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Wiederholung: Boolesche Algebra und Digitale Schaltungen 
 

https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-21/Technische_Informatik/ 
 
Boolesche Terme und Schaltalgebra 
https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-
21/Technische_Informatik/Boolesche_Terme.pdf 
 
Boolesche Terme und Schaltalgebra (mit Beispielen) 
https://kalle2k.lima-city.de/computerscience/Informatik_12/2021-
22/Technische_Informatik/Boolesche_Terme_und_Schaltalgebra.pdf 
 
Addierer für Dualzahlen 
https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-
21/Technische_Informatik/Addierer_fuer_Dualzahlen.pdf 
 
Minimale ALU 
https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-
21/Technische_Informatik/Minimale_ALU.pdf 
 
Die „höheren Rechenarten“ Multiplikation, Division und Potenzierung als iterativ formulierte 
Algorithmen (hier: in Python), die sich auf die in der CPU implementierten 
Grundoperationen Addition und Subtraktion stützen: 
https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-
21/Technische_Informatik/Grundrechenarten_GUI.pdf 
 
Digitalschaltungen DigitalSimulator 
https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-21/Technische_Informatik/DSIM/ 
 
Aufgabenblatt Nr. 9 (08.06.2021) 
https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-
21/Aufgabenblaetter/Aufgabenblatt_Nr9_inf12.pdf 
 
 
Wiederholung: Sorting and Searching 
 
SelectionSort 
 

https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-
21/SelectionSort/Sortierverfahren_Direkte_Auswahl_29-01-2021.pdf 
 

https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-
21/SelectionSort/sorting_by_direct_selection_varianten.pdf 
 

https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-
21/SelectionSort/Aufwand_SelectionSort.pdf 

 
MergeSort 
 

https://kalle2k.lima-city.de/computerscience/Informatik_12/2020-21/MergeSort/mergesort_16-04-
2021.pdf 
 

MergeSort Übungsblatt: 
https://kalle2k.lima-city.de/computerscience/Informatik_12/2021-
22/MergeSort/MergeSort_Arbeitsblatt.doc 

 
BinarySearch 
 

https://kalle2k.lima-city.de/computerscience/Informatik_13/2021-
2022/BinarySearch/BinaereSuche.pdf 

 
Vergleichende Laufzeitmessungen bei SelectionSort, MergeSort und BinarySearch: 
 

https://kalle2k.lima-city.de/computerscience/Informatik_13/2021-
2022/BinarySearch/MergeSort_BinarySearch.py.txt 
 

https://kalle2k.lima-city.de/computerscience/Informatik_13/2021-
2022/BinarySearch/SelectionSort_BinarySearch.py.txt 
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Prinzipien zur Formulierung eines Algorithmus 
 
Imperativer Ansatz 
 

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal, Java oder 
Python) besteht aus einer Folge von ausführbaren Anweisungen, die in der 
vorgegebenen Reihenfolge nacheinander abgearbeitet werden.  
 

Wesentliche Kontrollstruktur: Iteration (realisiert als for- oder while-Schleife) 
 
Funktionaler Ansatz 
 

Die Formulierung des Quellcodes orientiert sich der inneren, in der Regel 
mathematischen Struktur eines Algorithmus.  
 

Wesentliche Kontrollstruktur: Rekursion 
 
 
Definition:  
Eine Prozedur (Teilprogramm, Subroutine) oder eine Funktion heißt rekursiv, 
wenn deren Anweisungsblock mindestens einen Aufruf von sich selbst enthält. 
 
Bei beiden Ansätzen ist durch eine Abbruchbedingung sicherzustellen, daß der 
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu 
einem Ergebnis führt.  
 
 
Aufgaben 
 
1.  Fakultätsfunktion (engl.: factorial) 
  

Wir ordnen jeder natürlichen Zahl n, n  0, die Zahl n! (lies: n-Fakultät) zu: 
 

0! = 1 
n! = 1  2  . . . . . .  n        falls n > 0 
 
a) Formuliere einen in Python geschriebenen iterativen Algorithmus, der nach 

Eingabe einer natürlichen Zahl n, n  0, n! berechnet und ausgibt. 
 

b) Definiere die Funktion    n   fact(n)    rekursiv und erstelle ein Python-
Programm mit rekursivem Funktionsaufruf. 

 

c)  Beurteile die Komplexität des rekursiv formulierten Algorithmus, indem 
man die Anzahl z(n) der Aufrufe der rekursiven Funktion fact in 
Abhängigkeit von n bestimmt. 

