
Binäre Suche Informatik 13 21.09.2021

Gegeben: Ein sortiertes Array a mit den n Komponenten a[0], , a[n-1]
Aufgabe: Entscheide, ob ein für die Variable value eingegebener Wert als Wert einer Komponente des Arrays a

vorkommt.

Beispiel

value = 13
n = len(a) = 10

Wir übergeben value und die Liste a[0], . . . , a[9] der Booleschen Funktion binarysearch,
welche a[0], . . . , a[9] als lokale Liste array[0], . . . , array[9] fortführt.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21

array[0] array [1] array [2] array [3] array [4] array [5] array [6] array [7] array [8] array [9]

3 4 5 5 7 8 11 13 19 21

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 5

2. Schritt:
midvalue = array[len(array)//2] = array[10//2] = array[5] = 8
Wir vergleichen value mit midvalue:

 2

Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste a[0], . . . , a[4] links von a[5]
Falls value > midvalue: suche in der Liste a[6], . . . , a[9] rechts von a[5]

hier: wegen 13 > 8 suchen wir in der Liste a[6], . . . , a[9]

Suche value in der Liste a[6], . . . , a[9]

a[6] a[7] a[8] a[9]

11 13 19 21

Diese Liste a[6], . . , a[9] und value übergeben wir der Booleschen Funktion binarysearch,
welche a[6], . . , a[9] als lokale Liste array[0], . . . , array[3] fortführt.

array[0] array[1] array[2] array[3]

11 13 19 21

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 4//2 = 2

2. Schritt:
midvalue = array[len(array)//2] = array[4//2] = array[2] = 19
Wir vergleichen value mit midvalue:

 3

Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0], . . . , array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suchen wir in der Liste array[0], . . . , array[1]

Suche value in der Liste array[0], . . . , array[1]

array[0] array[1]

11 13

Diese Liste array[0], . . . , array[1] und value übergeben wir der Booleschen Funktion binarysearch,
welche array[0], . . . , array[1] als lokale Liste array[0], . . . , array[1] fortführt.

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 2//2 = 1

2. Schritt:
midvalue = array[len(array)//2] = array[2//2] = array[1] = 13
Wir vergleichen value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0] links von array[1]
Falls value > midvalue: suche in der leeren Liste [] rechts von array[1], dann: binarysearch gibt den Wert

False zurück; nicht gefunden!

hier: wegen 13 = value = midvalue = 13: binarysearch gibt den Wert True zurück; gefunden!

 4

Der Booleschen Funktion binarysearch werden das aus n Komponenten bestehende
sortierte Feld a (in Python: Liste) und der zu suchende Wert value übergeben;
binarysearch liefert den Wert True, falls eine Komponente von a mit value
übereinstimmt, andernfalls den Wert False.
Die Variable z ermittelt die Anzahl der Aufrufe von binarysearch.

Quelltext in Python:

.

z = 0
.

def binarysearch(array,value):
 global z
 z += 1
 print(array)
 if array == [] or (len(array) == 1 and array[0] != value):
 return False
 else:
 midvalue = array[len(array)//2]
 if midvalue == value:
 return True
 elif value < midvalue:
 return binarysearch(array[:len(array)//2],value)
 else:
 return binarysearch(array[len(array)//2 + 1:],value)

Aufruf der Funktion binarysearch:

binarysearch(a,value)

Komplexität des Algorithmus binarysearch:

Die Komplexität und damit der Rechenaufwand A(n) wird wesentlich bestimmt durch die
Anzahl z der Aufrufe der rekursiv definierten Funktion binarysearch; o. B. d. A. sei n
eine Potenz von 2, d. h. n = 2k mit k = 0, 1, 2, 3,
Beachte: die maximale Anzahl von Aufrufen (worst case) tritt ein, falls die Suche
ergebnislos ist.

k = 0  n = 1

k = 3  n = 8

k = 4  n = 16

 5

Eine Verdopplung von n impliziert höchstens einen weiteren Aufruf von binarysearch!

Offensichtlich gilt:

z = k

Wegen n = 2k  k = log2(n) folgt:

z = log2(n)

Somit hat der Algorithmus binarysearch logarithmische Komplexität:

A(n)  log2(n)

Bemerkung:
Falls im ungünstigsten Fall binarysearch noch die leere Liste [] übergeben wird, gilt: z = k + 1

Modifikation des Algorithmus binarysearch:
Die rekursive Funktion binarysearch liefert den booleschen Wert False, falls value
nicht gefunden wird, andernfalls den Index index der betreffenden Komponente.
Außer a und value sind die Indices begin und end an die Funktion binarysearch
zu übergeben, so daß binarysearch die Teilliste a[begin] , , a[end]
durchsucht.
Beachte: index wird innerhalb des Funktionsrumpfs als globale Variable definiert.

z = 0
.

def binarysearch(array, value, begin, end):
 global index
 global z
 z += 1
 print(array[begin:end+1])
 if begin > end: return False
 middle = (begin + end) // 2
 print('mittleres Element: a[',middle,'] = ',array[middle])
 if array[middle] == value:
 index = middle
 elif array[middle] < value:
 return binarysearch(array, value, middle + 1, end)
 else:
 return binarysearch(array, value, begin, middle - 1)

Aufruf der Funktion binarysearch zur Suche von value in der sortierten Liste
a[0], , a[n-1]:

binarysearch(a, value, 0, len(a)-1)

