FORMALE SPRACHEN

Analyse folgenden Satzes:

,Die Katze jagt die Maus"

Syntaxbaum:

Satz
A
s N
Nominalgruppe Verbalgruppe
A
- A N % N
Artikel Substantiv Verb Nominalgruppe
A
4 A
Artikel Substantiv

Eine Grammatik wird beschrieben durch ein System von Regeln, z.B. in der Backus-
Naur-Form (BNF-Notation):

<SATZ> = <NOMINALGRUPPE> <VERBALGRUPPE>
<NOMINALGRUPPE> = <ARTIKEL> <SUBSTANTIV>
<VERBALGRUPPE> = <VERB> <NOMINALGRUPPE>

<VERB> ::= jagt | sieht | beiBt | friBt

<ARTIKEL> = der | die | das

<SUBSTANTIV> = Katze | Maus | Merlin | Tablet

Bemerkung: In spitzen Klammern eingeschlossene Symbole sind nicht endglltige Zei-
chen, sogenannte Non-Terminalzeichen (Nonterminals); die anderen Zeichen, wie z.
B. “der” oder “Katze” im obigen Beispiel, werden nicht mehr durch andere Zeichen er-
setzt und heiBen endgiltige Zeichen, Terminalzeichen (Terminals).

Die Ersetzungsregel ,,<ARTIKEL> ::= der | die | das" bedeutet, dal das Non-Terminal
+<ARTIKEL>" durch die Terminals ,der" oder ,die" oder ,das" ersetzt werden kann und
auch zu ersetzen ist, denn der endgiltige Satz besteht aus lauter Terminals.

Beachte: der Leser hat gewiB3 schon bemerkt, daB3 der Begriff ,Zeichen" nicht einen Buch-
staben oder eine Ziffer im Sinne von ,character" (char) meint, sondern die Terminalzei-
chen sind bei einer natlirlichen Sprache die Wérter, bei einer Programmiersprache die
Schliisselworter (z. B. input, print, if, else etc. in Python). Folglich sind die Sétze, die
gemaéaB den Syntaxregeln einer die Programmiersprache definierenden Grammatik gebil-
det werden kénnen, nichts anderes als die in dieser Sprache formulierten Programmtex-
te.

Satze, die geméaB obenstehenden Regeln aufgebaut sind:




“der Merlin beiBt das Tablet”
"die Maus sieht die Katze”
"das Katze friBt die Maus”

Die Syntaxregeln missen zur Bildung korrekter Satze eingehalten werden; andererseits
impliziert deren Einhaltung nicht zwingend, daB ein korrekter Satz gebildet wird. Ein nach
den Regeln der Grammatik syntaktisch korrekt gebildeter Satz garantiert keineswegs,
daB der Satz auch semantisch korrekt ist.

DEFINITION:

Wenn A eine endliche Menge von Zeichen ist, erhdlt man durch deren Hinterein-
anderschreiben Zeichenketten. Die Menge A hei3t auch Alphabet, die Zeichen-
ketten heiBen Worter iiber dem Alphabet A; das leere Wort, das keine Zeichen
enthdlt, heiBBt c.

Jede Menge von Wortern iiber A heiB3t eine formale Sprache; ein System von Re-
geln, welches entscheidet, ob ein Wort liber A zur Sprache gehort, heiBt Gram-
matik (oder Syntax) einer formalen Sprache.

In Python sind

- die Zeichen oder Symbole der formalen Sprache: Schlisselwdrter (print, if,
input, else, elif, return)
- die Wérter der formalen Sprache: Python-Programme

Eine Grammatik besteht aus Regeln, mit Hilfe derer entschieden wird, ob ein Wort (also
ein Programm-Text) ein glltiges Python-Programm ist. Dieser Vorgang heiBBt Syntax-
Analyse. Ein syntaktisch korrekter Programm-Text ist nicht hinreichend, daB das Pro-
gramm auch etwas “Verninftiges” leistet; die Bedeutung eines Programm-Textes (oder
eines Textes einer natlirlichen Sprache) wird durch den Begriff "Semantik” beschrieben.

Wir unterscheiden bei einer formalen Sprache terminale (“endglltige”) und nicht-
terminale (“nicht endglltige”) Zeichen oder Symbole.

REGULARE SPRACHEN (TYP 3)

Eine einfache formale Sprache

Sei S ein nicht-terminales Symbol, a, b seien terminale Symbole.
Eine Grammatik ist gegeben durch folgende Ersetzungsregein:

(1) S::=a

(2) S::=aSa

(3) S::=Sb
Bemerkung:

Die in der BNF-Notation flir Nonterminals vorgesehenen spitzen Klammern wurden hier weggelassen.

Aufgabe 1
a) Bilde einige Wérter (Programm-Texte), die zu der oben beschriebenen Grammatik
gehoren.

b) Wie lassen sich Wérter charakterisieren, die durch diese Grammatik beschrieben wer-
den?

