
SelectionSort 
 

Aufgabenstellung: 
 

Gegeben ist ein Array a mit den n Komponenten a[0], a[2], . . . . , a[n-1] als 

Datenelemente, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt sind (also 

Komponenten z. B. vom Typ integer, char oder string). Die Inhalte dieser 

Datenelemente sind aufsteigend so anzuordnen, daß gilt:  

a[0]  ≤  a[2]  ≤  .  .  .  .  .  ≤  a[n-1] . 

In Python läßt sich ein Array a als Liste realisieren. 

 

Sortieren durch direkte Auswahl („SelectionSort“) 
 

Bei diesem Verfahren handelt es um einen typischen Vertreter eines imperativ 

formulierten Algorithmus’. 
 

Der Algorithmus SelectionSort bestimmt 
 

- das kleinste Element (Minimum) der Liste a[0], a[1], . . . . . , a[n-1]  und 

weist dieses der Komponente a[0] zu, dabei wird der Inhalt von a[0] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde; 
 

- das kleinste Element (Minimum) der Liste a[1], . . . . . . , a[n-1]  und 

weist dieses der Komponente a[1] zu, dabei wird der Inhalt von a[1] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde; 
 

- das kleinste Element (Minimum) der Liste a[2], . . . . . . , a[n-1]  und 

weist dieses der Komponente a[2] zu, dabei wird der Inhalt von a[2] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde; 
 

- . . . . . . . . . . 
 

- . . . . . . . . . . 
 

- das kleinste Element (Minimum) der Liste a[n-2], a[n-1]  und weist dieses 

der Komponente a[n-2] zu, dabei wird der Inhalt von a[n-2]  der Kompo-

nente a[n-1] zugewiesen.  
 

Nach dem Abarbeiten der vorgenannten n-1 Schritte ist das Array a aufsteigend 

sortiert. 
 

In Python lassen sich die ersten vier Schritte wie folgt formulieren: 
 

min = a[0] 

i = 0 + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[0] 

          a[0] = min 

     i = i + 1 

 

min = a[1] 

i = 1 + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[1] 

          a[1] = min 

     i = i + 1 
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min = a[2] 

i = 2 + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[2] 

          a[2] = min 

     i = i + 1 

 

min = a[3] 

i = 3 + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[3] 

          a[3] = min 

     i = i + 1 

 

 

 

Letzter Schritt: 
 

min = a[n-2] 

i = n-2 + 1 

while i < n: 

     if a[i] < min: 

          min    = a[i] 

          a[i]   = a[n-2] 

          a[n-2] = min 

     i = i + 1 

 

 

Zusammenfassend gilt:  Der Anweisungsblock 
 

min = a[j] 

i = j + 1 

while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[j] 

          a[j] = min 

     i = i + 1  
 

ist nacheinander für j = 0, 1, 2, . . . . . , n-2 abzuarbeiten; folglich fassen wir die-

sen Block als Schleifenrumpf einer weiteren Schleife (hier: for-Schleife) mit 

Schleifenindex j auf: 
 

for j in range(0,n-1): 

   min = a[j] 

   i = j + 1 

   while i < n: 

        if a[i] < min: 

             min  = a[i] 

             a[i] = a[j] 

             a[j] = min 

        i = i + 1 
 

Alternativ können wir die äußere Schleife als while-Schleife formulieren: 
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j = 0 

while j <= n – 2: 
   min = a[j] 

   i = j + 1 

   while i < n: 

        if a[i] < min: 

             min  = a[i] 

             a[i] = a[j] 

             a[j] = min 

        i = i + 1 

   j = j + 1 

 

 

Das folgende Python-Programm  

- weist nach Eingabe von n den Komponenten der Liste a Zufallszahlen aus 

dem Bereich 1, . . . , 1000000 zu, 

- sortiert diese Liste a aufsteigend, 

- ermittelt den Zeitbedarf für das Sortieren der n Datenelemente, 

- gibt jeweils einen Teil der Quelliste und der sortierten Liste sowie den 

Zeitaufwand für den Sortiervorgang (in s) aus. 
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Aufwandsbetrachtung 
 

