
Aufgabenblatt Nr. 4 inf13 15.02.2021

6. Fibonacci-Folge

 Für n  {0, 1, 2, 3, } läßt sich die Fibonacci-Folge rekursiv definieren:

 Rekursionsanfang: fibo(0) = 0
 fibo(1) = 1

 Rekursionsvorschrift: fibo(n) = fibo(n1) + fibo(n2) falls n > 1

(In Worten: für n > 1 erhält man das n-te Folgenglied als Summe der beiden
vorangehenden Folgenglieder.)

a) Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf,

welches nach Eingabe von n den Wert fibo(n) ausgibt (oder: alle Werte
 fibo(0), . . . , fibo(n)); implementiere auch eine Variable z, welche die An-

zahl der Funktionsaufrufe ermittelt.

 Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller
Komplexität, denn die Anzahl z der Funktionsaufrufe wächst exponentiell
mit n; bei n = 38, 39, 40, . . nimmt die Berechnung bereits sehr viel Zeit
in Anspruch.

b) Zeige: Für die Anzahl z(n) der Funktionsaufrufe gilt

 Rekursionsanfang: z(0) = z(1) = 1

 Rekursionsvorschrift: z(n) = 1 + z(n1) + z(n2) falls n > 1

 Hinweis: Erstelle für fibo(2), fibo(3), fibo(4) jeweils ein Baumdiagramm,

so wie es für die Aufrufe von sort in dem paper „mergesort_update.pdf“
gemacht wurde.

c) Wenn man lru_cache des Python-Moduls functools nutzt, läßt sich

die Laufzeit erheblich verbessern (hier werden bereits berechnete Werte in
einem cache zwischengespeichert); allerdings kommt man mit lru_cache
bei der Berechnung der Ackermann-Funktion wegen derer ungeheuren Re-
kursionstiefe kaum weiter: acker(3,9) läßt sich noch berechnen, bei
acker(3,10) oder acker(4,n), n>0, ist Schluß.

d) Schreibe und teste ein iterativ formuliertes Python-Programm, z. B.
 indem die Werte der Fibonacci-Folge in einem array mit den
 Komponenten a[0], a[1], , a[n] abgelegt werden
 (setze a[0] = 0 und a[1] = 1).

 2

7. SelectionSort

 Der Algorithmus sorting_by_direct_selection.py (enthalten im zip-Archiv

MergeSort_update.zip) hat noch Optimierungspotential hinsichtlich des Zeit-
bedarfs zum Sortieren einer als array gegebenen Liste. Hierzu läßt sich die
Funktion min(x,j) in geeigneter Weise modifizieren; ergreife diese Möglich-
keit!

 Allerdings ändert diese Optimierung nichts an der quadratischen Komplexität

des Algorithmus.

8. MergeSort

 In dem paper mergesort_update.pdf (zip-Archiv MergeSort_update.zip)

wurde die Funktion f(n) ermittelt, welche die Anzahl der Aufrufe der Funktion
sort angibt.

 Finde in entsprechender Weise einen Funktionsterm und eine Funktionalglei-

chung für die Funktion g(n), welche die Anzahl der Aufrufe der Funktion
 merge angibt.

 Hinweis:
 Erstelle Baumdiagramme für n = 2, n = 4, n = 8

 Baum-Diagramm für n = 4:

 a[0] a[1] a[2] a[3]

 merge(0,0,1) merge(2,2,3)

 merge(0,1,3)

 g(4) = 3

 Implementiere im Quelltext von mergesort.py eine weitere Zählvariable y,

welche die Anzahl der Aufrufe von merge ermittelt.