L6sung:

a) Beachte: Solange noch ein S vorkommt, muBB S ersetzt werden, bis das entstandene
Wort aus lauter Terminal-Zeichen besteht.
Linksableitung (ausgehend vom Startsymbol S, ,top-down™):



S—253aSa —>aaa
S—25aSa —>aSba ——> aaba

S—3Sb —>Sbb —2>aSabb —>aSbabb —> aababb

b) Zu dieser Sprache gehdren offenbar Wérter,
- die genau aus ungeradzahlig vielen a’s bestehen
- die als erstes Zeichen ein a, gefolgt von beliebig vielen b’s, haben (wende wieder-
holt (3) und zuletzt (1) an)

Beispiel: S ——> Sb ——> Sbb ——> Sbbb —-> abbb

DEFINITION:
Eine Satzgliederungsgrammatik G ist durch folgende Bestandteile gegeben:

(1) eine endliche Menge T; ihre Elemente heiBen Terminalzeichen.

(2) eine endliche Menge N; ihre Elemente heiBen nicht-terminale Zeichen; in dieser
Menge N ist ein Startzeichen S ausgezeichnet.

(3) endlich viele Ersetzungsregeln, genannt Produktionen P.

Die von der Grammatik G bestimmte formale Sprache L(G) besteht aus allen Wértern
(bzw. Zeichenketten, Sdtzen, Programmtexten) Gber T, die - ausgehend vom Startzei-
chen S - durch endlich viele Anwendungen der Produktionen erzeugt werden kénnen.

Aufgabe 2
T {x,+,(,)7}
N {A,B,C,S}
Produktionen P:

(1) S::=x ]| (B)
(2) B::=SC
(3) C::=+S|¢

Erzeuge das Wort:
((x+(x+x)))

Aufgabe 3
Lexikalische Analyse von Namen (Bezeichner, identifier):
T:={ab,...,z2,AB,...,Z _,0,1,....,9}

N := { <name>, <buchstabe>, <ziffer> }
Startzeichen: S = <name> (beachte: S € N)

Produktionen P:

(1) <name>
(2) <buchstabe> ::
(3) <ziffer>

<buchstabe> | <name> <buchstabe> | <name> <ziffer>
alblc]...... lz|_|A|IB|]C]|...... | Z
01|

C
2131451617189

Zeige: Diese Grammatik G ist linkslinear vom Typ 3.
Zeichne den Graph eines endlichen Automaten, der Identifier erkennt (beachte die Seiten
4 und 5; Lésung Seite 7).



DEFINITION:

Eine Grammatik G heiBt reguldr, wenn alle Produktionen von der Form
(R) A::=aB , A::= a (Rechtslinearitat)
sind, oder wenn alle Produktionen die Form

(L) A ::=Ba , A::=a (Linkslinearitat)
haben. Die zugehorige formale Sprache L(G) heiBt regular.

Wir beschrédnken uns im folgenden auf linkslineare Grammatiken, was keine Einschrén-
kung darstellt; eine linksreguldre Grammatik nennen wir auch Grammatik vom Typ 3, die
zugehorige reguldre Sprache heiBt vom Typ 3.

DEFINITION:

Ein endlicher Automat (Akzeptor) ist bestimmt durch

- eine nichtleere, endliche Menge Z von Zustanden,

- eine nichtleere, endliche Menge E von Eingabesymbolen (Eingabealphabet),

- eine Uberfiihrungsfunktion f : Z x E — Z, die jedem Paar aus aktuellem Zustand und
Eingabe einen Folgezustand zuordnet,

- einen Anfangszustand zy aus der Menge Z,

- mindestens einen Endzustand zg aus der Menge Z.

Wir verdeutlichen einen endlichen Automaten durch einen Graphen: Flr jedem Zustand
aus Z zeichnen wir einen Knoten. Von den Knoten gehen gerichtete Kanten aus, wobei
eine Kante mit dem jeweiligen Eingabesymbol aus der Menge E beschriftet wird. Eine
Kante endet bei demjenigen Knoten (Zustand), in den der Automat nach Lesen des Ein-
gabesymbols libergeht.

Es gilt folgender
SATz: Ein endlicher Automat erkennt eine Sprache genau dann, wenn sie regular ist.

Der strenge Beweis dieses Satzes ist schwierig; fir linkslineare Grammatiken fihren wir
konstruktiv eine Plausibilitatsbetrachtung durch:

(1) Jedem Element der Menge N der Nonterminals einer Sprache ist ein Zustand (Knoten)
des endlichen Automaten zugeordnet; Ausnahme: dem Anfangszustand entspricht
kein Nonterminalzeichen. Das Nonterminal S (Startzeichen) entspricht dem Endzu-
stand.