Wir untersuchen den Algorithmus SelectionSort hinsichtlich seiner zeitlichen 

Komplexität, d. h. wir untersuchen, wie der Zeitbedarf zur Laufzeit sich in Abhän-

gigkeit von der Anzahl n der zu sortierenden Datensätze verhält. Den Aufwand 

hinsichtlich des Speicherplatzbedarfs können wir hier vernachlässigen, da der Al-

gorithmus SelectionSort auf dem Array a operiert und keinen weiteren Speicher-

platz zur Laufzeit benötigt. 

 

Hierzu betrachten wir denjenigen Programmteil, der das Sortieren ausführt: 
  
         j = 0                                                                

          while j <= n-2:    

              min = a[j] 

          i = j + 1 

              while i < n: 

                  if a[i] < min: 

                      min  = a[i] 

                      a[i] = a[j] 

                      a[j] = min 

                  i = i + 1 

              j = j + 1 

 

Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife (hier: 
rot markiert) dieses Programmauszugs gedanklich zum Anweisungsblock A zu-

sammen. 

Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu sor-

tieren, fragen wir, wie oft Block A  in Abhängigkeit von n abgearbeitet wird. 
 

In folgender Tabelle gibt z(j) jeweils an, wie oft Block A in Abhängigkeit von j 

abgearbeitet wird.  
 

 

 

Für die Gesamtanzahl z der Abarbeitungen von Block  A  erhalten wir:  

 

     z   =    z(0)  +  z(1)   +  z(2)  +  z(3)  +  .  .  .  .  .   +  z(n-3)  +  z(n-2) 
  

 =   (n-1)  + (n-2)  + (n-3) +  .  .  .  .  .  .  .  .  .    +    2     +    1 
 

 =  1  +  2  +  .  .  .  .  .  .  .  +  n-1 
 

 =  ½  (n-1)  n    (beachte untenstehenden Hinweis) 
 

 =  ½  (n2  n)  
 

 =  ½  n2    ½  n 

 

Für große Werte von n können wir den Summand ½  n gegenüber dem Sum-

mand ½  n2 vernachlässigen; somit folgt: 

Index j Index i z(j) 

j = 0  1  i  n-1 n - 1 

j = 1  2  i  n-1 n - 2 

j = 2  3  i  n-1 n - 3 

j = 3  4  i  n-1 n - 4 

.... .... .... 

j = n-3 n-2  i  n-1 2 

j = n-2 n-1  i  n-1 1 
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    z   ½  n2 
 

    z    n2 

 

Bei SelectionSort wächst der Zeitbedarf proportional zum Quadrat der Anzahl n 

der zu sortierenden Datenelemente. 

 

SelectionSort ist von polynomialer (hier: quadratischer) Komplexität. 

 

Hinweis: 

Für die Summe der ersten n natürlichen Zahlen gilt: 
 

  1  +  2  +  .  .  .  .  .  .  +  n  =   ½  n  (n + 1) 
 

 

Aufgaben: 
 

1. Bestätige die quadratische Komplexität von SelectionSort experimentell an-

hand geeigneter Testläufe. 
 

2.  Modifiziere den Quelltext so, daß SelectionSort absteigend sortiert. 
 

3. Sobald in der Teilliste   a[j], . . . , a[n-1], 0  j  n-2, ein Element 

gefunden wird, welches kleiner ist als das jeweils aktuelle Minimum, werden 
die Wertzuweisungen innerhalb des Blocks A ausgeführt, was für ein bestimm-

tes j ggf. auch mehrmals erfolgt. Optimiere den Algorithmus so, daß die Wert-

zuweisungen jeweils höchstens ein Mal für jeden Wert von j vorgenommen 

werden.  

 Bestimme experimentell die Laufzeit und bestätige die (insgesamt bescheide-

ne) Optimierung. 

 Hinweis: Ermittle zunächst den Index derjenigen Komponente, welche den 
kleinsten Inhalt innerhalb der Liste a[j], . . , a[n-1] hat, und führe an-

schließend einmalig die Wertzuweisungen des Blocks A aus.  

