnen (wie?).

- Die Invertierung der Ziffern des Subtrahenden gelingt z. B. durch den
geeignheten Einsatz von XOR-Gattern.

2. Weitere Rechenoperationen

Gegeben sind die (im einfachsten Fall positiven ganzzahligen) Operanden a und
b. Um zu verdeutlichen, wie man die ,héheren™ Rechenoperationen mittels
geeigneter Iteration auf die Grundoperationen ,Addition" und ,Subtraktion™
zurlckfihren kann, schreibe und teste ein Python-Programm, welches die
Operationen ,Multiplikation™ (a*b), ,Division™ (a/b, ganzzahlige Division) und
~Potenzierung" (a**b) realisiert.

3. Logische Operationen

Zeige examplarisch, daB sich die logischen Verknlipfungen

a)a+b
b)a®@b

c) a-(b+c)

auf die Operationen NOT und AND zurlickfihren lassen.

Algorithmus “"Grundrechenarten” mit GUI

In der ALU einer CPU sind in der Regel nur die Rechenoperationen “Addition” und
“Subtraktion” hardwaremaBig implementiert; die “héheren” Rechenoperationen
“Multiplikation”, “Potenzierung” und “Division” werden als iterativ formulierte
Maschinenprogramme, also als Software, realisiert. Wir simulieren diese
Vorgange mit dem in Python codierten Algorithmus Grundrechenarten_GUI.py,

in welchem flr die hdheren Rechenoperationen iterativ geschriebene Funktionen
definiert werden.

Wir fihren
- die Multiplikation auf wiederholte Addition,
- die Potenzierung auf wiederholte Multiplikation und

- die (ganzzahlige) Division auf wiederholte Subtraktion
zurick.

Programmtext in Python:

n tkinter impc *
Erstellung eines Fensters
fenster = Tk()
fenster.title ('Grundrechenarten')
fenster.geometry ('600x400")
fenster.resizable(0,0)

Funktionen fiir die Grundrechenarten

summe (a,b) :
'l a Fih

- differenz(a,b):
o= noa = b

- produkt(a,b):
ergebnis = 0

1=20
] i<=b-1:
ergebnis = summe (ergebnis,a)
1 +=1
n ergebnis

- potenz(a,b):

f b ==20: return 1
ergebnis = a
i=20
hile i <= b - 2:
ergebnis = produkt(ergebnis,a)
1=1+1
n ergebnis
- quotient(a,b):
rest.= a

ergebnis = 0

’ rest »>= b:
rest = differenz(rest,b)
ergebnis += 1
‘1 ergebnis

auszufilhrende EKommandos

2

def addiere():

gt

e

X = int(entryl.get())
y int(entry2.qget())

(nach Klick auf den entsprechenden Button)

Die fiir die Operanden jeweils eingegebenen Zeichenkette (string)
wird in den Typ "integer" konvertiert und den Variablen
¥ und y zugewiesen.

Zur Berechnung des Egebnisses wird die Funktion "summe" aufgerufen.

Das Ergebnis wird der Variablen result zugewiesen.

result = summe(x,y)

result (vom Typ integer) wird in in eine Zeichenkette (string)
konvertiert und als text in labelb5 ausgegeben.

label5.config(text=str (result))

def subtrahiere():

X = int(entryl.get())

y = int{entry2.get())

result = differenz(x,y)
label5.config(text=str(result))

def multipliziere():

% = int({entryl.get())
y = int(entryZ.get())
result = produkt (%,y)
label5.config(text=str(result))

def potenziere():

X int(entryl.get())
y = int(entryz.get())
result = potenz(x,y)
label5.config(text=str (result))

def dividiere():

X int(entryl.get())
v int (entry2.get())
result = quotient (x,y)
label5.config(text=str(result))

Eingabe der Operanden

labell

labell
label?2
label?2
entryl
entryl

entry2
entry2

= Label (master=fenster,

bg="lightgrey', fg="purple’,

text='"1. Operand',6 font=("Arial"™, 20))
.place(x=10, y=10, width=230, height=50)

= Label (master=fenster,bg="lightgrey', fg="purple’',
text='2. Operand', font=("Arial", 20))
.place (x=250, y=10, width=230, height=50)

