Aufgabenblatt Nr. 6 inf13 14.02.2022

Wiederholung: Boolesche Algebra und Digitale Schaltungen

https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-21/Technische Informatik

Boolesche Terme und Schaltalgebra
https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-
21/Technische Informatik/Boolesche Terme.pdf

Boolesche Terme und Schaltalgebra (mit Beispielen)
https://kalle2k.lima-city.de/computerscience/Informatik 12/2021-
22/Technische Informatik/Boolesche Terme und Schaltalgebra.pdf

Addierer fiir Dualzahlen
https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-
21/Technische Informatik/Addierer fuer Dualzahlen.pdf

Minimale ALU
https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-
21/Technische Informatik/Minimale ALU.pdf

Die ,héheren Rechenarten™ Multiplikation, Division und Potenzierung als iterativ formulierte
Algorithmen (hier: in Python), die sich auf die in der CPU implementierten
Grundoperationen Addition und Subtraktion stiitzen:
https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-

21/Technische Informatik/Grundrechenarten GUI.pdf

Digitalschaltungen DigitalSimulator
https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-21/Technische Informatik/DSIM/

Aufgabenblatt Nr. 9 (08.06.2021)
https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-
21/Aufgabenblaetter/Aufgabenblatt Nr9 infl12.pdf

Wiederholung: Sorting and Searching

SelectionSort

https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-
21/SelectionSort/Sortierverfahren Direkte Auswahl 29-01-2021.pdf

https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-
21/SelectionSort/sorting by direct selection varianten.pdf

https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-
21/SelectionSort/Aufwand SelectionSort.pdf

MergeSort

https://kalle2k.lima-city.de/computerscience/Informatik 12/2020-21/MergeSort/mergesort 16-04-
2021 .pdf
MergeSort Ubungsblatt:

https://kalle2k.lima-city.de/computerscience/Informatik 12/2021-
22/MergeSort/MergeSort Arbeitsblatt.doc

BinarySearch

https://kalle2k.lima-city.de/computerscience/Informatik 13/2021-
2022/BinarySearch/BinaereSuche.pdf

Vergleichende Laufzeitmessungen bei SelectionSort, MergeSort und BinarySearch:

https://kalle2k.lima-city.de/computerscience/Informatik 13/2021-
2022/BinarySearch/MergeSort BinarySearch.py.txt

https://kalle2k.lima-city.de/computerscience/Informatik 13/2021-
2022/BinarySearch/SelectionSort BinarySearch.py.txt

Prinzipien zur Formulierung eines Algorithmus

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal, Java oder
Python) besteht aus einer Folge von ausfiihrbaren Anweisungen, die in der
vorgegebenen Reihenfolge nacheinander abgearbeitet werden.

Wesentliche Kontrollstruktur: Iteration (realisiert als for- oder while-Schleife)

Funktionaler Ansatz

Die Formulierung des Quellcodes orientiert sich der inneren, in der Regel
mathematischen Struktur eines Algorithmus.

Wesentliche Kontrollstruktur: Rekursion

Definition:
Eine Prozedur (Teilprogramm, Subroutine) oder eine Funktion heiBBt rekursiv,
wenn deren Anweisungsblock mindestens einen Aufruf von sich selbst enthélt.

Bei beiden Ansatzen ist durch eine Abbruchbedingung sicherzustellen, daB der
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu
einem Ergebnis flhrt.

Aufgaben

1. Fakultatsfunktion (engl.: factorial)

Wir ordnen jeder natlrlichen Zahl n, n > 0, die Zahl n! (lies: n-Fakultdt) zu:
ol=1
n'=1.2-...... -n fallsn >0

a) Formuliere einen in Python geschriebenen iterativen Algorithmus, der nach
Eingabe einer natirlichen Zahl n, n > 0, n! berechnet und ausgibt.

b) Definiere die Funktion n — fact(n) rekursiv und erstelle ein Python-
Programm mit rekursivem Funktionsaufruf.

c) Beurteile die Komplexitat des rekursiv formulierten Algorithmus, indem
man die Anzahl z(n) der Aufrufe der rekursiven Funktion fact in
Abhangigkeit von n bestimmt.