(2) Jeder Produktion B — Ab entspricht eine gerichtete Kante mit der Bewertung b
(b € T) vom Knoten A (Zustand A) zum Knoten B (Zustand B).

b |
B - Ab A » B
S > Ab @ b ‘@




(3) Jeder Produktion B — a entspricht eine gerichtete Kante vom Anfangszustand zum
Knoten B (Zustand B) mit der Bewertung a, a € T. Auf den Anfangszustand dirfen
keine Kanten hinflihren.

a
oo - (&)

Um den Zusammenhang zwischen einer reguldren Sprache und einem endlichen Auto-
mat, der diese Sprache erkennt, klarzumachen, betrachten wir folgende durch das Quad-
rupel (N, T, P, S) gegebene Grammatik G vom Typ 3:

G=(N,T,P,S)

T:={a, b} (Eingabealphabet des endlichen Automaten)

N :={A, B, S} (Menge der Zustdande mit S = Startzeichen = Endzustand)
Produktionen P:

(1) A—>a|Aa

(2) B—>b]|Ab

(3) S—Ba

Der endliche Automat DFA, der zu dieser Grammatik gehort:

a

Endzustand

Anfangszustand

DFA = ,deterministic finite acceptor"

Die zu dieser Grammatik G gehdrende Sprache L(G):

L(G) {ba, aba, aaba, aaaba, aaaaba, aaaaaba, ... ... >

{w | w=a"bamitn e Ny}

Linksableitung des Wortes aaaaba (,top-down”; Linksableitung bedeutet, daB das je-
weils am weitesten links stehende Nonterminal-Zeichen ersetzt wird):

S —» Ba —» Aba —» Aaba —» Aaaba —» Aaaaba — aaaaaba



Syntaxbaum fiir das Wort aaba (,,bottom-up"):

Ein Beispiel fir eine Sprache L, die nicht regular ist und folglich von einem endlichen Au-
tomaten nicht erkannt wird:

Eingabe-Alphabet =T := {a, b}
L={w]|w=a"b" mitn e N} = {ab, aabb, aaabbb, aaaabbbb, ... ... >
DaB wir gerade diese Sprache betrachten, hat folgenden Grund:

Interpretiert man a als 6ffnende, b als schlieBende Klammer, so stellt L die Menge der
Klammerstrukturen beliebiger Tiefe dar. Solche Klammern treten nicht nur bei arithmeti-
schen Ausdriicken auf, sondern auch bei allen blockorientierten Sprachen wie C++, Pas-
cal, Java oder Python; in Pascal erfolgt die Klammerung eines Blocks mit begin und end,
in Java mit geschweiften Klammern { und 3}, in Python wird ein Anweisungsblock
durch Einricken gekennzeichnet.

Versuch, ein Regelsystem fir eine die Sprache L beschreibende regulare Grammatik zu
finden:

N:={A, S}
Produktionen P:

(1) S » Sb|Ab
(2) A > Aa]a

a) Konstruiere den endlichen Automat Au, der zu dieser Grammatik gehort.

b) Zeige, daB auch die “falschen” Wérter a"b™ mit n=m erkannt werden.

c) Gib ein Regelsystem (Produktionen) an, so daB diese Sprache erkannt wird. (Diese
Sprache ist nicht regular, sondern heiBt contextfrei oder vom Typ 2.)



Losung von Aufgabe 3 (Seite 3):

Fir das Nonterminal <name>, welches auch Startzeichen ist, schreiben wir S; dann
I&aBt sich die Grammatik G = (N, T, P, S), welche Bezeichner in der Programmiersprache
Python erzeugt, als linkslineare Grammatik formulieren:

T :={ab,¢c...,z,_,ABC, ...,2,0,1,2,3,....,9}
N := {S} mit S = Startsymbol

Produktionen P:

(1) S—»al|b]|... |z|_|A|B]|...|Z

(2) S»>Sa|Sb]|... |Sz|S_|SA|SB]|...|SZ

(3) S>S0|S1|[S2]|....]89

Der zu dieser Grammatik G gehérende DFA:
al... lz|_IAl...|12

: al... lz|_|A]...|Z @

011123415161 7]8]9

Beispiel:

Wir zeigen, daB die Zeichenkette a3Xyz ein gultiger Bezeichner, also ein Wort der von der
Grammatik G erzeugten Sprache L(G) ist, indem diese Zeichenkette (Programmtext oder
hier: Teil eines Programmtextes) solange reduziert wird, bis die gesamte Zeichenkette
auf das Startsymbol S zurlickgefihrt wurde:

a) Syntaxbaum fir das Wort a3Xyz (,bottom-up"):
/ |
S

/

a 3 X y z

b) Linksableitung flir das Wort a3Xyz (,,top-down™):

(2) () (2) (3) 1)
S > Sz —> Syz — SXyz — S3Xyz — a3Xyz

Lokale Teilbereiche (hier: Syntax von Bezeichnern) einer Programmiersprache kénnen
durch eine regulare Grammatik (Grammatik vom Typ 3) beschrieben werden.