= Entry(master=fenster, bg='turquoise', font=("Arial", 20})
.place(x=10, y=70, width=230, height=50)

= Entry(master=fenster, bg='orange',

font=("Arial", 20))

.place (x=250, y=70, width=230, height=50)

Auswahl der Rechenoperation

labkel3 = Label (master=fenster,

bg='lightgrey’',

fg="purple',

text="'Operation’,

font=("Arial"™, 20))
label3.place(x=10, y=140, width=490, height=50)

button = Button(master=fenster, bg='green', text='+',
font=("Arial", 30), command = addiere)
button.place(x=10, y=200, width=90, height=50)

button = Button{master=fenster, bg="blue', text='-',
font=("Arial", 30), command = subtrahiere)
button.place(x=110, y=200, width=90, height=50)

button = Button (master=fenster, bg='red', text="'*',
font=("Arial", 30), command = multipliziere)
button.place (x=210, y=200, width=90, height=50)

button = Button{master=fenster, bg='yellow', text=""',
font=("Arial", 30), command = potenziere)
button.place (x=310, y=200, width=90, height=50)

button = Button (master=fenster, bg="purple', text='/",
font=("Arial", 30), command = dividiere)
button.place(x=410, y=200, width=90, height=50)

labels zur Ausgabe des Resultats

labeld = Label (master=fenster,

bg='lightgrey’',

fg="purple',

text="Resultat',

font=("Arial", 20))
labeld.place(x=10, y=280, width=490, height=50)

labkelb = Label (master=fenster,
bg='lightblue’',
fg="black’',
texi="";
font=("Arial"™, 20))
label5.place (=10, y=340, width=490, height=50)

Nach Ausfihren des Programms erhalten wie folgende graphische
Benutzeroberflache (GUI); die jeweils dazugehérenden Programmtextausziige
sind in nahezu derselben Farbe (hellgrau, tirkis, orange, griin, blau, rot, gelb,
purpur) gehalten wie in der GUI:

Grundrechenarten

1. Operand 2. Operand

4497 3

Operation

I

Resultat

90942871473

labell = Label (master=fenster,

bg='lightgrey',6 £fg='purple',

text='1l. Operand',k font=("Arial", 20))
labell.place(x=10, y=10, width=230, height=50)

label2 = Label (master=fenster,bg='lightgrey', fg='purple',
text='2. Operand', font=("Arial", 20))
label2.place (x=250, y=10, width=230, height=50)

entryl = Entry(master=fenster, bg='turquoise', font=("Arial", 20))
entryl.place (x=10, y=70, width=230, height=50)

entry2 = Entry (master=fenster, bg='orange', font=("Arial", 20))
entry2.place (x=250, y=70, width=230, height=50)

label3 = Label (master=fenster,

bg='lightgrey',

fg="purple',

text='Operation',

font=("Arial", 20))
label3.place(x=10, y=140, width=490, height=50)

button = Button (master=fenster, bg='green',K text='+',
font=("Arial", 30), command = addiere)
button.place (x=10, y=200, width=90, height=50)

button = Button (master=fenster, bg='blue', text='-',
font=("Arial", 30), command = subtrahiere)
button.place (x=110, y=200, width=90, height=50)

button = Button (master=fenster, bg='red',6K text='*',
font=("Arial", 30), command = multipliziere)
button.place (x=210, y=200, width=90, height=50)

button = Button (master=fenster, bg='purple',6 text='/',
font=("Arial", 30), command = dividiere)
button.place (x=410, y=200, width=90, height=50)

label4 = Label (master=fenster,
bg='lightgrey',
fg="purple',
text='Resultat',
font=("Arial", 20))
labeld .place (x=10, y=280, width=490, height=50)

label5 = Label (master=fenster,
bg='lightblue',
fg='black',
text="",
font=("Arial", 20))
label5.place (x=10, y=340, width=490, height=50)

Binare Suche

Gegeben: Ein sortiertes Array a mit den n Komponenten a[0], . . .

Aufgabe:

Beispiel
value = 13

Informatik 12

., a[n-1]

Januar 2022

Entscheide, ob ein flir die Variable value eingegebener Wert als Wert einer Komponente des Arrays a

vorkommt.

n = len(a) = 10

Wir GUbergeben value und die Liste a[0], . . -

welche a[0], . . ., a[9] als lokale Liste array[0], . . .