 
 
2.  Fibonacci-Folge 
 

Für n  {0, 1, 2, 3, . . . . . } läßt sich die Fibonacci-Folge rekursiv definieren: 
 

 Rekursionsanfang: f(0) = 0 
  f(1) = 1 
 

 Rekursionsvorschrift: f(n) = f(n1) + f(n2)  falls n > 1 
 

(In Worten: für n > 1 erhält man das n-te Folgenglied als Summe der beiden 
vorangehenden Folgenglieder.)  
 
a)  Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf, 

welches nach Eingabe von n den Wert f(n) ausgibt (oder:  alle Werte 
  f(0), . . . , f(n));  implementiere auch eine Variable z, welche die Anzahl  

der Funktionsaufrufe ermittelt.    
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b) Zeige: Für die Anzahl z(n) der Funktionsaufrufe gilt 
 

 Rekursionsanfang: z(0) = z(1) = 1 
 

 Rekursionsvorschrift: z(n) = 1 + z(n1) + z(n2)   falls n > 1 
 
 Hinweis:  
 Erstelle für f(2), f(3), f(4) jeweils ein Baumdiagramm, so wie es für die 

Aufrufe der Funktion sort in dem paper mergesort_16-04-2021.pdf  
gemacht wurde.  

 
c) Für f(n) gilt die Abschätzung: 
 

½  (2)n   <  f(n)  <   ½  2n         falls n > 2 
  
 Schließe hieraus, daß die Folge z(n) exponentiell mit n wächst; folglich ist 

die rekursive Berechnung der Fibonacci-Folge von exponentieller 
Komplexität. 

 
 
  

Die in c) mitgeteilte Ungleichung ergibt sich aus folgenden Überlegungen: 
 

Behauptung: Die Folge 
0{f(n)}n

  ist streng monoton wachsend für n > 1. 

  

 Beweis:  f(n+1) – f(n) =  f(n-1)  >  0    falls n > 1 
 
 
 Behauptung:  f(n) < 2n-1 = ½  2n     falls n > 1 
 

 Beweis: f(n) = f(n-1) + f(n-2)  < 2  f(n-1)     wegen der Monotonie 
   < 2  2  f(n2)  = 22  f(n2) 
   < 23  f(n3) 
   . . . . . . . . . . . 
   < 2n-1  f(n (n-1)) = 2n-1  f(1) = 2n-1 
 
 
 Behauptung:  f(n) > ½  (2)n   falls n > 2 
 

 Beweis: o.B.d.A. sei n gerade mit n = 2m,  m > 1 
 
  f(2m)  = f(2m1) + f(2m2)   
   > 2  f(2m2)   =  21  f(2(m1))   wegen der Monotonie 
   > 2  2  f(2m4) = 22  f(2(m2))    
   > 23  f(2(m3))    
   . . . . . . . . . . . 
   > 2m-1  f(2(m(m-1))) = 2m1  f(2) =  2m1  
   
  mit m = n/2 folgt: 
 
  f(n) >  2n/2  1 =  ½  2n/2  =  ½  (2)n   
 
 
 Folglich erhalten wir für f(n) die Abschätzung 
 
  ½  (2)n   <  f(n)  <   ½  2n         falls n > 2 
     
 Die Fibonacci-Folge wächst exponentiell mit n. 
 
 
 
 Das exponentielle Wachstum läßt sich auch an der für die Fibonacci-Folge 

geltenden  Formel von Moivre-Binet ablesen: 
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 f(n) =   
 
 
 Für große Werte von n kann man den Subtrahend gegenüber dem Minuend 

vernachlässigen. 
 
 
3.  Komplexität des Algorithmus SelectionSort (SelectionSort ist ein imperativ 

formulierter Algorithmus) 
 
Um den Aufwand bei SelectionSort zu ermitteln, betrachten wir denjenigen 
Programmteil, der das Sortieren ausführt: 

  
         j = 0 
          while j <= n-2: 
              i = j + 1 
              min = a[j] 
              while i < n: 
                  if a[i] < min: 
                     min = a[i] 
                     a[i] = a[j] 
                     a[j] = min 
                  i = i + 1 
              j = j + 1 
 
 Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife dieses 

Programmauszugs gedanklich zum Anweisungsblock A zusammen  
(markiere Block A im obenstehenden Programmtext). 
Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu 
sortieren, fragen wir, wie oft Block A in Abhängigkeit von n abgearbeitet wird. 

 

a)  Vervollständige die Einträge in folgender Tabelle, wobei z(j) angibt, wie oft Block A 
in Abhängigkeit von j abgearbeitet wird.  

 
 

 

 
  

 
 
 
 
 
 
 
 
 
 

b) Die Gesamtzahl z der Abarbeitungen von Block A ergibt sich als  
 

 z = z(0) + z(1) + z(2) + z(3) + . . . . . . . . .  + z(n-3) + z(n-2) 
 

 Vereinfache diese Summe und zeige so, daß z quadratisch mit n wächst! 
 

 Hinweis:  Für die Summe der ersten n natürlichen Zahlen gilt bekanntlich: 
  1 + 2 + . . . . . . . + n =  ½  n  (n + 1) 

 
 
4. Komplexität des Algorithmus MergeSort (MergeSort ist ein funktional 

formulierter Algorithmus)  
 
 Siehe mergesort_16-04-2021.pdf (S. 2 ff) 

Index j Index i z(j) 

j = 0  i    

j = 1  i    

j = 2  i    

.... .... .... 

j = n-3  i    

j = n-2  i    