Aufgabenblatt Nr. 4 inf13 Lösungen 20.02.2021

Aufgaben 6.a), 6.c):

Aufgabe 6.b): f(n) = fibo(n); „ “ bedeutet: „ruft auf“

 f(2) f(3)

 f(0) f(1) f(1) f(2)

 f(4) f(0) f(1)

 f(2) f(3)

 f(0) f(1) f(1) f(2)

 f(0) f(1)
z(0) = z(1) = 1

z(2) = 1 + z(0) + z(1) = 1 + 1 + 1 = 3
z(3) = 1 + z(1) + z(2) = 1 + 1 + 3 = 5
z(4) = 1 + z(2) + z(3) = 1 + 3 + 5 = 9
z(5) = 1 + z(3) + z(4) = 1 + 5 + 9 = 15

allgemein:

z(n) = 1 + z(n-1) + z(n-2) falls n > 1

 2

Aufgabe 6.d):

Aufgabe 7.:

Die Funktion min(x,j) ermittelt in dem array x[j], , x[n-1] das
kleinste Element und weist es der Komponente x[j] zu. In der ursprünglichen
Version von min(x,j) werden die Inhalte der Komponenten x[j] und x[i]
immer dann unter Verwendung des Zwischenspeichers temp ausgetauscht, so-
bald x[i] kleiner als x[j] ist (j < i  n1); folglich finden u. U. sehr viele
solcher swap-Operationen statt, die unnötig viel Rechenzeit beanspruchen.
Patriks Vorschlag: Nachdem man durch sukzessives Vergleichen den Index k des
kleinsten Elements bestimmt hat, wird der swap-Vorgang nur einmal ausgeführt.
(Praktische Versuche zeigen, daß man durch diese Optimierung mit einer Halbie-
rung des Zeitbedarfs zum Sortieren eines arrays rechnen kann.)

Aufgabe 8.: Baumdiagramm für n=8

 merge(0,3,7)

 a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

g(1) = 0
g(n) = 1 + 2  g(n/2) falls n = 2k, k > 1
g(n) = n  1

Eigenschaften der rekursiv definierten Fibonacci-Folge n=0{f(n)}

(1) f(0) = 0 , f(1) = 1
(2) f(n) = f(n1) + f(n2) falls n > 1

1. Die Folge {f(n)} ist streng monoton wachsend für n > 1.

 Beweis:
 f(n+1) – f(n) = f(n-1) > 0 falls n > 1

2. Behauptung: f(n) < 2n-1 = ½  2n falls n > 1

 Beweis: f(n) = f(n-1) + f(n-2) < 2  f(n-1) wegen der Monotonie
 < 2  2  f(n2) = 22  f(n2)
 < 23  f(n3)

 < 2n-1  f(n (n-1)) = 2n-1  f(1) = 2n-1

3. Behauptung: f(n) > ½  (2)n falls n > 2

 Beweis: n sei gerade mit n = 2m, m > 1

 f(2m) = f(2m1) + f(2m2)
 > 2  f(2m2) = 21  f(2(m1)) wegen der Monotonie
 > 2  2  f(2m4) = 22  f(2(m2))
 > 23  f(2(m3))

 > 2m-1  f(2(m(m-1))) = 2m1  f(2) = 2m1

 mit m = n/2 folgt:

 f(n) > 2n/2  1 = ½  2n/2 = ½  (2)n

4. Folglich erhalten wir für f(n) die Abschätzung

 ½  (2)n < f(n) < ½  2n falls n > 2

 Die Fibonacci-Folge wächst exponentiell mit n.

5. Das exponentielle Wachstum läßt sich auch an der für die Fibonacci-Folge

geltenden Formel von Moivre-Binet ablesen:

 f(n) =

 Für große Werte von n kann man den Subtrahend gegenüber dem Minuend

vernachlässigen.

6. Berechnet man die Fibonacci-Folge mit der rekursiv formulierten Funktion fib,

erhält man für die Anzahl z(n) der Aufrufe von fib:

 z(0) = z(1) = 1

 z(n) = 1 + z(n-1) + z(n-2) , n > 1

 Wegen z(n)  f(n) wächst auch z(n) exponentiell mit n.