Aufgaben:
4. Gegeben ist die (linkslineare) Grammatik G mit
T = {a; b} N = {A; B; S} S = Startzeichen

Produktionen P:
(1) A—>a

(2) A—> Ab

(3) B> Sb

(4) S— Aa

(5) S — Sa

(6) S — Ba

a) Gib den zu dieser Grammatik gehérenden DFA (,deterministic finite acceptor™) an.
b) Charakterisiere die zur Grammatik G gehérende Sprache L(G).
c) Konstruiere die Syntaxbdume zu den Wértern aaba, ababa, abab (,bottom-up")

5. Gegeben sei zum Eingabealphabet T = {0;1} die Menge T" aller Wérter (Zeichenket-
ten), die aus den Elementen von T gebildet werden kdénnen; betrachte die Sprache

L(G) := {W € T" | die Anzahl der Einsen in W ist gerade} .

a) Konstruiere einen DFA, der L(G) erkennt.

b) Gib die Syntaxregeln (Produktionen P) an.

c) Zeige, daB es flir das Wort 01101100 einen korrekten Syntaxbaum gibt, nicht
hingegen fiir das Wort 01011.

6. Ein Grammatik G sei definiert durch

T={a b,c} N = {R, S}

Produktionen P:

(1) S:i=c

(2) S::=aR

(3) R::=5Sb

Zeige: a) L(G) ={w|w=a"ch", neNg} ={c, acb, aacbb, aaacbbb, .. ..}

b) Es gibt keine regulare Grammatik flir diese Sprache (siehe S. 9 oben).

7. Gegeben ist der folgende DFA (https://en.wikipedia.org/wiki/Deterministic_finite_automaton ):

0 1 0

Sz | )1

1 0

a) Gib die Mengen T und N sowie das Startsymbol S an.
b) Wie lauten die Produktionen P?
c) Zeige: 11,1001, 10101, 1011101 € L(G)

d) Gib fir die Woérter aus c) jeweils die Linksableitung und den Syntaxbaum an; Hin-
weis: Erganze obenstehenden Graphen geeignet und formuliere eine weitere Pro-
duktionsregel, beachte hierzu den folgenden Originaltext zu obenstehendem DFA:

An example of a deterministic finite automaton that accepts only binary numbers that are
multiples of 3. The state S, is both the start state and an accept state. For example, the
string "1001" leads to the state sequence Sy, S;, S», Si1, So, and is hence accepted.



KONTEXTFREIE GRAMMATIKEN UND KONTEXTFREIE SPRACHEN
(Typ 2)

Context free grammars (CFG) and context free languages (CFL)

Zur Grammatik G = (T, N, P, S) mit Eingabealphabet T = {a; b; c} und N = {A; S}
(S=Startsymbol) sei die Sprache

L(G) :={w ] w=2a"¢h",n=0,1,2,...} ={c acb, aacbb, aaacbbb, . .. .. )3

gegeben. Falls man versucht, zu dieser Sprache L(G) ein linksreguldare Grammatik mit
den Produktionen P

(1) S—>Sb|Ac|c
(2) A—>Aa]a

zu formulieren (Aufgabe 6.b) auf der vorigen Seite), sieht man, daB der zugehérige DFA
zwar die ,richtigen™ Worter ¢, acb, aacbb, aaacbbb, . . . .. erkennt und daB es korrekte
Syntaxbaume fiir diese Wérter gibt, daB allerdings ebenso die ,falschen™ Wérter ac, acbb,
aaacb, . . . (also a"cb™ mit n=m) erkannt werden; denn zum Abarbeiten der a bedarf es
der rekursiven Regel A — Aa, zum Abarbeiten der b der rekursiven Regel S — Sb. Und
der DFA ermdglicht nicht zu zéhlen und festzuhalten, wie oft diese rekursiven Regeln je-
weils angewandt wurden!

Bemerkung: Eine Produktionsregel heiBt rekursiv, wenn ein Nonterminal auf der linken Seite der
Regel auch auf deren rechter Seite vorkommt.

Mehrfach geschachtelte Klammerungen, wie durch L(G) = {w | w = a"cb" } beschrie-
ben, treten nicht nur arithmetischen Termen, sondern auch als Programmstruktur in allen
blockorientierten Sprachen wie Python, Pascal, Java usw. auf. Um die oben formulierte
Sprache L(G) zu erkennen, muBB man das Regelsystem erweitern.

Vereinbarung:
Im Folgenden verstehen wir unter dem Symbol @ eine beliebige Aneinanderreihung von
Terminals oder Nonterminals, z. B. ® = AbaSa.

DEFINITION:
Eine zur Grammatik G gehorende Sprache L(G) heiBt kontextfrei (oder kontext-
unabhadngig, engl.: contextfree) genau dann, wenn alle Produktionen die Form

A > o (andere Schreibweise: A:=0)

mit A € N haben.

