

Die Programmiersprache Python - eine kurze Einführung

Der Python-Prompt lautet >>> und bedeutet, dass Python bereit ist, eine Anweisung
auszuführen oder eine Frage zu beantworten.
Python arbeitet interaktiv – wir können eine Anweisung schreiben und sofort die Auswertung erhalten.
Python antwortet also mit der ausgewerteten Eingabe.

Grundrechenarten:

Anweisung Ausgabe/Erklärung

>>> 5 + 2 7 (Addition)

>>> 5 - 2 3 (Subtraktion)

>>> 5 * 2 10 (Multiplikation)

>>> 5 / 2 2.5 (Division)

>>> 5 // 2 2 (Ganzzahldivision)

>>> 6.0 // 2 3.0 (Ergebnis ist float)

>>> 5 ** 2 25 (Potenzieren)

Arbeiten mit Strings (Zeichenketten)

Anweisung Ausgabe/Erklärung

>>> einstring = "Zeichenkette"

immutable, d. h. einzelne Zeichen können nicht
verändert werden

>>> einstring[0]

'Z' erstes Zeichen des
 Strings

>>> einstring[0] = 'W'

ERROR Fehlermeldung, da
 immutable

>>> 3 * einstring

'ZeichenketteZeichenketteZeichenkette'

>>> einstring[-1]

‚e‘ erstes Zeichen von
 hinten

>>> einstring[1:6]

‚eiche‘ 1. bis 6. Zeichen
 (jedoch ohne 6.)

>>> einstring[:-1]

‚Zeichenkett‘ letzter Buchstabe
 wird gelöscht

Ausgabe (print-Befehl)

Anweisung Ausgabe/Erklärung

>>> augen = 2

>>> nase = 1

>>> print(„ich habe“, augen,
 „Augen und“, nase, „Nase!“)

Trennung durch „Komma“ (gemischte
Datentypen, keine Typumwandlung)

ich habe 2 Augen und 1 Nase!

>>> print(„ich habe “ +
str(augen) +

 „ Augen und „ + str(nase) +

 „ Nase!“)

Trennung durch „Plus“ (Typumwandlung
erforderlich)

ich habe 2 Augen und 1 Nase!

Quelltext

Kommentare beginnen mit #-Zeichen oder sind zwischen je 3 Anführungszeichen

Zusammengehörende Code-Blöcke werden eingerückt
 In der Regel 4 Leerzeichen
 Beginn immer in gleichen Spalte
 keine geschweiften Klammern, Strichpunkte etc.

Am Ende einer Anweisung steht ein Doppelpunkt, danach Einrückung

Anweisung können durch Backslash (\) in der nächsten Zeile fortgeführt werden

Wiederholungen

Vorbemerkung:

 Zahlenbereiche

>>> range(8)

die ersten 8 Zahlen ab 0
Ergebnis: 0,1,2,3,4,5,6,7 Ergebnis: 0,1,2,3,4,5,

>>> range(3,6)

alle ganzen Zahlen von 3 bis 6
(ohne die 6)
Ergebnis: 0, 1, 2, 3, 4, 5, 6, 7

Feste Anzahl an Wiederholungen (for-Schleife)
(die Laufvariable i nimmt nacheinander jeden Wert an)

for i in range(0,3):

 print (i)

Ausgabe:
0
1
2

for i in ("Auto", 2, 3.14):

 print (i, type(i))

Ausgabe:
('Auto', <type 'str'>)
(2, <type 'int')
(3.14, <type> 'float')

Bedingte Wiederholungen (while-Schleife)

i = 0

while i < 3:

 print (i)

 i = i + 1

Ausgabe:
0
1
2

Weitere Anweisungen in Wiederholungen

break

verlässt diese Schleife sofort und macht nach der
Schleife weiter

continue

beendet diesen Schleifendurchlauf und macht
sofort mit dem nächsten Durchlauf weiter

Bedingungen

if … : (einseitige Bedingung)

elif …: (für Mehrfachauswahl)

else: (Alternative)

Beispiel:

from random import choice

optionen =

['Sonne','Wolken','Regen','Sturm']

wetter = choice(optionen)

if wetter == 'Sonne':

 badengehen()

elif wetter == 'Wolken':

 radeln()

else:

 regenschirmEinpacken()

Funktionen

Methoden beginnen mit dem Schlüsselwort def Beispiel:

from math import sqrt

def gibWurzel(zahl=0):

 „optionaler Kommentar, der

angezeigt wird“

 if zahl < 0:

 return False

 else:

 return sqrt(zahl)

Optional: Kommentar, der bei Aufruf angezeigt
wird, folgt in „“

Rückgabewert folgt nach Schlüsselwort return

Klassen

Klassen beginnen beginnen mit dem

Schlüsselwort class

Beispiel:

class Quader():

 def __init__(self):

 self.laenge = 1

 self.breite = 1

 self.hoehe = 1

 def volumen(self):

 vol = self.laenge *

 self.breite *

 self.hoehe

 return vol

Als Konstruktuor dient die Methode
__init__(self)

self bezeichnet dabei den Selbstbezug, also die
Klasse selbst.

Attribute der Klasse werden mit Hilfe von self
gesetzt.

Weitere Methoden können mit Hilfe des

Schlüsselwortes def hinzugefügt werden.

Vererbung

Oberklassen werden bei der Klassendeklaration
in die Klammer nach dem Klassennamen
gesetzt.

Beispiel: (Klasse Quader erbt von Klasse box)

class Quader(box):

 def __init__(self):

 box.__init__(self)

 self.laenge = 1

 self.breite = 1

 self.hoehe = 1

Mehrfachvererbung ist möglich, die einzelnen
Oberklassen werden durch ein Komma
voneinander getrennt.

Im Konstruktor einer Klasse müssen auch die
Konstruktoren der Oberklassen aufgerufen
werden.

