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6.  Fibonacci-Folge 
 

 Für n  {0, 1, 2, 3, . . . . . } läßt sich die Fibonacci-Folge rekursiv definieren: 
 
 Rekursionsanfang: fibo(0) = 0 
  fibo(1) = 1 
 
 Rekursionsvorschrift: fibo(n) = fibo(n1) + fibo(n2)  falls n > 1 

 
(In Worten: für n > 1 erhält man das n-te Folgenglied als Summe der beiden 
vorangehenden Folgenglieder.)  
 
a)  Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf, 

welches nach Eingabe von n den Wert fibo(n) ausgibt (oder:  alle Werte 
  fibo(0), . . . , fibo(n));  implementiere auch eine Variable z, welche die An-

zahl  der Funktionsaufrufe ermittelt.   

 Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller 
Komplexität, denn die Anzahl z der Funktionsaufrufe wächst exponentiell 
mit n; bei n = 38, 39, 40, . .  nimmt die Berechnung bereits sehr viel Zeit 
in Anspruch.  

 
 
b) Zeige: Für die Anzahl z(n) der Funktionsaufrufe gilt 
 

 Rekursionsanfang: z(0) = z(1) = 1 
 

 Rekursionsvorschrift: z(n) = 1 + z(n1) + z(n2)   falls n > 1 
 
 Hinweis: Erstelle für fibo(2), fibo(3), fibo(4) jeweils ein Baumdiagramm, 

so wie es für die Aufrufe von sort in dem paper „mergesort_update.pdf“ 
gemacht wurde.  

 
 
c)  Wenn man lru_cache des Python-Moduls functools nutzt, läßt sich 

die Laufzeit erheblich verbessern (hier werden bereits berechnete Werte in 
einem cache zwischengespeichert); allerdings kommt man mit lru_cache 
bei der Berechnung der Ackermann-Funktion wegen derer ungeheuren Re-
kursionstiefe kaum weiter: acker(3,9) läßt sich noch berechnen, bei  
acker(3,10) oder acker(4,n), n>0, ist Schluß.  

 

  
 
d) Schreibe und teste ein iterativ formuliertes Python-Programm, z. B.  
 indem die Werte der Fibonacci-Folge in einem array mit den  
 Komponenten a[0], a[1], . . . . , a[n] abgelegt werden  
 (setze a[0] = 0 und a[1] = 1). 
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7. SelectionSort 
 
 Der Algorithmus sorting_by_direct_selection.py (enthalten im zip-Archiv 

MergeSort_update.zip) hat noch Optimierungspotential hinsichtlich des Zeit-
bedarfs zum Sortieren einer als array gegebenen Liste. Hierzu läßt sich die 
Funktion min(x,j) in geeigneter Weise modifizieren; ergreife diese Möglich-
keit! 

 
 Allerdings ändert diese Optimierung nichts an der quadratischen Komplexität 

des Algorithmus. 
 
 
8. MergeSort 
  
 In dem paper mergesort_update.pdf (zip-Archiv MergeSort_update.zip) 

wurde die Funktion f(n) ermittelt, welche die Anzahl der Aufrufe der Funktion 
sort angibt. 

 
 Finde in entsprechender Weise einen Funktionsterm und eine Funktionalglei-

chung für die Funktion g(n), welche die Anzahl der Aufrufe der Funktion  
 merge angibt. 

  
 Hinweis:  
 Erstelle Baumdiagramme für n = 2, n = 4, n = 8 
 
 
 Baum-Diagramm für n = 4: 
 
  
   a[0]                       a[1]                                       a[2]                   a[3]    
 
 
 
 
 
             merge(0,0,1)                                                      merge(2,2,3) 
 
 
 
 
 
 
 
                                                     merge(0,1,3) 
 
 g(4) = 3 
 
 
 Implementiere im Quelltext von mergesort.py eine weitere Zählvariable y, 

welche die Anzahl der Aufrufe von merge ermittelt. 
    