Bemerkungen:

Eine kontextfreie Grammatik nennen wir auch Grammatik vom Typ 2, die zugehérige
kontextfreie Sprache heiBt vom Typ 2.

Eine Produktion aAb ::= aBaSs ist dagegen nicht kontextfrei in dem Sinne, daB man das
Nonterminal A nicht einfach durch aBaS ersetzen darf, sondern nur dann, wenn es im
Zusammenhang (im Kontext) mit einem voranstehenden a und einem folgenden b vor-
kommt; hier ist die Zeichenkette aAb durch aBaS zu ersetzen. Bei kontextfreien Spra-
chen steht das auf der linken Seite einer Produktion stehende Nonterminal in keinem
Kontext anderer Zeichen.

Teilbereiche von Python (z. B. Identifier) lassen sich durch eine reguldre Grammatik
(Aufgabe 3, S. 3 und S. 7) beschreiben, insgesamt ist Python mindestens eine kontext-
freie Programmiersprache, also vom Typ 2.

Natiirliche Sprachen sind nicht kontextunabhédngig (daB man den Satz “die Maus jagt die
Katze” bilden konnte, liegt daran, daB3 die Produktionen kontextfrei definiert waren, sol-
che semantisch unsinnigen Sétze kann man dadurch ausschlieBen, indem die Produktio-
nen kontextabhdngig formuliert werden. ).



10

Aufgabe 8

Zur Grammatik G = (T, N, P, S) mit Eingabealphabet T = {a; b; c}, N = {A; S}
(S=Startsymbol) und den Produktionen P

(1) S::=c
(2) S::=aR
(3) R::=5Sb

gehort die Sprache
L(G) :={w]| w=2a"¢b",n=0,1,2,...} (siehe Aufg. 6).
Definiere die Grammatik G = (T, N, P, S) mit T = {a; b; c}, N = {S} (S=Startsymbol)
und den Produktionen P
(1) S::=c
(2) S::=aSb (zentralrekursive Regel)
Zeige: L(G) = L(G’)

Definition:
Zwei Grammatiken G und G’ heiBen aquivalent genau dann, wenn gilt: L(G) = L(G")

Aufgabe 9
a) Formuliere eine Grammatik G, damit die Sprache
L(G) ={w |w=a"b"} = { ab, aabb, aaabbb, aaaabbbb, . ... };n=1,2,...

erkannt wird.

b) Zeige, daB es fiir das Wort aaabbb einen korrekten Syntaxbaum und eine korrekte
Linksableitung gibt, fir aabbb dagegen nicht.

DEFINITION:

Eine Grammatik G heiBt strukturell mehrdeutig (ambigous) genau dann, wenn
die zugehorige Sprache L(G) Worter (bei Programmiersprachen: Quelltexte)
enthilt, fiir die es unterschiedliche Syntaxbdaume gibt.

Bemerkung: Von lexikalischer Mehrdeutigkeit spricht man, wenn ein Terminal (in einer
natlrlichen Sprache: ein Wort) mehrere Bedeutungen besitzt; Beispiel: In dem Satz
»Das SchloB wurde im 16. Jahrhundert gebaut" kann mit dem Wort ,SchloB" ein Gebdu-
de oder eine SchlieBvorrichtung gemeint sein.

Weitere Beispiele fiir lexikalische Mehrdeutigkeit in natiirlichen Sprachen:

"Der Gefangene floh” « "Der gefangene Floh”
"Time flies like an arrow” < “Fruit flies like a banana”.
Aufgabe 10
Gegeben ist die Sprache L(G) zur Grammatik G = (T, N, S, P) mit
T={+I*I(I)Ialblcl"'lz}

N={S,V}, S = Startzeichen
Produktionen P:
(1) S - V| (S)]| S+S | s*s
2) V. - al|bjc]. . .|z

Zeige:

a) (a+b) *celL(G) (Linksableitung, Syntaxbaum)

b) Fir das Wort a + b * c lassen sich Syntaxbaume auf zwei strukturell verschiedene
Arten angeben! Erlautere die Konsequenzen flr die Abfolge der Rechenschritte.
Lésung: Seite 17



11

Aufgabe 11
Gegeben ist die Sprache L(G) zur Grammatik G = (N, T, A, P) mit

{+I_I*I /I(I)Ialblcldle}
{A,S,V} mit A = Startsymbol

- Menge der Terminals: T :
- Menge der Nonterminals: N :
- Produktionsregeln P:

(1) A> V

(2) S> A+A

(3) S> A-A

(4) A> A*A

(5) A> A/A

(6) A> S*S

(7) A> S/S

(8 A> (S) | S
(99 V> alb]c|d]e

a) Zeige, daB das Wort (a+b)/(c-d) zurSprache L(G) gehort!
(Syntaxbaum und Linksableitung)

b) Beweise, dal3 die Grammatik G strukturell mehrdeutig ist, indem man zu dem
Wort a * b + ¢ zwei strukturell verschiedene Syntaxbdume entwickelt.

