Binare Suche

Gegeben: Ein sortiertes Array a mit den n Komponenten a[0], . . .
Entscheide, ob ein flir die Variable value eingegebener Wert als Wert einer Komponente des Arrays a

Aufgabe:

Beispiel
value = 13

vorkommt.

n = len(a) = 10

Wir GUbergeben value und die Liste a[0], . . -

welche a[0], . . ., a[9] als lokale Liste array[0], . . .

Informatik 13

., a[n-1]

, a[9] der Booleschen Funktion binarysearch,
, array[9] fortflhrt.

21.09.2021

a[0] a[1] a[2] a[3] af4] a[5] a[6] al7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21
array[0] | array [1] | array [2] | array [3] | array [4] | array [5] | array [6] | array [7] | array [8] | array [9]
3 4 5 5 7 8 11 13 19 21

1. Schritt:

Wir bestimmen den mittleren Index des Arrays array:

2. Schritt:

len(array)//2 =5

midvalue = array[len(array)//2] = array[10//2] = array[5] = 8
Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurlick; gefunden!
. ., al[4] links von a[5]

Falls value < midvalue: suche in der Liste a[0], .
Falls value > midvalue: suche in der Liste a[6], . .

hier: wegen 13 > 8 suchen wir in der Liste a[6], . .

Suche value in der Liste a[6], . . -, a[9]
a[6] a[7] a[8] a[9]
11 13 19 21

Diese Liste a[6], -
welche a[6], . .

. , a[9] und value Ubergeben wir der Booleschen Funktion binarysearch,

, a[9] als lokale Liste array[0], . . . , array[3] fortflhrt.

array[0] array[1] array[2] array[3]
11 13 19 21
1. Schritt:

Wir bestimmen den mittleren Index des Arrays array:

2. Schritt:

midvalue = array[len(array)//2] = array[4//2] = array[2] = 19

Wir vergleichen value mit midvalue:

., a[9] rechts von a[5]

len(array)//2 = 4//2 = 2

Falls value == midvalue: binarysearch gibt den Wert True zurlick; gefunden!

Falls value < midvalue: suche in der Liste array[0], . . ., array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suchen wir in der Liste array[0], . . ., array[1]

Suche value in der Liste array[0], . . ., array[1]

array[0] array[1]

11 13
Diese Liste array[0], . . ., array[1] und value Ubergeben wir der Booleschen Funktion binarysearch,
welche array[0], . . ., array[1] als lokale Liste array[0], . . ., array[1] fortfUhrt.
1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 2//2 =1
2. Schritt:

midvalue = array[len(array)//2] = array[2//2] = array[1] = 13

Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zuriick; gefunden!

Falls value < midvalue: suche in der Liste array[0] links von array[1]

Falls value > midvalue: suche in der leeren Liste [] rechts von array[1], dann: binarysearch gibt den Wert
False zurlck; nicht gefunden!

hier: wegen 13 = value = midvalue = 13: binarysearch gibt den Wert True zurilick; gefunden!

Der Booleschen Funktion binarysearch werden das aus n Komponenten bestehende
sortierte Feld a (in Python: Liste) und der zu suchende Wert value (bergeben;
binarysearch liefert den Wert True, falls eine Komponente von a mit value
Ubereinstimmt, andernfalls den Wert False.

Die Variable z ermittelt die Anzahl der Aufrufe von binarysearch.

Quelltext in Python:

def binarysearch (array,value) :
global z
z += 1
print (array)
if array == [] or (len(array) == 1 and array[0] '= wvalue):
return False
else:
midvalue = array[len(array)//2]
if midvalue == value:
return True
elif value < midvalue:
return binarysearch (array[:len(array)//2],value)
else:
return binarysearch (array[len(array)//2 + 1:],value)

Aufruf der Funktion binarysearch:

binarysearch (a,value)

Komplexitat des Algorithmus binarysearch:

Die Komplexitat und damit der Rechenaufwand A(n) wird wesentlich bestimmt durch die
Anzahl z der Aufrufe der rekursiv definierten Funktion binarysearch; o. B. d. A.sein
eine Potenzvon 2,d. h.n=2¥mitk=0,1,2,3,.....

Beachte: die maximale Anzahl von Aufrufen (worst case) tritt ein, falls die Suche
ergebnislos ist.

k=0 < n=1
Aufrufe binarysearch = 1

k=3 < n=8

gesuchte Zahl: 79

[14; 59, 52, F0; T4, BO; 89, B7]
[BR,. 89; .97]

[80]

79 wurde nicht gefunden
hufrufe binarysearch = 3

k=4 < n=16

gesuchte Zahl: 80

(13 23, 49 45, A4, A4 L5 5. 47 52, 5P 59, 632, FF; 685 B4
52, 51, 59, 623, 12, 892, 94

[72, 92, 94]

[72]

80 wurde nicht gefunden

Rufrufe binarysearch = 4

Eine Verdopplung von n impliziert hdchstens einen weiteren Aufruf von binarysearch!
Offensichtlich gilt:

z=k
Wegen n = 2¥ k = log,(n) folgt:
z = logz(n)

Somit hat der Algorithmus binarysearch logarithmische Komplexitat:

A(n) ~ log>(n)

Bemerkung:
Falls im unglinstigsten Fall binarysearch noch die leere Liste [] (bergeben wird, gilt: z = k + 1

Modifikation des Algorithmus binarysearch:

Die rekursive Funktion binarysearch liefert den booleschen Wert False, falls value
nicht gefunden wird, andernfalls den Index index der betreffenden Komponente.
AuBer a und value sind die Indices begin und end an die Funktion binarysearch
zu Ubergeben, so daB binarysearch die Teilliste a[begin] , , al[end]
durchsucht.

Beachte: index wird innerhalb des Funktionsrumpfs als globale Variable definiert.

z =0

def binarysearch (array, value, begin, end):
global index
global z
z += 1
print (array[begin:end+1])
if begin > end: return False
middle = (begin + end) // 2
print('mittleres Element: a[',middle,'] = ',6array[middle])
if array[middle] == value:
index = middle
elif array[middle] < value:
return binarysearch (array, value, middle + 1, end)
else:
return binarysearch (array, value, begin, middle - 1)

Aufruf der Funktion binarysearch zur Suche von value in der sortierten Liste
a[oj, , a[n-1]:

binarysearch(a, value, 0, len(a)-1)

gesuchte Zahl: 521

[120, le2, 163, 181, 205, 392, 444, 521, 528, 557, 643, 663, 689, 810, 847, 899, 913, 992]
mittleres Element: a[8] = 528

[120, 162, 163, 181, 205, 392, 444, 521]

mittleres Element: af[3] = 181
[205, 392, 444, 521]

mittleres Element: al[5] = 392
[444, 521]

mittleres Element: al[6] = 444
[521]

mittleres Element: a[7] = 521
521 wurde gefunden an der Stelle 7
ail i = 921

Bufrufe binarysearch = 5

gesuchte Zahl: 241
[173,; 183; 187 243, 265; 307; 345, 375 HA9.: 622, B68: 976]

mittleres Element: a[5] = 307
[173, 183, 187, 243, 265]
mittleres Element: a[2] = 187
[243, 265]

mittleres Element: a[3] = 243

[1
241 wurde nicht gefunden
Aufrufe binarysearch = 4