 

Komplexität von Algorithmen 

A(n) bezeichne den Aufwand und damit den Zeitbedarf zur Laufzeit in Abhängig-

keit von n (z. B. n = Anzahl der zu verarbeitenden Datenelemente). 
 

Algorithmus Aufwand  Art der Komplexität 

sequentielle oder 

lineare Suche 
A(n)  n  linear 

binäre Suche A(n)  log2(n) logarithmisch 

SelectionSort A(n)  n2 polynomial  

(hier: quadratisch) 

MergeSort A(n)  n  log2(n) linear-logarithmisch 

Fibonacci-Folge 

(rekursiv) 
A(n)  2n exponentiell 

 

Ackermann-Funktion 

A(3,n)  2n+3 – 3 

A(3,n)  2(n+3) – 3 

A(4,n)  2(n+3) – 3 

A(5,n)  2(n+3) – 3 

exponentiell 

 

hyper-exponentiell 

 

 
 

Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als un-

brauchbar; selbst Algorithmen mit polynomialer Komplexität zeigen häufig ein 

ungünstiges Laufzeitverhalten. 
03.07.2023 
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Entwicklung eines Algorithmus InsertionSort 
 

Zu einer natürlichen Zahl n ist ein Array a mit den n Komponenten  

a[0], . . .  , a[n-1] gegeben (in Python läßt sich ein Array als Liste definieren),  

für die die Operationen   = ,  <   und   >  definiert sind. 
 

Ziel: Die Inhalte der Komponenten sind gemäß dem Algorithmus „Sortieren durch 

direktes Einfügen“ (InsertionSort) so anzuordnen, daß gilt: 
 

a[0]    a[1]    .  .  .     a[n-1] 

 
Beispiel (n = 6): 

 

a[0] a[1] a[2] a[3] a[4] a[5] 

85 12 59 45 72 51 

 
Die aus der Komponente a[0] bestehende 1-elementige Teilliste gilt als sortiert, 

die aus den Komponenten  a[1] ,  .  .  .   ,  a[n-1] bestehende Teilliste ist zu 

Anfang unsortiert.  
 

Wir verwenden die Variable current als temporäre Variable. 

 

1. Schritt: 
 

current = a[1] 

i = 1 – 1 
if current < a[i]: 

        a[i+1] = a[i] 

        a[i]   = current 
 

Ergebnis des 1. Schritts: 

a[0] a[1] a[2] a[3] a[4] a[5] 

12 85 59 45 72 51 
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Die aus den Komponenten a[0], a[1] bestehende Teilliste ist sortiert, der 

Bereich  a[2] ,  .  .  .   ,  a[5]  unsortiert.  

 

 

2. Schritt: 
 

current = a[2] 

i = 2 – 1 
while i >= 0: 

   if current < a[i]: 

         a[i+1] = a[i] 

         a[i]   = current 

   i = i – 1 
 

Ergebnis des 2. Schritts: 

a[0] a[1] a[2] a[3] a[4] a[5] 

12 59 85 45 72 51 

 

Die aus den Komponenten a[0], a[1], a[2] bestehende Teilliste ist sortiert, der 

Bereich  a[3] ,  .  .  .   ,  a[5]  unsortiert.  

 

 

3. Schritt: 
 

current = a[3] 

i = 3 – 1 
while i >= 0: 

   if current < a[i]: 

         a[i+1] = a[i] 

         a[i]   = current 

   i = i – 1 
 

Ergebnis des 3. Schritts: 

a[0] a[1] a[2] a[3] a[4] a[5] 

12 45 59 85 72 51 

 

Die aus den Komponenten a[0], . . . , a[3] bestehende Teilliste ist sortiert, der 

Bereich  a[4] ,  a[5]  unsortiert.  

