
Sortieren durch direkte Auswahl

Wir beschränken uns zunächst darauf, eine Liste von ganzen Zahlen (hier:
Zufallszahlen) der Größe nach, und zwar aufsteigend, zu sortieren. Den
Algorithmus später auf andere Datenstrukturen (z. B. Namen, Verbundtypen) zu
übertragen, ist vergleichsweise einfach und bereitet keine Schwierigkeiten.

Die Python-Anweisungen range, list und len:

a) range-Anweisung

Die range-Anweisung definiert einen Bereich ganzer Zahlen.
range(10) definiert den Bereich 0, 1, . . . , 9
range(4,21) definiert den Bereich 4, 5, . . . , 20
range(4,21,3) definiert den Bereich 4, 7, 10, . . . , 16, 19
range(-4,3) definiert den Bereich -4, -3, -2, -1, 0, 1, 2

Allgemein gilt:

range(start, stop)
definiert den Bereich start, , stop-1 ganzer Zahlen,

range(start, stop, step)
definiert den Bereich start, mit der Schrittweite step, wobei die
Zahl stop nicht mehr enthalten ist.

b) Erstellen einer Liste ganzer Zahlen

a = list(range(4,13)) erzeugt die Liste
[4, 5, 6, 7, 8, 9, 10, 11, 12];
die (in diesem Fall 9) Elemente dieser Liste nennen wir auch Komponenten,
auf die man mit a[0], a[1], . . . , a[8] zugreifen kann (mit Erzeugung der
Liste dieses Beispiels sind die Komponenten a[0], a[1], . . . , a[8] in dieser
Reihenfolge mit den Werten 4, 5, , 12 belegt). Allerdings läßt sich jeder
Komponente a[i] eine beliebige andere ganze Zahl zuweisen.

Bemerkung: Unter einem Feld oder array verstehen wir eine Folge von
Variablen gleichen Typs; mit der Anweisung
a = list(range(4,13)) haben wir also ein array a erzeugt
mit den Komponenten a[0], a[1], . . . , a[8].

c) len(a) bestimmt die Anzahl der Komponenten der Liste a, in dem Beispiel

aus b) gilt somit: len(a) = 9 .

1. Erstellen einer Liste mit n Komponenten, denen Zufallszahlen
zugewiesen werden (n ist eine natürliche Zahl)

Vorbemerkung:
Die Python-Anweisung randint ist eine vordefinierte Funktion des random-
Moduls in Python; Syntax: randint(r,s) mit ganzen Zahlen r und s, r  s,
erzeugt eine Zufallszahl aus dem Intervall [r, s].
Beispiele:
randint(1,1000)erzeugt eine Zufallszahl aus dem Bereich 1, , 1000
randint(-7,12)erzeugt eine Zufallszahl aus dem Bereich -7, , 12

Ein Algorithmus, der nach Eingabe einer natürlichen Zahl n eine Liste aus n
Zufallszahlen generiert, formuliert als Python-Quelltext in der Schriftart
Courier New, so daß man den Quelltext unmittelbar durch copy und paste in
einen Editor für Python-Programme übernehmen kann:

array mit zufallszahlen

from random import randint

n = int(input('Laenge des arrays = '))
print()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , a[n-1]
a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
 a[i] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
 print(a[i])

2. Bestimmung des kleinsten Elements der Liste aus n Komponenten

Der Inhalt des Speicherplatzes a[0] wird sukzessive mit den Inhalten von a[1],
. . . , a[n-1] verglichen; falls gilt a[i] < a[0], 1  i  n-1, werden die
Inhalte der Speicherplätze a[i] und a[0] ausgetauscht; hierzu wird, bevor a[0]
den Wert von a[i] erhält, der ursprüngliche Wert von a[0] mittels der
Hilfsvariablen temp gesichert und nach der Zuweisung a[0] = a[i] mit
a[i] = temp an a[i] übergeben.

Die Durchführung der Vergleiche und der ggf. erforderliche Austausch der Inhalte
von a[0]und a[i] werden hier an die Funktion min(x) delegiert:

def min(x):
 for i in range(1,len(x)):
 if x[i] < x[0]:
 temp = x[0]
 x[0] = x[i]
 x[i] = temp

Mit dem Aufruf min(a) wird die Funktion min auf das aus den Komponenten
a[0], . . . , a[n-1] bestehende array a angewendet.

from random import randint

n = int(input('Laenge des arrays = '))
print()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , a[n-1]
a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
 a[i] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
 print(a[i])

Bestimmen des kleinsten Elements:
Wir definieren eine Funktion min(x), die auf
das array a angewendet wird, das kleinste Element
bestimmt und dieses der Komponente a[0] zuweist.

def min(x):
 for i in range(1,len(x)):
 if x[i] < x[0]:
 temp = x[0]
 x[0] = x[i]
 x[i] = temp

Aufruf der auf das array a anzuwendenden Funktion min

min(a)

Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle
print()
for i in range(0,n):
 print(a[i])

Nachdem das kleinste Element der Liste a[0], . . . , a[n-1] dem
Speicherplatz a[0] zugewiesen wurde, bestimmen wir das kleinste Element der
„Restliste“ a[1], . . . , a[n-1] und weisen es dem Speicherplatz a[1] zu.

