SelectionSort

Aufgabenstellung:
Gegeben ist ein Array a mit den n Komponenten a[0], a[2],, a[n-1] als
Datenelemente, fir die die Ordnungsrelationen < , > , <, 2 erklart sind (also
Komponenten z. B. vom Typ integer, char oder string). Die Inhalte dieser
Datenelemente sind aufsteigend so anzuordnen, daB gilt:

af[0] = a[2] = < a[n-1].
In Python 1aBt sich ein Array a als Liste realisieren.

Sortieren durch direkte Auswahl (,,SelectionSort")

Bei diesem Verfahren handelt es um einen typischen Vertreter eines imperativ
formulierten Algorithmus’.

Der Algorithmus SelectionSort bestimmt

- das kleinste Element (Minimum) der Liste a[0], a[1], , a[n-1] und
weist dieses der Komponente a[0] zu, dabei wird der Inhalt von a[0] der-
jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[1], ,a[n-1] und
weist dieses der Komponente a[1] zu, dabei wird der Inhalt von a[1] der-
jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[2], , a[n-1] und
weist dieses der Komponente a[2] zu, dabei wird der Inhalt von a[2] der-
jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[n-2], a[n-1] und weist dieses
der Komponente a[n-2] zu, dabei wird der Inhalt von a[n-2] der Kompo-
nente a[n-1] zugewiesen.

Nach dem Abarbeiten der vorgenannten n-1 Schritte ist das Array a aufsteigend
sortiert.

In Python lassen sich die ersten vier Schritte wie folgt formulieren:

min = a[0]
i=0+4+1
while i1 < n:
if ali] < min:
min = af[i]
al[i] = al[0]
al[0] = min
i =1+4+1
min = a[l]
i=1+1
while 1 < n:
if a[i] < min:
min = af[i]
ali] = af[l]
all] = min
i =1+4+1

min = a[2]
i=24+1
while 1 < n:
if ali] < min:
min = al[i]
ali] = al[2]
al[2] = min
i=1+4+1
min = al[3]
i=3+1
while i1 < n:
if ali] < min:
min = af[i]
alil = al3]
al[3] = min
i=1+4+1
Letzter Schritt:
min = a[n-2]
i=n-2+1
while i1 < n:
if al[i] < min
min = al[i]
ali] = a[n-2]
aln-2] = min
i=1+4+1

Zusammenfassend gilt: Der Anweisungsblock
min = al[j]
i=7+1
while 1 < n:
if a[i] < min:

min = afi]
ali] = alj]
alj] = min

i=1+1
ist nacheinander firj=0,1, 2, , h-2 abzuarbeiten; folglich fassen wir die-

sen Block als Schleifenrumpf einer weiteren Schleife (hier: for-Schleife) mit
Schleifenindex j auf:

for 7 in range(0,n-1):
min = al[j]
i=73+1
while i < n:
if al[i] < min:

min = af[i]
ali] = alj]
alj] = min

i=1+1

Alternativ kdnnen wir die duBBere Schleife als while-Schleife formulieren:

7 =0
while j <= n - 2:

min = al[j]
i=73+1
while 1 < n:
if a[i] < min:
min = af[i]
ali] = al3J]
alj] = min
i=1+1
j=3+1

Das folgende Python-Programm

- weist nach Eingabe von n den Komponenten der Liste a Zufallszahlen aus

dem Bereich 1, ..., 1000000 zu,
- sortiert diese Liste a aufsteigend,

- ermittelt den Zeitbedarf fir das Sortieren der n Datenelemente,
- gibt jeweils einen Teil der Quelliste und der sortierten Liste sowie den
Zeitaufwand fir den Sortiervorgang (in s) aus.

