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6.  Fibonacci-Folge 
 

 Für n  {0, 1, 2, 3, . . . . . } läßt sich die Fibonacci-Folge rekursiv definieren: 
 
 Rekursionsanfang: fibo(0) = 0 
  fibo(1) = 1 
 
 Rekursionsvorschrift: fibo(n) = fibo(n1) + fibo(n2)  falls n > 1 

 
(In Worten: für n > 1 erhält man das n-te Folgenglied als Summe der beiden 
vorangehenden Folgenglieder.)  
 
a)  Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf, 

welches nach Eingabe von n den Wert fibo(n) ausgibt (oder:  alle Werte 
  fibo(0), . . . , fibo(n));  implementiere auch eine Variable z, welche die An-

zahl  der Funktionsaufrufe ermittelt.   

 Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller 
Komplexität, denn die Anzahl z der Funktionsaufrufe wächst exponentiell 
mit n; bei n = 38, 39, 40, . .  nimmt die Berechnung bereits sehr viel Zeit 
in Anspruch.  

 
 
b) Zeige: Für die Anzahl z(n) der Funktionsaufrufe gilt 
 

 Rekursionsanfang: z(0) = z(1) = 1 
 

 Rekursionsvorschrift: z(n) = 1 + z(n1) + z(n2)   falls n > 1 
 
 Hinweis: Erstelle für fibo(2), fibo(3), fibo(4) jeweils ein Baumdiagramm, 

so wie es für die Aufrufe von sort in dem paper „mergesort_update.pdf“ 
gemacht wurde.  

 
 
c)  Wenn man lru_cache des Python-Moduls functools nutzt, läßt sich 

die Laufzeit erheblich verbessern (hier werden bereits berechnete Werte in 
einem cache zwischengespeichert); allerdings kommt man mit lru_cache 
bei der Berechnung der Ackermann-Funktion wegen derer ungeheuren Re-
kursionstiefe kaum weiter: acker(3,9) läßt sich noch berechnen, bei  
acker(3,10) oder acker(4,n), n>0, ist Schluß.  

 

  
 
d) Schreibe und teste ein iterativ formuliertes Python-Programm, z. B.  
 indem die Werte der Fibonacci-Folge in einem array mit den  
 Komponenten a[0], a[1], . . . . , a[n] abgelegt werden  
 (setze a[0] = 0 und a[1] = 1). 
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7. SelectionSort 
 
 Der Algorithmus sorting_by_direct_selection.py (enthalten im zip-Archiv 

MergeSort_update.zip) hat noch Optimierungspotential hinsichtlich des Zeit-
bedarfs zum Sortieren einer als array gegebenen Liste. Hierzu läßt sich die 
Funktion min(x,j) in geeigneter Weise modifizieren; ergreife diese Möglich-
keit! 

 
 Allerdings ändert diese Optimierung nichts an der quadratischen Komplexität 

des Algorithmus. 
 
 
8. MergeSort 
  
 In dem paper mergesort_update.pdf (zip-Archiv MergeSort_update.zip) 

wurde die Funktion f(n) ermittelt, welche die Anzahl der Aufrufe der Funktion 
sort angibt. 

 
 Finde in entsprechender Weise einen Funktionsterm und eine Funktionalglei-

chung für die Funktion g(n), welche die Anzahl der Aufrufe der Funktion  
 merge angibt. 

  
 Hinweis:  
 Erstelle Baumdiagramme für n = 2, n = 4, n = 8 
 
 
 Baum-Diagramm für n = 4: 
 
  
   a[0]                       a[1]                                       a[2]                   a[3]    
 
 
 
 
 
             merge(0,0,1)                                                      merge(2,2,3) 
 
 
 
 
 
 
 
                                                     merge(0,1,3) 
 
 g(4) = 3 
 
 
 Implementiere im Quelltext von mergesort.py eine weitere Zählvariable y, 

welche die Anzahl der Aufrufe von merge ermittelt. 
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Aufgaben 6.a), 6.c): 
 

 
 
 
Aufgabe 6.b):      f(n) = fibo(n);            „   “  bedeutet: „ruft auf“      
 
 
                f(2)                                                 f(3) 
 
 
 
       f(0)           f(1)                                 f(1)             f(2) 
              
 
 
                                            f(4)                        f(0)          f(1) 
 
 
 
                             f(2)                            f(3) 
 
 
 
                    f(0)             f(1)              f(1)         f(2) 
 