, a[9] der Booleschen Funktion binarysearch,
, array[9] fortflhrt.

a[0] a[1] a[2] a[3] af4] a[5] a[6] al7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21
array[0] | array [1] | array [2] | array [3] | array [4] | array [5] | array [6] | array [7] | array [8] | array [9]
3 4 5 5 7 8 11 13 19 21

1. Schritt:

Wir bestimmen den mittleren Index des Arrays array:

2. Schritt:

len(array)//2 =5

midvalue = array[len(array)//2] = array[10//2] = array[5] = 8
Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurlick; gefunden!
. ., al[4] links von a[5]

Falls value < midvalue: suche in der Liste a[0], .
Falls value > midvalue: suche in der Liste a[6], . .

hier: wegen 13 > 8 suchen wir in der Liste a[6], . .

Suche value in der Liste a[6], . . -, a[9]
a[6] a[7] a[8] a[9]
11 13 19 21

Diese Liste a[6], -
welche a[6], . .

. , a[9] und value Ubergeben wir der Booleschen Funktion binarysearch,

, a[9] als lokale Liste array[0], . . . , array[3] fortflhrt.

array[0] array[1] array[2] array[3]
11 13 19 21
1. Schritt:

Wir bestimmen den mittleren Index des Arrays array:

2. Schritt:

midvalue = array[len(array)//2] = array[4//2] = array[2] = 19

Wir vergleichen value mit midvalue:

., a[9] rechts von a[5]

len(array)//2 = 4//2 = 2

Falls value == midvalue: binarysearch gibt den Wert True zurlick; gefunden!

Falls value < midvalue: suche in der Liste array[0], . . ., array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suchen wir in der Liste array[0], . . ., array[1]

Suche value in der Liste array[0], . . ., array[1]

array[0] array[1]

11 13
Diese Liste array[0], . . ., array[1] und value Ubergeben wir der Booleschen Funktion binarysearch,
welche array[0], . . ., array[1] als lokale Liste array[0], . . ., array[1] fortfUhrt.
1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 2//2 =1
2. Schritt:

midvalue = array[len(array)//2] = array[2//2] = array[1] = 13

Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zuriick; gefunden!

Falls value < midvalue: suche in der Liste array[0] links von array[1]

Falls value > midvalue: suche in der leeren Liste [] rechts von array[1], dann: binarysearch gibt den Wert
False zurlck; nicht gefunden!

hier: wegen 13 = value = midvalue = 13: binarysearch gibt den Wert True zurilick; gefunden!

Der Booleschen Funktion binarysearch werden das aus n Komponenten bestehende
sortierte Feld a (in Python: Liste) und der zu suchende Wert value (bergeben;
binarysearch liefert den Wert True, falls eine Komponente von a mit value
Ubereinstimmt, andernfalls den Wert False.

Die Variable z ermittelt die Anzahl der Aufrufe von binarysearch.

Quelltext in Python:

def binarysearch (array,value) :
global z
z += 1
print (array)
if array == [] or (len(array) == 1 and array[0] '= wvalue):
return False
else:
midvalue = array[len(array)//2]
if midvalue == value:
return True
elif value < midvalue:
return binarysearch (array[:len(array)//2],value)
else:
return binarysearch (array[len(array)//2 + 1:],value)

Aufruf der Funktion binarysearch:

binarysearch (a,value)

Komplexitat des Algorithmus binarysearch:

Die Komplexitat und damit der Rechenaufwand A(n) wird wesentlich bestimmt durch die
Anzahl z der Aufrufe der rekursiv definierten Funktion binarysearch; o. B. d. A.sein
eine Potenzvon 2,d. h.n=2¥mitk=0,1,2,3,.....