 

 

4. Schritt: 
 

current = a[4] 

i = 4 – 1 
while i >= 0: 

   if current < a[i]: 

         a[i+1] = a[i] 

         a[i]   = current 

   i = i – 1 
 

Ergebnis des 4. Schritts: 

a[0] a[1] a[2] a[3] a[4] a[5] 

12 45 59 72 85 51 
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Die aus den Komponenten a[0], . . . , a[4] bestehende sortierte Teilliste ist mit 

der Komponente  a[5] zu einer sortierten Gesamtliste zu verschmelzen.  

 

 

5. Schritt: 
 

current = a[5] 

i = 5 – 1 
while i >= 0: 

   if current < a[i]: 

         a[i+1] = a[i] 

         a[i]   = current 

   i = i – 1 
 

Ergebnis des 5. Schritts: 

a[0] a[1] a[2] a[3] a[4] a[5] 

12 45 51 59 72 85 

 

Bei dem gewählten Beispiel (n = 6) ist der Anweisungsblock 
 

current = a[j] 

i = j – 1 
while i >= 0: 

   if current < a[i]: 

         a[i+1] = a[i] 

         a[i]   = current 

   i = i – 1 
 

für j = 1, 2, . . . , 5 zu wiederholen. 

 

 

Allgemein halten wir fest: 

 

Die zu sortierende Gesamtliste besteht vor jedem Schritt aus einer bereits 

sortierten Teilliste und einer unsortierten Teilleiste; vor dem ersten Schritt ist die 

aus dem einen Element a[0] bestehende Liste sortiert und die Liste  a[1] , . . ,  

a[n-1] unsortiert. Nachfolgend wird das jeweils erste Element der unsortierten 

Teilliste an der richtigen Stelle in die sortierte Teilliste eingefügt, so daß der 

sortierte Bereich mit jedem Schritt wächst, bis die gesamte Liste sortiert ist. 

 

Falls das Array a aus den n Komponenten a[0] ,  .  .  .   ,  a[n-1] besteht, 

ist der Anweisungsblock 

 

current = a[j] 

i = j – 1 
while i >= 0: 

   if current < a[i]: 

         a[i+1] = a[i] 

         a[i]   = current 

   i = i – 1 
 

nacheinander für j = 1, . . . , n1 zu wiederholen. Folglich implementieren wir 

diesen Anweisungsblock als Schleifenrumpf einer geeignet initialisierten for- 

oder while-Schleife. 



Aufgabenblatt Nr. 1                          inf12                              11.09.2023 
 

Vorbemerkung: 

Gegeben ist ein Array a mit den n Komponenten a[0], a[2], . . . . , a[n-1] als Datenele-

mente, für die die Ordnungsrelationen < , > , = erklärt sind (also Komponenten z. B. vom 

Typ integer, char oder string). Die Inhalte dieser Datenelemente sind aufsteigend so anzu-

ordnen, daß gilt:  

a[0]  ≤  a[2]  ≤  .  .  .  .  .  ≤  a[n-1] . 

In Python läßt sich ein Array a als Liste realisieren. 

 

 

1. Aufgabe 

Optimierung des Algorithmus SelectionSort (Sortieren durch direkte Auswahl) 
 

Der in Python geschriebene Quelltext SelectionSort_for-loop_while-loop_time.py 

enthält eine Uhr, um den Zeitbedarf (in s) zum Sortieren eines aus n Komponenten 

bestehenden Arrays zu ermitteln.  

Der folgende Programmteil führt den Sortiervorgang aus: 
 

for j in range(0,n-1): 

  min = a[j] 

  i = j + 1 

  while i < n: 

     if a[i] < min: 

          min  = a[i] 

          a[i] = a[j] 

          a[j] = min 

     i = i + 1 
 

Sobald in der Teilliste   a[j], . . . , a[n-1], 0  j  n-2, ein Element ge-

funden wird, welches kleiner ist als das jeweils aktuell definierte Minimum min, 

wird der „swap“ (Tausch der Werte zweier Variabler; hier: die Wertzuweisungen 

innerhalb des Schleifenrumpfs der inneren Schleife) ausgeführt, was für ein be-
stimmtes j ggf. auch mehrmals erfolgt. Optimiere den Algorithmus so, daß die 

Wertzuweisungen jeweils höchstens ein Mal für jeden Wert von j vorgenommen 

werden.  