SelectionSort

n = int(input('Anzahl der Datenelemente
r = int({input('Wieviele Elemente sollen angezeigt werden?

a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Kompecnenten der Liste a

for i in range(0,n):
a[il= randint(1,1000000)

¥ Ausgabe der Quelliste:
or 1 in range(0,r):
print(a[il)

h

Sortieren der Quelliste:
start = time.time ()

j =0
while j <= n-2:
min = al[j]
i=73+1
while i < n:
1if a[i] < min:

min = a[i]
ali] = al]jl
aljl = min
i=1+1
j=3+1

end = time.time ()

¥ Ausgabe der sortierten Liste:

print ()

print ('sortierte Liste:')

for i in range(0,r):
print(afil)

print ()

rint ('Zeitaufwand zum Sortieren von',n, 'Elementen:
r r

=)

[:7.3f)}

"))

= T
b

.format (end-start))

Aufwandsbetrachtung

Wir untersuchen den Algorithmus SelectionSort hinsichtlich seiner zeitlichen
Komplexitat, d. h. wir untersuchen, wie der Zeitbedarf zur Laufzeit sich in Abhan-
gigkeit von der Anzahl n der zu sortierenden Datensatze verhalt. Den Aufwand
hinsichtlich des Speicherplatzbedarfs kénnen wir hier vernachlassigen, da der Al-
gorithmus SelectionSort auf dem Array a operiert und keinen weiteren Speicher-
platz zur Laufzeit benétigt.

Hierzu betrachten wir denjenigen Programmteil, der das Sortieren ausfiihrt:

j=0 3 =0
while j <= n-2: while j <= n-2:
min = al[j] min = a[j]
i=3j+1 i=9+1
while i < n: while i < n:
if a[i] < min:
min = a[i] A
a[i] = a[3jl . .
a[j] = min IJ=3+1
i=1i+1
i=3j+1

Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife (hier:
rot markiert) dieses Programmauszugs gedanklich zum Anweisungsblock A zu-
sammen.

Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu sor-
tieren, fragen wir, wie oft Block A in Abhangigkeit von n abgearbeitet wird.

In folgender Tabelle gibt z (j) jeweils an, wie oft Block A in Abhangigkeit von j
abgearbeitet wird.

Index j Index i z(j)
j =20 1 <1i<n-1 n -1
3 =1 2 <1 <n-1 n - 2
j=2 3 <1 <n-1 n -3
J =3 4 < i< n-1 n - 4
J = n-3 n-2 < i < n-1 2
j = n-2 n-1 < i < n-1 1

Fir die Gesamtanzahl z der Abarbeitungen von Block A erhalten wir:

z = z(0) + z(1) + z(2) + z3) + + z(n-3) + z(n-2)
= (n-1) +(n-2) +n-3)+ + 2 + 1
=1+2+.......+n1
= % . (n-1) - n (beachte untenstehenden Hinweis)
= % .(n*-n)

= 1.n%> - ¥%.n

Fiar groBe Werte von n kénnen wir den Summand "2 - n gegenliber dem Sum-
mand %2 - n? vernachlassigen; somit folgt:

zZ =~ %.n?
z ~ n?

Bei SelectionSort wachst der Zeitbedarf proportional zum Quadrat der Anzahl n
der zu sortierenden Datenelemente.

SelectionSort ist von polynomialer (hier: quadratischer) Komplexitat.

Hinweis:
Flr die Summe der ersten n natirlichen Zahlen gilt:

1 +2+......4+n= Y.-n-(n+1)
Aufgaben:

1. Bestatige die quadratische Komplexitat von SelectionSort experimentell an-
hand geeigneter Testlaufe.

2. Madifiziere den Quelltext so, daB SelectionSort absteigend sortiert.

3. Sobald in der Teilliste a[j], . . . , a[n-1], 0 < j < n-2, ein Element
gefunden wird, welches kleiner ist als das jeweils aktuelle Minimum, werden
die Wertzuweisungen innerhalb des Blocks A ausgefiihrt, was flr ein bestimm-
tes j ggf. auch mehrmals erfolgt. Optimiere den Algorithmus so, daB die Wert-
zuweisungen jeweils héchstens ein Mal fir jeden Wert von j vorgenommen
werden.

Bestimme experimentell die Laufzeit und bestatige die (insgesamt bescheide-
ne) Optimierung.

Hinweis: Ermittle zundchst den Index derjenigen Komponente, welche den
kleinsten Inhalt innerhalb der Liste afj], . . , a[n-1] hat, und fihre an-
schlieBend einmalig die Wertzuweisungen des Blocks A aus.