Beachte: die maximale Anzahl von Aufrufen (worst case) tritt ein, falls die Suche
ergebnislos ist.

k=0 < n=1
Aufrufe binarysearch = 1

k=3 < n=8

gesuchte Zahl: 79

[14; 59, 52, F0; T4, BO; 89, B7]
[BR,. 89; .97]

[80]

79 wurde nicht gefunden
hufrufe binarysearch = 3

k=4 < n=16

gesuchte Zahl: 80

(13 23, 49 45, A4, A4 L5 5. 47 52, 5P 59, 632, FF; 685 B4
52, 51, 59, 623, 12, 892, 94

[72, 92, 94]

[72]

80 wurde nicht gefunden

Rufrufe binarysearch = 4

Eine Verdopplung von n impliziert hdchstens einen weiteren Aufruf von binarysearch!
Offensichtlich gilt:

z=k
Wegen n = 2¥ k = log,(n) folgt:
z = logz(n)

Somit hat der Algorithmus binarysearch logarithmische Komplexitat:

A(n) ~ log>(n)

Bemerkung:
Falls im unglinstigsten Fall binarysearch noch die leere Liste [] (bergeben wird, gilt: z = k + 1

Modifikation des Algorithmus binarysearch:

Die rekursive Funktion binarysearch liefert den booleschen Wert False, falls value
nicht gefunden wird, andernfalls den Index index der betreffenden Komponente.
AuBer a und value sind die Indices begin und end an die Funktion binarysearch
zu Ubergeben, so daB binarysearch die Teilliste a[begin] , , al[end]
durchsucht.

Beachte: index wird innerhalb des Funktionsrumpfs als globale Variable definiert.

z =0

def binarysearch (array, value, begin, end):
global index
global z
z += 1
print (array[begin:end+1])
if begin > end: return False
middle = (begin + end) // 2
print('mittleres Element: a[',middle,'] = ',6array[middle])
if array[middle] == value:
index = middle
elif array[middle] < value:
return binarysearch (array, value, middle + 1, end)
else:
return binarysearch (array, value, begin, middle - 1)

Aufruf der Funktion binarysearch zur Suche von value in der sortierten Liste
a[oj, , a[n-1]:

binarysearch(a, value, 0, len(a)-1)

gesuchte Zahl: 521

[120, le2, 163, 181, 205, 392, 444, 521, 528, 557, 643, 663, 689, 810, 847, 899, 913, 992]
mittleres Element: a[8] = 528

[120, 162, 163, 181, 205, 392, 444, 521]

mittleres Element: af[3] = 181
[205, 392, 444, 521]

mittleres Element: al[5] = 392
[444, 521]

mittleres Element: al[6] = 444
[521]

mittleres Element: a[7] = 521
521 wurde gefunden an der Stelle 7
ail i = 921

Bufrufe binarysearch = 5

gesuchte Zahl: 241
[173,; 183; 187 243, 265; 307; 345, 375 HA9.: 622, B68: 976]

mittleres Element: a[5] = 307
[173, 183, 187, 243, 265]
mittleres Element: a[2] = 187
[243, 265]

mittleres Element: a[3] = 243

[1
241 wurde nicht gefunden
Aufrufe binarysearch = 4

Gutekriterien bei Algorithmen

1. Effizienz

Verlangt werden Effizienz bzgl. des zeitlichen Aufwands und des Speicherbedarfs
wahrend der Laufzeit; beide Forderungen sind haufig nicht gleichzeitig erfillbar.

2. Korrektheit

Das Programm liefert die L6sung eines Problems entsprechend seiner Spezifikation, in
der die Eingabedaten und die Ausgabedaten vorgeschrieben werden.

3. Zuverlassigkeit
Ein zuverlassiges Programm korrigiert Fehler infolge falscher Anwendung oder
falscher oder sinnloser Eingabe.

4. Wartungsfreundlichkeit

Ein wartungsfreundliches Programm laBt sich leicht andern, korrigieren oder
erweitern (wichtig fiur upgrades!); die Wartungsfreundlichkeit setzt allerdings eine
entsprechende Dokumentation des Quelltextes voraus.

5. Benutzerfreundlichkeit

Der Anwender kann ohne Konsultation des Programmautors oder eines Handbuchs
mit dem Programm erfolgreich umgehen; diese Fertigkeit wird selbstverstandlich
auch unterstitzt von der Intuition und Erfahrung des Anwenders.