Bestimme experimentell die Laufzeit und bestätige die (insgesamt bescheidene) 

Optimierung. Zeige ferner empirisch, daß die Zeitkomplexität von der Ordnung n2 

ist (d. h.: Der Zeitbedarf wächst mit dem Quadrat der Anzahl n der zu sortierenden 

Datenelemente; Schreibweise: O(n2) ). 

Hinweis: Ermittle zunächst den Index derjenigen Komponente, welche den klein-
sten Inhalt innerhalb der Liste a[j], . . , a[n-1] hat, und führe anschließend 

den swap höchstens einmalig aus.  
 

 

 

2. Aufgabe 

Algorithmus InsertionSort (Sortieren durch direktes Einfügen) 

 

a) Erstelle, ausgehend von dem Skript InsertionSort_11-09-2023.pdf, einen in Py-

thon geschriebenen Quelltext zu InsertionSort. 

 

b) Teste das Programm anhand diverser Eingaben. 

 

c) Implementiere eine Uhr im Quelltext (wegen der Syntax orientiere man sich an  

SelectionSort_for-loop_while-loop_time.py) und bestätige empirisch, daß die 

Zeitkomplexität von der Ordnung O(n2) ist. 
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3. Aufgabe 
Optimierungen des Algorithmus InsertionSort (Sortieren durch direktes Ein-
fügen) 
 

 
a) Der folgende Programmauszug veranlaßt das Sortieren des Arrays a, indem das 

jeweils erste Element a[j], j  {1, . . . , n-1}, der noch unsortierten Teilliste an 
der richtigen Stelle der bereits sortierten Teilliste eingefügt wird: 

   
  j = 1 
 
 while j <= n - 1: 
     current = a[j] 
     i = j - 1 
     while i >= 0: 
       if current < a[i]: 
             a[i+1] = a[i] 
             a[i]   = current 
       i = i - 1 
     j = j + 1 
 
 Begründe anhand eines Beispiels, daß dieser Programmcode nicht optimal ist. 
 Modifiziere den Quelltext und zeige empirisch die Effizienzverbesserung, wobei  

die quadratischen Zeitkomplexität allerdings erhalten bleibt. 
 
 Zeige ferner, daß der modifizierte Algorithmus Vorteile bitte, falls das Array a 

bereits in Teilen oder vollständig vorsortiert ist. 
 
 Bemerkung:  

Tatsächlich ist die Zeitkomplexität von der Ordnung O(n) (d. h., die Laufzeit 
wächst im wesentlichen linear mit der Anzahl n), falls die Liste a bereits sortiert 
ist; diesen Vorteil beobachtet man bei SelectionSort nicht. 

 
b) Delegiere das Einfügen des jeweils ersten Elements a[j], j = 1, . . . , n-1, der 

noch unsortierten Teilliste an die richtige Stelle der bereits sortierten Teilliste an 
ein Unterprogramm (Prozedur; in Python: definiere in geeigneter Weise eine 
Funktion). 

 

 Zeige, daß sich mit dieser Modifikation eine weitere Verbesserung der Laufzeit 
erzielen läßt (zumindest in Python); versuche, eine Erklärung zu geben. 

 

 Bemerkung: Da hier das Merkmal der Rekursion fehlt, bleibt der Algorithmus 
auch nach der Implementierung der Funktion „insert“  imperativ formuliert. 

 
Lösung zu a):                                            Lösung zu b): 
 

 
 
 

 
 
 



Sortieren durch Mischen ("MergeSort")  
 
Aufgabe:  
 
Gegeben ist eine Liste L = {a[0], a[2], a[3], . . . . , a[n-1]}  

von n Datenelementen, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt  

sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daß gilt:  

a[0] ≤ a[2] ≤. . . . . ≤ a[n-1] . 

Wir fassen die Elemente der Liste auf als Komponenten eines arrays a. 

 
 
Strategie: "Divide et impera"  
 
Eine Liste, die nur ein einziges Element enthält, ist bereits sortiert. 
 
Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, läßt sich in 4 Schritten 
bewältigen:  
 

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten  
 

2). Sortiere die erste Teilliste gemäß den Schritten 1). - 4).  
 

3). Sortiere die zweite Teilliste gemäß den Schritten 1). - 4).  
 

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste 
 
 
Falls left < right wahr ist, sortiert die rekursiv definierte Funktion 
 

sort(array, left, right)  
 

die Liste  
 

array[left], . . . . , array[right] 
 

unter Verwendung der Funktion merge. 
 

Die Funktion 
  

merge(array, left, middle, right) 
 

mischt die sortierten Teillisten  
 

array[left], . . . . , array[middle] 
 

und 
 

array[middle+1], . . . . , array[right] 
 

zu der sortierten Gesamtliste 
 

array[left], . . . . , array[right] . 
 
Quellcode der Funktion sort in Python: 
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def sort(array, left, right):   
     if left >= right:   
          return   
     middle = (left + right)//2   
     sort(array, left, middle)   
     sort(array, middle + 1, right)   
     merge(array, left, middle, right) 
 
 
Aufruf zum Sortieren der aus den n Komponenten  
 

 a[0], a[2], a[3], . . . . , a[n-1] 
 

bestehenden Liste a: 
 

 sort(a, 0, len(a)-1) 
 
 
 
Aufwandsbetrachtung: 
 

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie 
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus 
n Komponenten bestehende Liste zu sortieren. 
 

Dann gilt: 
 

A(n)  =  2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen  
+ Aufwand zum Mischen zweier sortierter Teillisten 

 

A(n)  =  A(n/2) + A(n/2)  
+ Aufwand zum Mischen zweier sortierter Teillisten 

 

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wächst linear mit der Anzahl n der zu sortierenden Datenelemente; somit 
erhalten wir für den Funktionsterm A(n) die Funktionalgleichung (c = Konstante 
= Proportionalitätsfaktor) 
 

(*)  A(n)  = A(n/2) + A(n/2) + c  n   mit der Bedingung 
(**)  A(1)  = 0 . 

 

Behauptung: Die Funktion  
 

A(n) = c  n  log2(n) 
 

ist Lösung der Funktionalgleichung (*) mit der Anfangsbedingung (**). 
 
Beweis: 
 
A(n/2) + A(n/2) + c  n   =  2  A(n/2) + c  n   

=  2  c  n/2  log2(n/2) + c  n  
=  c  n  (log2(n)   log2(2)) + c  n 
=  c  n  (log2(n)   1) + c  n 
=  c  n  log2(n)  
=  A(n)  
 

Damit ist (*) erfüllt; wegen log2(1) = 0 genügt A(n) auch der Bedingung (**). 
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Bemerkung: Mit Methoden der Analysis läßt sich die Eindeutigkeit der Lösung des 
Problems (*), (**) zeigen, somit ist mit A(n) = c  n  log2(n) die einzige Lösung 
der Funktionalgleichung gefunden. 
 
Allgemein läßt sich beweisen, daß der Aufwand zum Sortieren von n Datensätzen 
grundsätzlich mindestens von der Ordnung n  log2(n) wächst. In diesem Sinne 
kann das Sortierverfahren „MergeSort“ als optimales Vefahren gelten.  
 
 
Ergänzende Betrachtung zum Speicherplatzbedarf:  
 

Nachdem wir festgestellt haben, daß der Aufwand zum Sortieren von n 
Datenelementen von der Ordnung n  log2(n) wächst und damit ein Optimum 
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber 
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn 
rekursive Algorithmen haben grundsätzlich den Nachteil, daß sie während der 
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. Daß dieser Effekt bei 
MergeSort nicht oder nur unwesentlich ins Gewicht fällt, zeigt folgende 
Überlegung:  
 

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion 
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.  
 

