Prinzipien zur Formulierung eines Algorithmus

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal, Java oder
Python) besteht aus einer Folge von ausfiihrbaren Anweisungen, die in der vorge-
gebenen Reihenfolge nacheinander abgearbeitet werden.

Wesentliche Kontrollstruktur: Iteration (realisiert als for- oder while-Schleife)

Funktionaler Ansatz

Die Formulierung des Quellcodes orientiert sich der inneren, in der Regel mathe-
matischen Struktur eines Algorithmus.

Wesentliche Kontrollstruktur: Rekursion

Definition:
Eine Prozedur (Teilprogramm, Subroutine) oder eine Funktion heiBBt rekursiv,
wenn deren Anweisungsblock mindestens einen Aufruf von sich selbst enthélt.

Bei beiden Ansatzen ist durch eine Abbruchbedingung sicherzustellen, daB der
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu
einem Ergebnis flhrt.

Beispiel 1: Die Fakultatsfunktion (engl.: factorial)

Wir ordnen jeder natlrlichen Zahl n, n > 0, die Zahl n! (lies: n-Fakultat) zu:

0!
n!

I
[Ey

1.-2-...... -n fallsn >0
Berechnung von n! gemaB imperativem Ansatz
Fakultaet iterativ

Eingabe
n = int(input('n = "))

Verarbeitung

I == 1
fact = 1
1 =1 # Initialisierung des Schleifenindex 1
fact = 1 # Anfangswert der Variablen fac
i €= N

fack = Fack. ™ 3
s W A |

Ausgabe
print [n,*! = ¥, Eact)

Berechnung von n! gemaB funktionalem Ansatz

Die Funktion n — fact(n) |aBt sich rekursiv definieren:

1
n-fact(n-1), falls n>0

Rekursionsanfang: fact(0)
Rekursionsvorschrift: fact(n)

Fakultaet rekursiv

Eingabe
n = int(input('n = "))

Definition der Funktion factorial
X::

factorial (x) :
' 0:

1

X % Factarialfz - 1)

Funktionsaufruf
fact = Factorial {n)

Rusgabe
print (m; *! = ¥,facl})

Ubungsaufgabe:

Der Algorithmus GAuUss, der nach Eingabe einer natiirlichen Zahl n die Summe
der Zahlen 1, . . ., n ermittelt, 1aBt sich sowohl imperativ als auch funktional pro-
grammieren.

Ergreife diese beiden Mdéglichkeiten, indem jeweils ein Python-Quelltext erstellt
wird (imperativ: Implementierung einer for- oder while-Schleife, mit Struk-
togramm; funktional: Implementierung einer rekursiv definierten Funktion)

Beispiel 2: Der Algorithmus ggT (gréBter gemeinsamer Teiler)

Nach Eingabe zweier natirlicher Zahlen a und b bestimmt ggT die gréBte ganze
Zahl, durch die sich a und b jeweils ohne Rest teilen lassen.

a) Imperativer Ansatz, formuliert als iterativer Algorithmus
(,Euklidischer Algorithmus")
Struktogramm:

Eingabe a, b

while (a>0 AND b >0)

a>b>b

Ausgabe a Ausgabe b

b) Funktionaler Ansatz, formuliert als rekursiv definierte Funktion
Die Funktion (a, b) - ggT(a,b) 1aBt sich rekursiv definieren:
Rekursionsanfang: ggT(a,a) = a

Rekursionsvorschrift: ggT(a,b) = ggT(a-b, b), falls a>b
ggT(a,b) = ggT(a, b-a), falls b >a

Aufgabe:
Realisiere den Algorithmus ggT als iteratives und als rekursives Python-
Programm; vergleiche die Laufzeiten.

Beispiel 3: Die Hofstadter-Funktion

Die Funktion hof ist rekursiv definiert, n e {1, 2, 3, ¥
Rekursionsanfang: hof(1) =1
hof(2) =1

Rekursionsvorschrift: hof(n) = hof(n-hof(n-1)) + hof(n-hof(n-2)), n>2

Aufgabe:
Codiere den Algorithmus hofstadter
a) rekursiv,
b) iterativ
jeweils in Python; vergleiche insbesondere die Laufzeiten!

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld; in Python: Liste), in
dem bereits berechnete Funktionswerte gespeichert werden.

16.06.2021