1. Effizienz

Sei n := Anzahl der Datensatze, die der Algorithmus zu verarbeiten hat

Algorithmus Sortieren Sortieren Turme von | Erfassen Suchen in
durch durch Hanoi von einer
direkte Mischen Adressen sortierten
Auswahl (mergesort) Liste

Anzahl der

Rechenope-

rationen und

damit

ézlglaﬁ?izr n? n - log(n) 2"-1 n log»(n)

Laufzeit des

Programms

proportional

Zu

CVr;theSstums polynomial exponentiell linear logarithmisch

Algorithmen, deren zeitlicher Aufwand exponentiell oder starker als exponentiell
(Ackermann-Funktion!) anwdchst, sind in der Praxis unbrauchbar.

2. Korrektheit

Jeder Programmierer macht die Erfahrung, daB3 ein Programm weder bezlglich der
Syntax der verwendeten Programmiersprache noch bezlglich der erwarteten
Verarbeitung der Daten auf Anhieb korrekt ist.

Insbesondere gilt dies flr iberaus komplexe Programme wie Betriebssysteme (winXP
oder win2k3; die alten winDOS-Systeme (win3.11, win95, win98, winME) erwiesen sich
als besonders unzuverlassig).
In einigen Fallen, leider beschrankt auf vergleichsweise einfache Algorithmen, 1aBt sich
sogar ein mathematischer Beweis flir die Korrektheit eines Algorithmus erbringen, indem
man Schleifeninvarianten findet und diese als korrekt verifiziert. Das hierzu benétigte
Beweisverfahren ist das Verfahren der Vollstdndigen Induktion (Die Mathematik kennt
bekanntlich drei Beweisverfahren: direkter Beweis, indirekter Beweis, vollstandige
Induktion).
Verfahren der Vollstandigen Induktion:
Sei A(n) eine von der natirlichen Zahl n abhangige Aussage, n € {0, 1,2, 3, }.
Um zu beweisen, daB A(n) wahrist farallen € {0, 1, 2, 3, }, verifizieren wir:

(1) A() istwahr (Induktionsanfang)

2 Die Implikation [A(n) = A(n+1)] ist wahr (Induktionsschritt)

Bevor wir dieses Verfahren auf den Korrektheitsbeweis von Algorithmen anwenden,
sollten wir es bei einfachen innermathematischen Problemen einiiben und verstehen.

Aufgabe 1:

Behauptung: 12+ 22+ 3%+ + n? = n(n+1)(2n+1)/6
Beweis:

Definiere A(n) := ,, 12 + + n? = n(n+1)(2n+1)/6“

(Beachte: A(n) ist eine Gleichung, somit insbesondere eine Aussage, die genau zwei
boolesche Werte annehmen kann: TRUE oder FALSE.)

Induktionsanfang (n=1):

A(1)=TRUE ,

denn A(1) & [1°=1.(1+1)(21+1)/6] & [1=123/6] & [1=1]
die letzte Aussage hat trivialerweise den Wert TRUE.

Induktionsschritt:

Unter der Annahme, daB A(n) TRUE ist, verifizieren wir, da dann auch A(n+1) den Wert
TRUE annimmt.

Sei also A(n) TRUE, das heif3t

12+22+3%2+ + n? = n(n+1)(2n+1)/6 ist richtig fur beliebiges n (diese
Annahme heiBt auch Induktionsvoraussetzung).

Wir betrachten A(n+1), also die Gleichung
12+22+....... + (n+ 1)2 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6,

die wir unter der Annahme, daB A(n) TRUE ist, als TRUE qualifizieren werden.

12+2%2+, .. +(n+1)% = [12+2%2+...... +n?] + (n+ 1)?
wegen A(n) = TRUE folgt
= n(n+1)(2n+1)/6 + (n + 1)?
= (n+1[n2n+1)/6 + (n + 1)]
(n+ D[n(2n+1) +6(n + 1)]/6
(n + 1)[2n?+n + 6n + 6)]/6
(n + 1)[2n?+ 7n + 6)]/6
= (n+D[(+2)2n + 3)]/6
= (n+ V[(n+1) + 1][2(n+1) + 1]/6

Somit folgt unter der Annahme ,A(n)=TRUE", daB ,A(n+1)=TRUE" wahr ist, und in
Verbindung mit dem Induktionsanfang ,A(1)=TRUE" ergibt sich die Behauptung fir alle
Werte von n.