O. B. d. A. sei n eine Zweierpotenz, d. h.  n=2k,  k{0, 1, 2, 3, . . . . . . }.  
 
Bemerkung: Der Pfeil                    bedeutet: „ruft auf“ 
 
n = 1:                              sort(a,0,0)                                       1 Aufruf 
 
 
n = 2:                              sort(a,0,1) 
 
 
 
                             sort(a,0,0)        sort(a,1,1)                          
 
                                                                            1 + 2  1 = 3 Aufrufe 
 
 
 
n = 4:                                 sort(a,0,3) 
 
 
 
                          sort(a,0,1)                  sort(a,2,3)                       
 
 
 
 
         sort(a,0,0)        sort(a,1,1)         sort(a,2,2)       sort(a,3,3) 
 
                                                                             1 + 2  3 = 7 Aufrufe 
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n = 8:                                          sort(0,7) 
 
 
 
                                sort(0,3)                                           sort(4,7)                       
 
 
 
 
                  sort(0,1)                sort(2,3)                    sort(4,5)                   sort(6,7) 
 
 
 
   sort(0,0)     sort(1,1)    sort(2,2)   sort(3,3)       sort(4,4)    sort(5,5)     sort(6,6)     sort(7,7) 
 
 
                                                                             1 + 2  7 = 15 Aufrufe 
 
 
 
f(1)  = 1  =   1  =  2  1  – 1  

f(2)  = 1 + 2  1  =   3  =  2  2  – 1  

f(4)  = 1 + 2  3  =   7  =  2  4  – 1  

f(8)  = 1 + 2  7  =  15  =  2  8  – 1  

f(16) = 1 + 2  15 =  31  =  2  16 – 1  

f(32) = 1 + 2  31  =  63  =  2  32 – 1  

 
allgemein:  
 
f(n) = 2  n – 1  
 
Offensichtlich ist f(n) Lösung der rekursiv definierten Funktionalgleichung  

 f(n) = 1 + 2  f(n/2)  

mit der Anfangsbedingung  f(1) = 1 .  

 
Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der 
Speicherplatzbedarf während der Laufzeit wächst somit linear mit n, also 
wesentlich schwächer als die Anzahl A(n) elementarer Rechenoperationen. 
 
 
 
Die rekursiv veranlaßten Aufrufe der Funktion sort zerlegen die zu sortierende 
Liste in Teillisten jeweils der Länge 1, die als ein-elementige Listen bereits 
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils 
einer sortierten Liste gemäß folgendem Diagramm: 
 
 
Bemerkung: Der Pfeil                    bedeutet: „wird gemischt“ 
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                                                                   merge(0,3,7) 
  

                                            a[0]   a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]       
 

 
Für die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar: 

 
g(1) = 0 
g(n) = 1 + 2  g(n/2)      falls   n = 2k,  k > 1 
 
Lösung der vorstehenden Funktionalgleichung: 
 
g(n) = n  1 

 
 
Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe 
der Funktion merge wachsen jeweils linear mit n. 

 
 

Februar 2021 
 
 
 

 
Bemerkung:  
Für den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten 
wir bei 
 

- SelectionSort:  A(n)  n2 
- MergeSort:        A(n)  n  log2(n) 
- Fibonacchi-Folge:  A(n)  2n  (bei rekursiver Berechnung) 
- BinarySearch: A(n)  log2(n) 

 
 
Entsprechend haben 
 

- SelectionSort quadratische Komplexität, 
- MergeSort linear-logarithmische Komplexität, 
- die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexität, 
- BinarySearch logarithmische Komplexität. 

 
Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar. 





sort(0,7) 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] 

7 6 8 2 9 3 8 5 
 
 
 

sort(0,3) sort(4,7) 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] 

7 6 8 2 

 

9 3 8 5 
 
 
 

sort(0,1) sort(2,3) sort(4,5) sort(6,7) 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] 

7 6 

 

8 2 

 

9 3 

 

8 5 

 
 
 

sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7) 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] 

7 

 

6 

 

8 

 

2 

 

9 

 

3 

 

8 

 

5 
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x
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x
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x
Line

x
Text Box
bedeutet:  "ruft auf"
Beispiel:  sort(4,7) veranlaßt die Aufrufe sort(4,5) und sort (6,7)



a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] 