Bezeichnungen fiir die Nonterminals: A(usdruck), S(umme), V(ariable)

Aufgabe 12
».Dangling-else" ambiguity
Gegeben: Grammatik G = (N, T, S, P) mit

- T := {if else, s1,s2,cl,c2}
- N:={E S} mit S = Startsymbol
- Produktionsregeln P:

(1) s - ifES
(2) S - if ES else S
(3) S —» sl]s2
(4) E > cl]|c2

Bedeutung der Terminals:
s1, s2 (statementl, statement2) stehen jeweils fiir Anweisungen oder Anweisungsblécke
cl, c2 (conditionl, condition2) stehen jeweils fiir Boolesche Terme

Zeige:
Firdas Wort if cl if c2 sl else s2 gibt es verschiedene Syntaxbdaume.

Mdoglichkeiten, um der Mehrdeutigkeit zu begegnen:

- Der else-Zweig bezieht sich immer auf das ndchststehende if.

- Kennzeichnung von Anweisungsblécken durch entsprechende Strukturierung des
Quelltextes (in Python: Strukturierung durch Einriicken; in Pascal: Strukturierung
mit den Schliisselwértern begin und end, durch die ein Anweisungsblock jeweils
,geklammert" wird)

if cl: if cl:
if c2: if c2:
sl sl

else: else:

s2 s2



12

Bemerkungen:

- Es gibt kontextfreie Sprachen (CFLs; Sprachen vom Typ 2), die inharent mehrdeutig
(inherently ambiguous) sind, d. h. jede Grammatik fiir diese Sprache ist mehrdeutig.
Eine kontextfreie Sprache heil3t eindeutig, sobald sich eine eindeutige Grammatik an-
geben 1aBt, die diese Sprache erzeugt.

- Eine regulare Sprache (Sprache vom Typ 3) kann nicht inharent mehrdeutig sein, da
sich stets eine eindeutige Grammatik angeben |aBt, die diese Sprache erzeugt.

- Die Frage, ob zwei Grammatiken dieselbe Sprache erzeugen und damit aquivalent
sind, ist allgemein nicht entscheidbar.

- Es ist grundsatzlich nicht méglich, fir eine gegebene kontextfreie Grammatik mit ei-
nem allgemeinen Algorithmus zu entscheiden, ob sie eindeutig oder mehrdeutig ist.

- Gleichwohl gelingt es in der Praxis in aller Regel, eine eindeutige kontextfreie Gram-
matik zu formulieren (indem man z. B. die mdglichen Falle durchspielt).

- Syntaxbdume, bei denen das Startzeichen als Wurzel, die Nonterminals als innere
Knoten und die Terminals als Endknoten (Blatter) auftreten, lassen sich nur bei Typ-3
oder Typ-2-Sprachen sinnvoll erstellen, also bei Sprachen, bei denen die ,linke" Seite
jeder Produktionsregel aus genau einem Nonterminal-Zeichen besteht.

Aufgabe 13

Gegeben ist die Grammatik G, bestehend aus der Menge T der Terminalzeichen, der
Menge N der Nonterminalzeichen, der Menge P der Produktionen und dem Element SeN
als Startzeichen:

T:={a, b, p, q, if, then, else}

N :={S, S;, S;, B, T} mit S=Startzeichen
Produktionen P:

(1) S -S| S

(2) S; —» T | ifBthen S;else S,

(3) S, » T | ifBthenS | ifBthenS;elseS,;
(4) B > plaq

(5) T - a | b

Zeige: Das Wort
if p then if q then a else b

besitzt in dieser Grammatik nur einen einzigen Syntaxbaum!

Beispiel einer mehrdeutigen Grammatik bei einer natlrlichen Sprache

Quelle:

https://www.uni-

ulm.de/fileadmin/website uni_ulm/iui.inst.040/Formale Methoden der Informatik/Vorlesungsskripte/FMdI-06-
-2010-01-10--FormaleSprachen Vorlesung.pdf

T = {mit, in, auf, Hans, Frau, Fernglas, Park, sieht, geht, der, die, das, einem?}
N = {Satz, NP, VP, PP, N, A, V, P} mit Satz=Startsymbol

Produktionen P:

(1) Satz — NP VP

(2) NP — NP PP | AN | N

(3) VP — VP PP | V NP | V

(4) PP — P NP

(5) P — mit | in | auf

(6) N — Hans | Frau | Fernglas | Park
(7) V — sieht | geht

(8) A — der | die | das | einem



13

Zu dem Satz
~Hans sieht die Frau mit einem Fernglas"
lassen sich zwei strukturell verschiedene Syntaxbaume angeben:

1) Satz
B
f/ “Hh
7, ““x
NP N;/H f//f
L £ LN \
N v A TIF'

N
RN

(Hans) (sieht) (die Frau) (mit einem Femaglas)

2) Satz
NP VP PP
g f/// Ny
NP NP
//\ i %
T T

(Hans) (sieht die  Frau) (mit einem Femglas)

Beachte: Die Klammern sind nicht Bestandteil des zu analysierenden Satzes, sondern
dienen dazu, die unterschiedliche Semantik zu verdeutlichen.