 
 
                                                                 f(0)          f(1) 
z(0) = z(1) = 1 
 
z(2) = 1 + z(0) + z(1) = 1 + 1 + 1 = 3  
z(3) = 1 + z(1) + z(2) = 1 + 1 + 3 = 5 
z(4) = 1 + z(2) + z(3) = 1 + 3 + 5 = 9 
z(5) = 1 + z(3) + z(4) = 1 + 5 + 9 = 15 
 
allgemein: 
 
z(n) = 1 + z(n-1) + z(n-2)   falls n > 1 
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Aufgabe 6.d): 
 

 
 

Aufgabe 7.: 
 

Die Funktion min(x,j) ermittelt in dem array x[j], . . . . , x[n-1] das 
kleinste Element und weist es der Komponente x[j] zu. In der ursprünglichen 
Version von min(x,j) werden die Inhalte der Komponenten x[j] und x[i] 
immer dann unter Verwendung des Zwischenspeichers temp ausgetauscht, so-
bald x[i] kleiner als x[j] ist (j < i  n1); folglich finden u. U. sehr viele 
solcher swap-Operationen statt, die unnötig viel Rechenzeit beanspruchen.  
Patriks Vorschlag: Nachdem man durch sukzessives Vergleichen den Index k des 
kleinsten Elements bestimmt hat, wird der swap-Vorgang nur einmal ausgeführt. 
(Praktische Versuche zeigen, daß man durch diese Optimierung mit einer Halbie-
rung des Zeitbedarfs zum Sortieren eines arrays rechnen kann.) 
 

 
 

Aufgabe 8.: Baumdiagramm für n=8 
 

 
 
                                                              
 

                                                                merge(0,3,7) 
  

                                     a[0]   a[1]   a[2]   a[3]  a[4]  a[5]  a[6]  a[7]       
 
g(1) = 0 
g(n) = 1 + 2  g(n/2)      falls   n = 2k,  k > 1 
g(n) = n  1 



Eigenschaften der rekursiv definierten Fibonacci-Folge n=0{f(n)}  
 
(1) f(0)  =  0  ,       f(1) = 1 
(2) f(n)  =  f(n1) + f(n2)          falls n > 1 
 
1.  Die Folge {f(n)} ist streng monoton wachsend für n > 1. 

 Beweis:  
 f(n+1) – f(n) =  f(n-1)  >  0    falls n > 1 
 
2. Behauptung:  f(n) < 2n-1 = ½  2n     falls n > 1 
 

 Beweis: f(n) = f(n-1) + f(n-2)  < 2  f(n-1)     wegen der Monotonie 
   < 2  2  f(n2)  = 22  f(n2) 
   < 23  f(n3) 
   . . . . . . . . . . . 
   < 2n-1  f(n (n-1)) = 2n-1  f(1) = 2n-1 
 
3. Behauptung:  f(n) > ½  (2)n   falls n > 2 
 

 Beweis: n sei gerade mit n = 2m,  m > 1 
 

  f(2m)  = f(2m1) + f(2m2)   
   > 2  f(2m2)   =  21  f(2(m1))   wegen der Monotonie 
   > 2  2  f(2m4) = 22  f(2(m2))    
   > 23  f(2(m3))    
   . . . . . . . . . . . 
   > 2m-1  f(2(m(m-1))) = 2m1  f(2) =  2m1  
   

  mit m = n/2 folgt: 
 

  f(n) >  2n/2  1 =  ½  2n/2  =  ½  (2)n   
 
 
4. Folglich erhalten wir für f(n) die Abschätzung 
 
  ½  (2)n   <  f(n)  <   ½  2n         falls n > 2 
     
 Die Fibonacci-Folge wächst exponentiell mit n. 
 
 
5. Das exponentielle Wachstum läßt sich auch an der für die Fibonacci-Folge 

geltenden  Formel von Moivre-Binet ablesen: 
 
  
 f(n) =   
 
 
 
 Für große Werte von n kann man den Subtrahend gegenüber dem Minuend 

vernachlässigen. 
 
 
6. Berechnet man die Fibonacci-Folge mit der rekursiv formulierten Funktion fib, 

erhält man für die Anzahl z(n) der Aufrufe von fib: 
 

 z(0) = z(1) = 1 
 

 z(n) = 1 + z(n-1) + z(n-2) ,  n > 1 
 

 Wegen z(n)  f(n) wächst auch z(n) exponentiell mit n. 