2. Fibonacci-Folge
Firne{0,1,2,3,..... } 1aBt sich die Fibonacci-Folge rekursiv definieren:

Rekursionsanfang: f(0)=0
f(1)=1

Rekursionsvorschrift: f(n) = f(n-1) + f(n-2) fallsn > 1

(In Worten: fir n > 1 erhdlt man das n-te Folgenglied als Summe der beiden
vorangehenden Folgenglieder.)

a) Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf,
welches nach Eingabe von n den Wert f(n) ausgibt (oder: alle Werte
f(0), . .., f(n)); implementiere auch eine Variable z, welche die Anzahl
der Funktionsaufrufe ermittelt.

b) Zeige: Fir die Anzahl z(n) der Funktionsaufrufe gilt
Rekursionsanfang: z(0)=2z(1)=1
Rekursionsvorschrift: z(n) = 1 + z(n-1) + z(n-2) fallsn>1
Hinweis:
Erstelle fur f(2), f(3), f(4) jeweils ein Baumdiagramm, so wie es fiir die

Aufrufe der Funktion sort in dem paper mergesort_16-04-2021.pdf
gemacht wurde.

c) Fur f(n) gilt die Abschatzung:
2. (N2)" < f(n) < % .2" fallsn > 2

SchlieBe hieraus, daB die Folge z(n) exponentiell mit n wachst; folglich ist
die rekursive Berechnung der Fibonacci-Folge von exponentieller
Komplexitat.

Die in ¢) mitgeteilte Ungleichung ergibt sich aus folgenden Uberlegungen:
Behauptung: Die Folge {1’-‘(|—])}°o ist streng monoton wachsend fir n > 1.
n=0

Beweis: f(n+1) -f(n) = f(n-1) > 0 fallsn>1

Behauptung: f(n)<2"1=14.2" fallsn>1

Beweis: f(n) = f(n-1) + f(n-2) -f(n-1) wegen der Monotonie

<2
<2-2-f(n-2) =2%.f(n-2)
< 2% f(n-3)

< 2" f(n- (n-1)) = 2"t f(1) = 2"t

Behauptung: f(n) > %2 - (¥2)" fallsn > 2

Beweis: 0.B.d.A. sei n gerade mitn=2m, m>1
f(2m) = f(2m-1) + f(2m-2)
>2.f(2m-2) = 2'.f(2(m-1)) wegen der Monotonie

> 2.2 f(2m-4) = 22 . f(2(m-2))
> 23 . f(2(m-3))

S 2™l f2(me(m-1))) = 2™ . f(2) = 27
mit m = n/2 folgt:

f(n) > 2"2"1=1.2"2 = 1. (\2)"

Folglich erhalten wir flr f(n) die Abschatzung

. (V2)" < f(n) < . 2" fallsn > 2

Die Fibonacci-Folge wachst exponentiell mit n.

Das exponentielle Wachstum [aBt sich auch an der fir die Fibonacci-Folge
geltenden Formel von Moivre-Binet ablesen:

- L (1+\f§)”) (1— ﬁ)
ﬁ 2 2

Fir groBe Werte von n kann man den Subtrahend gegenliber dem Minuend
vernachlassigen.

Komplexitat des Algorithmus SelectionSort (SelectionSort ist ein imperativ
formulierter Algorithmus)

Um den Aufwand bei SelectionSort zu ermitteln, betrachten wir denjenigen
Programmteil, der das Sortieren ausfiihrt:

j=0
while j <= n-2:
i=3+1

min = al[j]
while i < n:
if a[i] < min:
min = a[i]

alil] = alj]
al[j] = min
i=1i+1
j=3j+1

Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife dieses
Programmauszugs gedanklich zum Anweisungsblock A zusammen

(markiere Block A im obenstehenden Programmtext).

Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu
sortieren, fragen wir, wie oft Block A in Abhangigkeit von n abgearbeitet wird.

a) Vervollstédndige die Eintrdge in folgender Tabelle, wobei z(j) angibt, wie oft Block A
in Abhangigkeit von j abgearbeitet wird.

Index j Index i z(J)
j =0 <i<
j =1 <ic<
j =2 <i<
J = n-3 <ic<
J = n-2 <i<

b) Die Gesamtzahl z der Abarbeitungen von Block A ergibt sich als
z=z0)+z(1)+zR2)+z3)+......... + z(n-3) + z(n-2)
Vereinfache diese Summe und zeige so, daB z quadratisch mit n wachst!

Hinweis: Fir die Summe der ersten n natlirlichen Zahlen gilt bekanntlich:
14+24+....... +n=%-n-(n+1)

Komplexitat des Algorithmus MergeSort (MergeSort ist ein funktional
formulierter Algorithmus)

Siehe mergesort_16-04-2021.pdf (S. 2 ff)