7 

 

6 8 

 

2 9 

 

3 8 
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merge(0,0,1) 

 

merge(2,2,3) 

 

merge(4,4,5) 

 

merge(6,6,7) 

 
 
 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] 

6 7 

 

2 8 3 9 

 

5 8 

merge(0,1,3) 

 

merge(4,5,7) 

 
 
 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] 

2 6 7 8 

 

3 5 8 9 

merge(0,3,7) 

 
 
 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] 

2 3 5 6 7 8 8 9 
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x
Text Box
bedeutet:  "wird gemischt"      
Beispiel: merge(0,3,7) mischt die sortierten Listen  a[0], . . , a[3]  und  a[4], . . , a[7]  zu der sortierten Liste  a[0], . . . , a[7] 



Zeitkomplexität von Algorithmen 
 
 

Verdeutlichung der O-Notation anhand eines Beispiels 
Der Zeitbedarf A(n) von SelectionSort in Abhängigkeit von der Anzahl n der zu 
verarbeitenden Datenelemente („Problemgröße“) wächst quadratisch für große Werte  
von n:  
A(n)  n2 für große n.  
Man sagt auch: Die Zeitkomplexität von SelectionSort ist von der Ordnung O(n2). 
 
Algorithmus lineare 

Suche 
 
Fakultät 
(rekursiv 
oder 
iterativ) 

binäre 
Suche  
auf einer 
sortierten 
Menge 

Selection-
Sort 
 
Insertion-
Sort 

MergeSort Fibonacci-
Folge 
(rekursiv) 
 
Türme von 
Hanoi 

Ackermann-
Funktion 
(rekursiv) 

Komplexität O(n) O(log2 n) O(n2) O(nlog2 n) O(2n)  

Art des  
Wachstums linear logarithmisch 

polynomial 
hier: 
quadratisch 

linear-
logarithmisch exponentiell 

hyper-
exponentiell 

 
 
Algorithmen mit polynomialer Komplexität sind bedingt brauchbar, Algorithmen mit 
exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar. 
 
 
Rechenzeiten in Abhängigkeit von der Zeitkomplexität des Algorithmus 
 
Annahme:  
Für die Verarbeitung des jeweiligen Problems mit minimaler Problemgröße (n = 1) werde 
ein Zeitbedarf von 1 s = 10-6 s angesetzt. 
 

Komplexität n = 1 n = 100 n = 103 n = 104 n = 106 n = 109 

O(n) 10-6 s 10-4 s 10-3 s 10-2 s 1 s 
103 s  
17 min 

O(log2 n) 10-6 s 7  10-6 s 10  10-6 s 13  10-6 s 20  10-6 s 30  10-6 s 

O(nlog2 n) 10-6 s 7  10-4 s 10-2 s 0,13 s 20 s 
30 000 s  
8 h 

O(n2) 10-6 s 10-2 s 1 s 100 s 
106 s   
12 d 

1012 s   
31 700 a 

O(2n) 10-6 s 
1,31024 s 
  
4  1016 a 

10295 s 
 
3,410287 a 

2 103004 s   

  
Rechenzeit bei exponentieller Zeitkomplexität: 
 

Komplexität n = 1 n = 10 n = 20 n = 40 n = 50 n = 60 

O(2n) 10-6 s 0,001 s 1,05  s 
1,1  106 s 
 
12,7 d 

1,1  109 s 
 
35,7 a 

1,2 1012 s 
 
36 600 a 

 
 
 
Alter des Universums:  13,8 Milliarden Jahre  =  13,8  109 a  =  4,35  1017 s 



MergeSort  
Anzahl und Reihenfolge der Aufrufe der Funktionen  sort  und   merge 
 
Quelltext 
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Durchführung von MergeSort und Auflistung der Aufrufe der Funktionen sort 
und merge für eine aus den 8 Komponenten a[0], . . . , a[7] bestehende 
Liste a: 
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Baumstruktur mit Reihenfolge für die Funktionsaufrufe: 
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