Wenn wir dieses Verfahren sukzessive auf die weiteren „Restlisten“
a[j], . . . , a[n-1] mit 2  j  n-2 anwenden, erhalten wir ein array
a, dessen Komponenten gemäß a[0]  a[1]  . . .  a[n-1] aufsteigend
sortiert sind.

Wir modifizieren die Funktion min(x), indem wir einen weiteren Parameter j
ergänzen:

def min(x,j):
 for i in range(j+1,len(x)):
 if x[i] < x[j]:
 temp = x[j]
 x[j] = x[i]
 x[i] = temp

Die mit dem Parameterwert j auf das array a angewendete Funktion
min(x,j)ermittelt in der Liste a[j], . . . , a[n-1] das kleinste Element
und weist es dem Speicherplatz a[j] zu.

3. Variante zu 2:

from random import randint

n = int(input('Laenge des arrays = '))
print()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , a[n-1]
a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
 a[i] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
 print(a[i])

Bestimmen des kleinsten Elements:
Wir definieren eine Funktion min(x,j), die auf
die Komponenten a[j], . . , a[n-1] des arrays a
angewendet wird, das kleinste Element
bestimmt und dieses der Komponente a[j] zuweist.

def min(x,j):
 for i in range(j+1,len(x)):
 if x[i] < x[j]:
 temp = x[j]
 x[j] = x[i]
 x[i] = temp

Aufruf der auf das array a anzuwendenden Funktion min

min(a,0)

Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle
print()
for i in range(0,n):
 print(a[i])

4. Bestimmung der 2 kleinsten Elemente der Liste aus n Komponenten

from random import randint

n = int(input('Laenge des arrays = '))
print()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , a[n-1]
a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
 a[i] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
 print(a[i])

Wir definieren eine Funktion min(x,j), die auf

die Komponenten a[j], . . , a[n-1] des arrays a
angewendet wird, das kleinste Element
bestimmt und dieses der Komponente a[j] zuweist.

def min(x,j):
 for i in range(j+1,len(x)):
 if x[i] < x[j]:
 temp = x[j]
 x[j] = x[i]
 x[i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min

min(a,0)
min(a,1)

Ausgabe der Liste
print()
for i in range(0,n):
 print(a[i])

5. Bestimmung der 3 kleinsten Elemente der Liste aus n Komponenten

.
.

Aufrufe der auf das array a anzuwendenden Funktion min

min(a,0)
min(a,1)
min(a,2)

.
.

6. Sortieren der aus den Komponenten a[0], , a[n-1] bestehenden

Liste a

Wir sortieren das array a mit den Komponenten a[0], . . . , a[n-1], indem
wir die Funktion min(x,j) mit j = 0, 1, . . . , n-2 nacheinander auf das array a
anwenden; die wiederholte Anwendung realisieren wir mit einer while-Schleife,
deren Schleifenindex j mit dem Wert 0 initialisiert wird:

j = 0
while j <= n-2:
 min(a,j)
 j +=1

Der hier vorgestellte Algorithmus ist unter der Bezeichnung

„Sortieren durch direkte Auswahl“

bekannt.

Der folgende in Python codierte Algorithmus sortiert aufsteigend ein array a der
Länge n, dessen Komponenten a[0], . . . , a[n-1] Zufallszahlen aus dem
Bereich 1, . . . , 100000 zugewiesen wurden:

sorting by direct selection

from random import randint

n = int(input('Laenge des arrays = '))
print()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , a[n-1]
a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
 a[i] = randint(1,100000)

Ausgabe des arrays
for i in range(0,n):
 print(a[i])

Die auf die Komponenten a[j], . . , a[n-1] des arrays a
angewendete Funktion min(x,j) bestimmt das kleinste Element
und weist dieses der Komponente a[j] zu.

def min(x,j):
 for i in range(j+1,len(x)):
 if x[i] < x[j]:
 temp = x[j]
 x[j] = x[i]
 x[i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min

j = 0
while j <= n-2:
 min(a,j)
 j +=1

Ausgabe der sortierten Liste

print()
print('Sortierte Liste:')

for i in range(0,n):
 print(a[i])

 Selbach
update 26.01.2021

SelectionSort mit Ermittlung des Zeitbedarfs zur Laufzeit:

sorting by direct selection
Nach Eingabe einer natuerlichen Zahl n wird ein
aus n Komponenten bestehendes array sortiert.

from random import randint
import time

n = int(input('Laenge des arrays: '))
print()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , a[n-1]
a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
 a[i] = randint(1,1000000)

Ausgabe des arrays
r = int(input('Wieviele Elemente sollen angezeigt werden? '))
print()
for i in range(0,r):
 print(a[i])

Die auf die Komponenten a[j], . . , a[n-1] des arrays a
angewendete Funktion min(x,j) bestimmt das kleinste Element
und weist dieses der Komponente a[j] zu.

def min(x,j):
 for i in range(j+1,len(x)):
 if x[i] < x[j]:
 temp = x[j]
 x[j] = x[i]
 x[i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min
mit Ermittlung des Zeitbedarfs zur Laufzeit

start = time.time()

j = 0
while j <= n-2:
 min(a,j)
 j +=1

end = time.time()

Ausgabe der sortierten Liste

print()
print('Sortierte Liste:')
print()

for i in range(0,r):
 print(a[i])

print()
print('Zeitaufwand zum Sortieren von',n,'Elementen: {:7.3f}
s'.format(end-start))