Komplexitit von Algorithmen
A(n) bezeichne den Aufwand und damit den Zeitbedarf zur Laufzeit in Abhangig-
keit von n (z. B. n = Anzahl der zu verarbeitenden Datenelemente).

Algorithmus Aufwand Art der Komplexitat
sequentielle oder 5)
lineare Suche A(n) ~n linear
bindre Suche A(n) ~ logx(n) logarithmisch
. 2 polynomial
SelectionSort A(n) ~n (hier: quadratisch)
MergeSort A(n) ~ n - log,(n) linear-logarithmisch
Fibonacci-Folge n .
(rekursiv) A(n) ~2 exponentiell
A(3,n) ~2"3 -3 exponentiell
Ackermann-Funktion | A(3,n) ~2T(n+3) - 3
A(4,n) ~ 2™ (n+3) - 3 hyper-exponentiell

A(5,n) ~ 2™ (n+3) - 3

Algorithmen mit exponentieller Komplexitat erweisen sich in der Praxis als un-
brauchbar; selbst Algorithmen mit polynomialer Komplexitat zeigen haufig ein

unginstiges Laufzeitverhalten.
03.07.2023

inf12 14.09.2023
Entwicklung eines Algorithmus InsertionSort

Zu einer natlirlichen Zahl n ist ein Array a mit den n Komponenten
af[0], . . . , a[n-1] gegeben (in Python IaBt sich ein Array als Liste definieren),
fur die die Operationen =, < und > definiert sind.

Ziel: Die Inhalte der Komponenten sind gemaB dem Algorithmus ,Sortieren durch
direktes Einfigen™ (InsertionSort) so anzuordnen, daB gilt:

a[0] < a[1] <. . . < a[n-1]

Beispiel (n = 6):

Insertion Sort

)V
Assume 85 is a 12<45, so
85| 12| 59 | 45|72 |51 | Assumessk 12| 45| 59| 85 | 72 | 51 insert 45 In
T 1st item that place
Y ; \j 85572 , shift
C |‘| 85| 59| 45| 72| 51| {30 tne naht C 12| 45| 59 J 85| 51 it to the right
” 59<72, so
12| 85| 59 | 45 [72 | 51 i 12| 45| 59 | 72 | 85 | 51 insert 72 in
n that place that place
C Y 85>59 , shift C Y 85>51, shift
C 12 85| 45| 72 | 51 it to the right 12| 45| 59 | 72 85 it to the right
12<59, —
12| 59| 85| 45 | 72 | 51 | incert59m C " 2ot shit
C that place 12| 45| 59 I 72| 85 3o the ot
Y 85545 , shift (X
12| 59 85| 72| 51 it to the right A\ 50551 . shift
C 12 45 59 72 85 it to lhe' rlght
Y 5945 , shift c 45<51, s0
12 J 59(85| 72| 51| itto the right 12| 45| 51 | 59 | 72 | 85 insert 51 in
that place

© wiresource.com

a[0] a[1] a[2] a[3] a[4] a[5]

85 12 59 45 72 51

Die aus der Komponente a[0] bestehende 1-elementige Teilliste gilt als sortiert,
die aus den Komponenten a[l1], . . . , a[n-1] bestehende Teilliste ist zu
Anfang unsortiert.

Wir verwenden die Variable current als temporare Variable.

1. Schritt:

current = al[l]

i=1-1

if current < al[i]:
ali+l] = ali]
ali] = current

Ergebnis des 1. Schritts:

a[o] a[1] a[2] a[3] a[4] a[5]

12 85 59 45 72 51

Die aus den Komponenten a[0], a[1] bestehende Teilliste ist sortiert, der
Bereich a[2], . . . , a[5] unsortiert.

2. Schritt:
current =
i =2 -1
while 1 >= 0:

if current < al[i]:

al2]

ali+l] = ali]
ali] = current
i=1-1
Ergebnis des 2. Schritts:
a[o] a[1] af2] a[3] a[4] a[5]
12 59 85 45 72 51

Die aus den Komponenten a[0], a[1], a[2] bestehende Teilliste ist sortiert, der
Bereich a[3], . . . , a[5] unsortiert.