Aufgabe 14

Gegeben ist die Menge der Terminalzeichen T = {a, b, ¢, (, ), +, *}.
Wir definieren die folgenden Grammatiken G; und Gj:

G; =(T,N,P,S) mit N={I,R, Q, S}, S=Startsymbol
Produktionen P:



14

(1) I - a|b]|c
2) Q » R|Q*R
3) R —» T [(S)
4) S - Q[|S+Q
G, =(T,N,P,S) mit N={I,S}, S=Startsymbol

Produktionen P:

(1) I
(2) S

(@]

5> al|b |
S5 I | I*S | I+S | (S)

a) Zeige: Das Wort a+ b * (a + c) gehort sowohl zur Sprache L(G;) als auch zur
Sprache L(G3), indem man bei G; und G, jeweils einen Syntaxbaum und eine Links-
ableitung angibt. (Bemerkung: G; und G, sind aquivalent.)

b) Analysiere das Wort a * b + a * ¢ sowohl nach G; als auch nach G,.
c) Analysiere das Wort a * ( b + c) sowohl nach G; als auch nach Ga,.

Losungen zu Aufgabe 14 a), b):

a)a) a+b*(a+c) € L(Gy)

5
Q
R
S
S S
| |
? ? ; Q
| |
? : ; ;
| |
I I I I
I | I |



15

Linksableitung:
Beachte: das am ,weitesten links" stehende Nonterminal wird jeweils ersetzt.

S->S+Q » Q+Q » R+Q »>I+Q »a+Q - a+Q*R
- a+R*R > a+I*R > a+b*R > a+b*(S) »>a+b*(S+Q)
- a+b*(Q+Q) » a+b*(R+Q) > a+b*(I+Q) > a+b*(a+Q)

- a+b*(a+R) > a+b*(a+l) »> a+b*(a+c)

a)p) a+b*(a+c) € L(Gy)

=
s

5

=
5
I
I I I T
I | I |

a + b g ( a + C 3

Linksableitung:
S >I+S » a+S - a+I*S 5> a+b*S 5> a+b*(S)—> a+b*(I+S)

—- a+b*(a+S)> a+b*(a+lI)-> a+b*(a+c)



16

b)a) a*b+ a*c e L(G,)

S
s
I

Q Q
Q Q
| [
R R R R
| | | |
I I I I
| | | |
a * b + a * C

Linksableitung:
S>5>S+Q > Q+Q > Q*R+Q 5> R*R+Q 5> I*R+Q - a*R+Q
- a*I+Q > a*b+Q - a*b+Q *R > a*b+R*R » a*b+I1*R

- a*b+a*R - a*b+a*I - a*b+a*c

b)) a*b+ a*c e L(G))
S

— — N




17

Linksableitung:
S > I*S » a*S -5 a*I+S »> a*b+S —»> a*b+1*S

—- a*b+a*S —- a*b+a*l —- a*b+a*c
DerTerm a*b + a*c wirdin der Grammatik G; als Summe, deren Summanden
jeweils die Produkte a * b und a * ¢ sind, verstanden; dagegen faBt die Grammatik
G, den Terma * b + a * ¢ als Produkt mit den Faktoren a und (b + a * ¢ ) auf und
beachtet nicht die allgemeingultige Vereinbarung ,Punkt vor Strich®. Daher ist die ,kom-

pliziertere® Grammatik G; der ,einfacheren™ Grammatik G, vorzuziehen, obwohl beide
Grammatiken G; und G, aquivalent sind, denn L(G;) = L(G>).

Lésung zu Aufgabe 10 b), Seite 10:

a+b*c ¢ L(G)

1. Lésung

Syntaxbaum 1:

5
S
5 5 S
| | |
V vV v
| | |
a + b ® W

Linksableitung:
S »>S+S »> V+S »> a+S > a+S*S > a+V*S 5> a+b*sS

- a+b*V - a+b*c

2. Lésung

Syntaxbaum 2:



18

S
S
S S S
| | |
Vv vV vV
| | |
a + b % i

Linksableitung:
S »>S*S 5 S+S*S 5> V+S*S 5> a+S*S 5> a+V*S 5> a+b*S

- a+b*V - a+b*c

Der Term a + b * ¢ wird gemaB dem ersten Syntaxbaum als Summe mit den Sum-
manden a und b * ¢, gemaB dem zweiten Syntaxbaum als Produkt mit den Faktoren
(a + b ) und c aufgefaBt.

Da sich zu dem Wort a + b * ¢ zwei strukturell verschiedene Syntaxbdume in der Gram-
matik G angeben lassen, ist die Grammatik G strukturell mehrdeutig.