Als Ubungsaufgabe verifiziere man die Behauptungen der Aufgaben 2 und 3:

Aufgabe 2:

Behauptung: 1®+ 23+ 33+ + n® = n?’(n+1)%/4

Aufgabe 3:

Behauptung: Die Bernoullische Ungleichung (1 +x)">1+n-x

ist wahr fur alle natlrlichen Zahlen n mit n>2 und fir reelle Zahlen x mit
x#0 und 1+x>0.

(Vgl. auch das Mathematikbuch; man sieht, daB Informatik und Mathematik durchaus
verwandte Wissenschaften sind, was man auch nicht anders vermutet hatte.)

Korrektheitsbeweise bei Algorithmen

1. Der Algorithmus elmo

Seien n eine natirliche Zahl, a eine von 0 verschiedene reelle Zahl.
Gegeben ist folgender Algorithmus als Struktogramm:

Eingabe a; n

b:=a; u:=n; p:=1;

while u>0
U ungerade
+ J—
u:=u-1
p:=p*b

u:=u div 2
b:=b*b

Ausgabe p

Aufgaben:
a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache).
b) Teste das Programm; was bewirkt der Algorithmus vermutlich?

c) Die Vermutung laBt sich anhand eines Trace erharten; finde eine Beziehung, die sich
als Schleifeninvariante erweisen kénnte.

d) Beweise vermoge vollstandiger Induktion, daB die in c) gefundene Beziehung
tatsachlich Schleifeninvariante ist, und schlieBe daraus, daB3 die in b) aufgestellte
Vermutung, was der Algorithmus bewirkt, richtig ist.

Lésungen:

Zu a):

program elmo;

uses crt;

var n,u :longint;
a,b,p:real;

begin
clrscr;

{ Eingabe der Werte fir a und n }
write("a "); readln(a);
write(™n "); readln(n);

{ Initialisierung der Variablen }

b:=a;
u:=n;
p:=1;

{ Verarbeitung der Daten }
while u>0 do begin
if odd(u) then begin

I=u-1;
p:=p*b
end;
u:=u div 2;
b:=sqgr(b)
end;
{ Ausgabe }
writeln;

write ("p = ",p);
while not keypressed do

end.

zu b): Kompiliere den Quelltext und fihre das Programm aus.

ZuU C):
Empirisches Testen des Programms anhand eines Trace

Vereinbarung: S.D. = Schleifendurchlauf

Seien n eine natirliche Zahl, a eine von 0 verschiedene reelle Zahl.

o) Trace flr n=7:

n b u p u=0
vor dem 7 a v, 1 B
1.S.D.
vor dem 2
2.S.D. 7 a 3 a -
ordem |7 a* 1 5 -
R | o | a | s
B) Trace fir n=18:

n b u p u=0
vor dem
1.S.D. 18 a 18 1 -
e 18 a’ 9 1 -
v | e # 4 | & |-
A 18 a* 2 a’ -
oden | 18 |1 | @ | -
g‘?csh_g_em 18 a>? 0 ald +
y) Trace fir n=52:

n b u p u=
vor dem
1.S.D. 52 a 52 1 -
yor dem 52 a’ 26 1 -
\éorsdgm 52 a* 13 1 _
S | s = | e | a | -
o | s2 a3 | & | -
oD 52 a® 1 a®f -
nach dem 52 364 0 a>2 +

6. S.D.

Vermutung:

Die Beziehung
p'bu — an

ist vor und nach jedem Schleifendurchlauf erftllt, also invariant gegeniber
Schleifendurchlaufen. Eine solche Gleichung heiBt auch Schleifeninvariante.

Der Algorithmus bricht ab, sobald u den Wert 0 hat; da u bei jedem Schleifendurchlauf
um 1 vermindert wird, falls u ungerade ist, in jedem Fall aber durch 2 dividiert wird, ist
die Abbruchbedingung nach endlich vielen Schleifendurchlaufen mit Sicherheit erfillt.

Flr u=0 schreibt sich die Schleifeninvariante:
p.bo — an

o p=a"

Damit ist gezeigt, daB bei Abbruch des Algorithmus die Zahl a"™ ausgegeben wird, falls die
Beziehung p-b" = a" sich als Schleifeninvariante erweist.