3. Schritt:
current = al[3]
i =3-1
while 1 >= 0:
if current < al[i]:

ali+l] = al[i]
ali] = current
i=1 -1
Ergebnis des 3. Schritts:
a[o] a[1] a[2] a[3] af4] a[5]
12 45 59 85 72 51
Die aus den Komponenten a[0], . . . , a[3] bestehende Teilliste ist sortiert, der

Bereich a[4], a[5] unsortiert.

4. Schritt:
current = al4]
i =4 -1
while 1 >= 0:
if current < ali]:

ali+l] = a[i]
ali] = current
i=1-1

Ergebnis des 4. Schritts:

a[o] a[1] a[2] a[3] a[4] a[5]

12 45 59 72 85 51

Die aus den Komponenten a[0], . - . , a[4] bestehende sortierte Teilliste ist mit
der Komponente a[5] zu einer sortierten Gesamtliste zu verschmelzen.

5. Schritt:
current = al[b]
i=5-1
while 1 >= 0:
if current < al[i]:

ali+l] = ali]
ali] = current
i=1-1
Ergebnis des 5. Schritts:
a[o0] a[1] a[2] a[3] af4] a[5]
12 45 51 59 72 85

Bei dem gewahlten Beispiel (n = 6) ist der Anweisungsblock

current = alj]
i=3 -1
while 1 >= O0:
if current < afi]:

al[i+l] = ali]
ali] = current
i=1-1
firj=1,2,...,5 zu wiederholen.

Allgemein halten wir fest:

Die zu sortierende Gesamtliste besteht vor jedem Schritt aus einer bereits
sortierten Teilliste und einer unsortierten Teilleiste; vor dem ersten Schritt ist die
aus dem einen Element a[0] bestehende Liste sortiert und die Liste a[1], ..,
a[n-1] unsortiert. Nachfolgend wird das jeweils erste Element der unsortierten
Teilliste an der richtigen Stelle in die sortierte Teilliste eingefligt, so dal3 der
sortierte Bereich mit jedem Schritt wdchst, bis die gesamte Liste sortiert ist.

Falls das Array a aus den n Komponenten a[0], . . . , a[n-1] besteht,
ist der Anweisungsblock

current = alj]
i=3 -1
while 1 >= 0:
if current < al[i]:

ali+l] = al[i]
ali] = current
i=1i-1
nacheinander firj = 1, . . ., n-1 zu wiederholen. Folglich implementieren wir

diesen Anweisungsblock als Schleifenrumpf einer geeignet initialisierten for-
oder while-Schleife.

Aufgabenblatt Nr. 1 inf12 11.09.2023

Vorbemerkung:
Gegeben ist ein Array a mit den n Komponenten a[0], a[2],, a[n-1] als Datenele-
mente, fir die die Ordnungsrelationen <, > , = erklart sind (also Komponenten z. B. vom

Typ integer, char oder string). Die Inhalte dieser Datenelemente sind aufsteigend so anzu-
ordnen, daB gilt:

af[0] = a[2] = < a[n-1].
In Python I&Bt sich ein Array a als Liste realisieren.

1. Aufgabe
Optimierung des Algorithmus SelectionSort (Sortieren durch direkte Auswahl)

Der in Python geschriebene Quelltext SelectionSort_for-loop_while-loop_time.py
enthalt eine Uhr, um den Zeitbedarf (in s) zum Sortieren eines aus n Komponenten
bestehenden Arrays zu ermitteln.
Der folgende Programmteil fihrt den Sortiervorgang aus:
for j in range(0,n-1):

min = a[j]

i=3+1

while i < n:

if a[i] < min:

min = a[i]
a[i] = a[jl
al[j] = min
i=4i+1
Sobald in der Teilliste a[3j]1, . . . , a[n-1], 0 < j < n-2, ein Element ge-

funden wird, welches kleiner ist als das jeweils aktuell definierte Minimum min,
wird der ,swap" (Tausch der Werte zweier Variabler; hier: die Wertzuweisungen
innerhalb des Schleifenrumpfs der inneren Schleife) ausgefliihrt, was fiir ein be-
stimmtes j ggf. auch mehrmals erfolgt. Optimiere den Algorithmus so, daB die
Wertzuweisungen jeweils héchstens ein Mal fir jeden Wert von j vorgenommen
werden.