19

KONTEXTSENSITIVE GRAMMATIKEN
UND KONTEXTSENSITIVE SPRACHEN
(Tyr1)

Folgende Grammatik G sei geben durch das Quadrupel (T; N; S; P):

T:=4{a, b, c}
N:= {B, C, S} mit S = Startsymbol
Produktionen P:

(1) S — aSBC| aBC
(2) CB — BC
(3) aB — ab
(4) bB —» bb
(5) bC —» bc
(6) cC — cc

Zeige anhand von Beispielen (Linksableitungen fir die Woérter abc, aabbcc, aaabbbccc):
Die zur Grammatik G gehérende Sprache ist

L(G) ={w|w=2a"h"c",n e N} = { abc, aabbcc, aaabbbccc, aaaabbbbcccc, . ... }.

Die Grammatik G ist nicht kontextfrei im Sinne der Definition auf Seite 9; vielmehr ver-

langen die Regeln (2) bis (6), daB die Nonterminals auf der linken Seite nur dann ersetzt
werden kénnen, wenn sie in einem bestimmten Kontext mit anderen Zeichen (Terminals
oder Nonterminals) stehen. Die Ersetzungsregeln (2) bis (6) sind folglich kontextsensitiv.

Hinweis:
Zu dieser Sprache L(G) 138t sich keine kontextfreie Grammatik (Grammatik vom Typ 2)
angeben. Die oben definierte Grammatik G ist kontextsensitiv (Grammatik vom Typ 1).

Auf die exakte Definition einer Typ-1- und einer Typ-0-Grammatik verzichten wir an die-
ser Stelle.

Es erhebt sich die Frage, von welchem Typ natlirliche Sprachen sind. Folgende Beispiele
erhellen, daB neben hdheren Programmiersprachen (Pascal, C++, Python, Java) auch
natilrliche Sprachen mindestens kontextfrei, also mindestens vom Typ 2 sind:

Beispiel 1:

Ein Schiiler, der die Qualifikation Block I, flir die 35 Kurse, von denen héchstens sieben
mit weniger als 5 Punkten bewertet wurden, geméaB §10 (1)-(8) einzubringen sind, er-
reicht hat, wird zur mdndlichen Priifung zugelassen.

Die Struktur dieses Satzes wird durch eine geeignete Formatierung des Textes deutlich:

Ein Schiiler, wird zur mdl. Priifung zugelassen.
der die Qualifikation Block I, erreicht hat,
fiir die 35 Kurse, emd §10(1)-(8) einzubringe ind

von denen héchstens sieben mit weniger als Punkten bewertet wﬁrden,

n sind
1 sind,

Damit hat dieser Satz eine Syntax, die dem Regelsystem von Aufgabe 6 (Seite 8) ent-
spricht (hier: 4 mal ,Klammer auf", gefolgt von genau 4 mal ,,Klammer zu"™) und der folg-
lich eine kontextfreie Grammatik (Typ 2) zugrunde liegt.



20

Beispiel 2:
Das Méadchen, das den Hund, der die Katze, die schnurrte, bi3, sah, weinte.

Die Satze aus diesen Beispielen sind syntaktisch korrekt gebildet; dennoch werden in der
Praxis solche vierfachen Verschachtelungen gemieden, dreifache kommen kaum vor,
zweifache dagegen sind durchaus Ublich:

Dreifach:

Der Schuiler, der die Qualifikation Block I, fiir die er mindestens 200 Punkte bendtigt,
erreicht hat, wird zur miindlichen Priifung zugelassen.

Zweifach:

Der Schiiler, der die Qualifikation Block I erreicht hat, wird zur mdndlichen Priifung zuge-
lassen.

Wenn man solcher grammatikalischer Strukturen vom Typ 2 nicht machtig ist, wird man
den Inhalt des Beispiels 2 auch so formulieren kénnen:

Das Mé&dchen weinte, das den Hund sah, der die schnurrende Katze biB.

Seit NoAM CHOMSKY grundlegende Arbeiten zur Klassifizierung formaler Sprachen (Typ 3
<> regular, Typ 2 < kontextfrei, Typ 1 <> kontextsensitiv, Typ 0 < rekursiv-aufzahlbar)
verfaB3t hat, ist man der Auffassung, daB natlrliche Sprachen mindestens die Komplexitat
einer kontextsensitiven Sprache aufweisen. Allerdings ist zu vermuten, daB kontextsensi-
tive grammatikalische Konstruktionen in der Praxis eher gemieden werden, was sogar flr
kontextfreie Konstruktionen gilt (siehe obige Beispiele).

Hierarchie der Grammatiken nach Noam Chomsky:

/ Typ-0 Grammatiken\
/ Typ-1 Grammatiken \
g )

Typ-2 Grammatiken

4 N\

Typ-3 Grammatiken

L Pl 7

Typ-3 Grammatiken bilden eine echte Teilmenge der Typ-2 Grammatiken usw.




