Aufgabenblatt Nr. 4 inf13 15.02.2021

6. Fibonacci-Folge

Firne{0,1,2,3,..... } 1aBt sich die Fibonacci-Folge rekursiv definieren:
Rekursionsanfang: fibo(0) =0

fibo(1) =1
Rekursionsvorschrift: fibo(n) = fibo(n-1) + fibo(n-2) fallsn > 1

(In Worten: fiir n > 1 erhalt man das n-te Folgenglied als Summe der beiden
vorangehenden Folgenglieder.)

a)

b)

Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf,
welches nach Eingabe von n den Wert fibo(n) ausgibt (oder: alle Werte
fibo(0), . . ., fibo(n)); implementiere auch eine Variable z, welche die An-
zahl der Funktionsaufrufe ermittelt.

Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller
Komplexitét, denn die Anzahl z der Funktionsaufrufe wadchst exponentiell
mit n; bein = 38, 39, 40, . . nimmt die Berechnung bereits sehr viel Zeit
in Anspruch.

Zeige: Fir die Anzahl z(n) der Funktionsaufrufe gilt

Rekursionsanfang: z(0)=2z(1)=1

Rekursionsvorschrift: z(n) = 1 + z(n-1) + z(n-2) fallsn>1
Hinweis: Erstelle fiir fibo(2), fibo(3), fibo(4) jeweils ein Baumdiagramm,

so wie es flr die Aufrufe von sort in dem paper ,mergesort_update.pdf"
gemacht wurde.

c) Wenn man lru_cache des Python-Moduls functools nutzt, 1&Bt sich

d)

die Laufzeit erheblich verbessern (hier werden bereits berechnete Werte in
einem cache zwischengespeichert); allerdings kommt man mit 1ru_cache
bei der Berechnung der Ackermann-Funktion wegen derer ungeheuren Re-
kursionstiefe kaum weiter: acker(3,9) laBt sich noch berechnen, bei
acker(3,10) oder acker(4,n), n>0, ist SchluB.

functools 1imj 1lru cache

n =-dnt{input{Tn.= 1))
z =10

@lru cache (maxsize=64)
Fibo{n}) -

Schreibe und teste ein iterativ formuliertes Python-Programm, z. B.
indem die Werte der Fibonacci-Folge in einem array mit den
Komponenten a[0], a[1],, a[n] abgelegt werden

(setze a[0] = O und a[1] = 1).

7. SelectionSort

Der Algorithmus sorting_by_direct_selection.py (enthalten im zip-Archiv
MergeSort_update.zip) hat noch Optimierungspotential hinsichtlich des Zeit-
bedarfs zum Sortieren einer als array gegebenen Liste. Hierzu IaBt sich die
Funktion min (x, j) in geeigneter Weise modifizieren; ergreife diese Mdglich-
keit!

Allerdings dndert diese Optimierung nichts an der quadratischen Komplexitat
des Algorithmus.

8. MergeSort
In dem paper mergesort_update.pdf (zip-Archiv MergeSort_update.zip)

wurde die Funktion f(n) ermittelt, welche die Anzahl der Aufrufe der Funktion
sort angibt.

Finde in entsprechender Weise einen Funktionsterm und eine Funktionalglei-
chung fir die Funktion g(n), welche die Anzahl der Aufrufe der Funktion
merge angibt.

Hinweis:
Erstelle Baumdiagramme firn =2, n =4, n =8

Baum-Diagramm fir n = 4:

al[o0] a[1] al2] a[3]
merge(0,0,1) merge(2,2,3)
merge(0,1,3)
g(4) = 3

Implementiere im Quelltext von mergesort.py eine weitere Zahlvariable y,
welche die Anzahl der Aufrufe von merge ermittelt.