Zu d):

Wir fihren den Beweis vermége vollstandiger Induktion Gber den Index i, der den i-ten
Schleifendurchlauf bezeichnet.

Mit p;i, bi und u; bezeichnen wir die Werte der Variablen p , b und u vor dem i-ten
Schleifendurchlauf.

Induktionsanfang (i=1):
Wegenp; =1, by =a undu; =ngilt:

pl-blU1 =1.a"-a" , somit ist die Beziehung p-b" = a" fir i=1 erfillt.

Induktionsschritt:

Wir nehmen an, daB die Beziehung p-b" = a" vor dem i-ten Schleifendurchlauf erfillt
ist, daB somit gilt:

I:)i'bil'Ii = an (*)

Wir werden verifizieren, daB unter dieser Annahme (*) die Beziehung p-b" = a" auch
nach dem (i + 1)-ten Schleifendurchlauf erfillt ist.

Dazu drucken wir die Werte pj.1, bi+1 und ui., der Variablen p , b und u durch die Werte
pi, bi und u; aus. Da die Eigenschaft von u, gerade oder ungerade zu sein, auf die
Berechnung der neuen Werte von p , b und u EinfluB hat, missen wir eine
Fallunterscheidung vornehmen:

a. u sei ungerade vor dem i-ten Schleifendurchlauf, also odd(u;) = TRUE

Pi+1 = Pi- b; < pi= piva/ b
biv1=bi - b; & by =vVbig

Ui+1=(ui—1)/2 = Uy =2 -uUw+1

Wenn wir in die Gleichung (*) die fur p; , b; und u; erhaltenen Werte einsetzen, folgt:

(Pi+1/ b) - (N biz))N2 - Uiz1+ 1) = (Pirr 7 ¥V bis1) - (Vbix1) ™2 - Uig + 1)

= Pi+1- DivaMUiva

B. u sei gerade vor dem i-ten Schleifendurchlauf, also odd(u;) = FALSE

Ubungsaufgabe!

2. Der Algorithmus merlin

X und y seien natirliche Zahlen mit x >0 und y > O.
Gegeben ist folgender Algorithmus als Struktogramm:

Eingabe x; vy

q:=0; ri=x;

while r >y

q:=q + 1
r:=r -y
Ausgabe ¢
Ausgabe r
Aufgaben:

a) Codiere den Algorithmus in Pascal (oder einer anderen Hochsprache).

b) Teste das Programm; was bewirkt der Algorithmus vermutlich?

c) LaBt sich der Algorithmus auch mit einer repeat-Schleife formulieren?

d) Die Vermutung aus b) 1aBt sich anhand eines Trace erharten; finde eine
Beziehung, die sich als Schleifeninvariante erweisen kdnnte.

e) Beweise vermdge vollstédndiger Induktion, daB die in d) gefundene Beziehung
tatsachlich Schleifeninvariante ist, und schlieBe daraus, daB3 die in b) aufgestellte
Vermutung, was der Algorithmus bewirkt, richtig ist.

Den Potenzierungsalgorithmus ,,elmo* kann man modifizieren, indem man

die while-Schleife durch folgende Befehlssequenz ersetzt:

while u>0 do begin
while not odd(u) do begin

:=u div 2;
b:=b*b
end;
u:=u-1;
p:=P*b
end;

a) Integriere diese Befehlssequenz in den vorhandenen Programmtext und teste das
Programm empirisch.

b) Beweise die Korrektheit des auf diese Weise modifizierten Algorithmus!

In einem Buch ist das Struktogramm des folgenden Algorithmus abgedruckt,
von dem behauptet wird, dal3 er das Produkt der natirlichen Zahlen aund b
berechne (dieses - im Ubrigen nicht schlechte — Buch gibt’s tatsachlich!):

Eingabe a , b

u:=a; v:=b; s:=0;

while u>0

u gerade
+ —

SI= StV

u:=u div 2
s:=2*s

Ausgabe s

10

a) Verifizieren anhand eines Trace (oder indem man das Pascal-Programm schreibt
und dieses testet), daB der Algorithmus das verlangte nicht leistet.

b) Korrigiere den Algorithmus, so daB er korrekt im Sinne der Spezifikation arbeitet;
beweise dessen Korrektheit vermdge vollstandiger Induktion.