Bestimme experimentell die Laufzeit und bestatige die (insgesamt bescheidene)
Optimierung. Zeige ferner empirisch, daB die Zeitkomplexitat von der Ordnung n?
ist (d. h.: Der Zeitbedarf wachst mit dem Quadrat der Anzahl n der zu sortierenden
Datenelemente; Schreibweise: O(n?)).

Hinweis: Ermittle zun&chst den Index derjenigen Komponente, welche den klein-
sten Inhalt innerhalb der Liste a[j], . . , a[n-1] hat, und fihre anschlieBend
den swap héchstens einmalig aus.

2. Aufgabe
Algorithmus InsertionSort (Sortieren durch direktes Einfligen)

a) Erstelle, ausgehend von dem Skript InsertionSort_11-09-2023.pdf, einen in Py-
thon geschriebenen Quelltext zu InsertionSort.

b) Teste das Programm anhand diverser Eingaben.
¢) Implementiere eine Uhr im Quelltext (wegen der Syntax orientiere man sich an

SelectionSort_for-loop_while-loop_time.py) und bestadtige empirisch, daB die
Zeitkomplexitat von der Ordnung O(n?) ist.

Aufgabenblatt Nr. 2 inf12 14.09.2023

3. Aufgabe
Optimierungen des Algorithmus InsertionSort (Sortieren durch direktes Ein-
fligen)

a) Der folgende Programmauszug veranlaBt das Sortieren des Arrays a, indem das
jeweils erste Element a[j1,j € {1, ..., n-1}, der noch unsortierten Teilliste an
der richtigen Stelle der bereits sortierten Teilliste eingefligt wird:

=1

while j <= n -
current = alj

i=3-1
while i >= 0:
if current < afi]:

1:
]

ali+l] = a[i]
ali] = current
i=1i-1
J =3 +1

Begriinde anhand eines Beispiels, daB dieser Programmecode nicht optimal ist.
Modifiziere den Quelltext und zeige empirisch die Effizienzverbesserung, wobei
die quadratischen Zeitkomplexitat allerdings erhalten bleibt.

Zeige ferner, daB der modifizierte Algorithmus Vorteile bitte, falls das Array a
bereits in Teilen oder vollstandig vorsortiert ist.

Bemerkung:

Tatsachlich ist die Zeitkomplexitdt von der Ordnung O(n) (d. h., die Laufzeit
wdchst im wesentlichen linear mit der Anzahl n), falls die Liste a bereits sortiert
ist; diesen Vorteil beobachtet man bei SelectionSort nicht.

b) Delegiere das Einfligen des jeweils ersten Elements a[j],j=1, ..., n-1, der
noch unsortierten Teilliste an die richtige Stelle der bereits sortierten Teilliste an
ein Unterprogramm (Prozedur; in Python: definiere in geeigneter Weise eine
Funktion).

Zeige, dalB sich mit dieser Modifikation eine weitere Verbesserung der Laufzeit
erzielen laBt (zumindest in Python); versuche, eine Erklarung zu geben.

Bemerkung: Da hier das Merkmal der Rekursion fehlt, bleibt der Algorithmus
auch nach der Implementierung der Funktion ,insert" imperativ formuliert.

Lésung zu a): Lésung zu b):
Jo== def insert(x):
hile j <= n - 1: current = a[x]
current = al[j] i=x-1
daiz G o 1 vhile i >= 0 and current < a[i]:
i>0 current < al[i]: ali+l] = ajil
ali+l] = a[i] alil = current
ali] = current i—=1
T R |
}=4 %I Ty
2] <= n - 1:
insert (j)

j+=1

Sortieren durch Mischen ("MergeSort")

Aufgabe:

Gegeben ist eine Liste L = {a[0], a[2], a[3],...., a[n-1]}
von n Datenelementen, flr die die Ordnungsrelationen <, >, <, > erklart
sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daB gilt:
a[0] =a[2] =..... < a[n-1].
Wir fassen die Elemente der Liste auf als Komponenten eines arrays a.

