
Aufgabenblatt Nr. 4 inf13 15.02.2021

6. Fibonacci-Folge

 Für n  {0, 1, 2, 3, } läßt sich die Fibonacci-Folge rekursiv definieren:

 Rekursionsanfang: fibo(0) = 0
 fibo(1) = 1

 Rekursionsvorschrift: fibo(n) = fibo(n1) + fibo(n2) falls n > 1

(In Worten: für n > 1 erhält man das n-te Folgenglied als Summe der beiden
vorangehenden Folgenglieder.)

a) Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf,

welches nach Eingabe von n den Wert fibo(n) ausgibt (oder: alle Werte
 fibo(0), . . . , fibo(n)); implementiere auch eine Variable z, welche die An-

zahl der Funktionsaufrufe ermittelt.

 Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller
Komplexität, denn die Anzahl z der Funktionsaufrufe wächst exponentiell
mit n; bei n = 38, 39, 40, . . nimmt die Berechnung bereits sehr viel Zeit
in Anspruch.

b) Zeige: Für die Anzahl z(n) der Funktionsaufrufe gilt

 Rekursionsanfang: z(0) = z(1) = 1

 Rekursionsvorschrift: z(n) = 1 + z(n1) + z(n2) falls n > 1

 Hinweis: Erstelle für fibo(2), fibo(3), fibo(4) jeweils ein Baumdiagramm,

so wie es für die Aufrufe von sort in dem paper „mergesort_update.pdf“
gemacht wurde.

c) Wenn man lru_cache des Python-Moduls functools nutzt, läßt sich

die Laufzeit erheblich verbessern (hier werden bereits berechnete Werte in
einem cache zwischengespeichert); allerdings kommt man mit lru_cache
bei der Berechnung der Ackermann-Funktion wegen derer ungeheuren Re-
kursionstiefe kaum weiter: acker(3,9) läßt sich noch berechnen, bei
acker(3,10) oder acker(4,n), n>0, ist Schluß.

d) Schreibe und teste ein iterativ formuliertes Python-Programm, z. B.
 indem die Werte der Fibonacci-Folge in einem array mit den
 Komponenten a[0], a[1], , a[n] abgelegt werden
 (setze a[0] = 0 und a[1] = 1).

 2

7. SelectionSort

 Der Algorithmus sorting_by_direct_selection.py (enthalten im zip-Archiv

MergeSort_update.zip) hat noch Optimierungspotential hinsichtlich des Zeit-
bedarfs zum Sortieren einer als array gegebenen Liste. Hierzu läßt sich die
Funktion min(x,j) in geeigneter Weise modifizieren; ergreife diese Möglich-
keit!

 Allerdings ändert diese Optimierung nichts an der quadratischen Komplexität

des Algorithmus.

8. MergeSort

 In dem paper mergesort_update.pdf (zip-Archiv MergeSort_update.zip)

wurde die Funktion f(n) ermittelt, welche die Anzahl der Aufrufe der Funktion
sort angibt.

 Finde in entsprechender Weise einen Funktionsterm und eine Funktionalglei-

chung für die Funktion g(n), welche die Anzahl der Aufrufe der Funktion
 merge angibt.

 Hinweis:
 Erstelle Baumdiagramme für n = 2, n = 4, n = 8

 Baum-Diagramm für n = 4:

 a[0] a[1] a[2] a[3]

 merge(0,0,1) merge(2,2,3)

 merge(0,1,3)

 g(4) = 3

 Implementiere im Quelltext von mergesort.py eine weitere Zählvariable y,

welche die Anzahl der Aufrufe von merge ermittelt.