Strategie: "Divide et impera”
Eine Liste, die nur ein einziges Element enthalt, ist bereits sortiert.

Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, laBt sich in 4 Schritten
bewaltigen:

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten
2). Sortiere die erste Teilliste gemaB den Schritten 1). - 4).
3). Sortiere die zweite Teilliste geman den Schritten 1). - 4).

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste

Falls left < right wahr ist, sortiert die rekursiv definierte Funktion
sort (array, left, right)

die Liste

array[left], , array[right]

unter Verwendung der Funktion merge.

Die Funktion

merge (array, left, middle, right)

mischt die sortierten Teillisten

array[left], , array[middle]
und
array[middle+l], , array[right]

zu der sortierten Gesamtliste

array[left], , array[right]

Quellcode der Funktion sort in Python:

def sort(array, left, right):
if left >= right:
return
middle = (left + right)//2
sort (array, left, middle)
sort (array, middle + 1, right)
merge (array, left, middle, right)

Aufruf zum Sortieren der aus den n Komponenten

a[0], a[2], al3]1, , a[n-1]
bestehenden Liste a:

sort(a, 0, len(a)-1)

Aufwandsbetrachtung:

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus
n Komponenten bestehende Liste zu sortieren.

Dann gilt:

A(n) = 2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen
+ Aufwand zum Mischen zweier sortierter Teillisten

A(n) = A(n/2) + A(n/2)
+ Aufwand zum Mischen zweier sortierter Teillisten

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wachst linear mit der Anzahl n der zu sortierenden Datenelemente; somit
erhalten wir fir den Funktionsterm A(n) die Funktionalgleichung (c = Konstante
= Proportionalitatsfaktor)

(*Y A(n) =A(n/2) + A(n/2) + c- n mit der Bedingung
(**) A(1) =0.

Behauptung: Die Funktion
A(n) = c-n-log,(n)

ist Losung der Funktionalgleichung (*) mit der Anfangsbedingung (**).

Beweis:
A(n/2) + A(n/2) + c-n = 2-A(nh/2) +c-n
= 2-.-¢c-n/2-logx(n/2) + c-n
= c-n-(logz(n) — logx(2)) + c-n
= c-n-(logz(n)— 1) +c-n
= C-n-logx(n)
= A(n)

Damit ist (*) erfullt; wegen log,(1) = 0 genlgt A(n) auch der Bedingung (**).

Bemerkung: Mit Methoden der Analysis 148t sich die Eindeutigkeit der Lésung des
Problems (*), (**) zeigen, somit ist mit A(n) = ¢ - n -log,(n) die einzige Lésung
der Funktionalgleichung gefunden.

Allgemein 1aBt sich beweisen, daB der Aufwand zum Sortieren von n Datensatzen
grundsatzlich mindestens von der Ordnung n - log,(n) wachst. In diesem Sinne
kann das Sortierverfahren ,MergeSort" als optimales Vefahren gelten.

Erganzende Betrachtung zum Speicherplatzbedarf:

Nachdem wir festgestellt haben, daB der Aufwand zum Sortieren von n
Datenelementen von der Ordnung n - log,(n) wachst und damit ein Optimum
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn
rekursive Algorithmen haben grundsatzlich den Nachteil, daB sie wahrend der
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. DaB3 dieser Effekt bei
MergeSort nicht oder nur unwesentlich ins Gewicht fallt, zeigt folgende
Uberlegung:

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.

0. B. d. A. sei n eine Zweierpotenz, d. h. n=2%, ke{0,1,2,3,...... ¥.
Bemerkung: Der Pfeil ——— bedeutet: ,ruft auf"

n=1: sort(a,0,0) 1 Aufruf

n=2: sort(a,0,1)

SN

sort(a,0,0) sort(a,1,1)

1+ 2.1 = 3 Aufrufe

n=4: sort(a,0,3)
sort(a,0,1) sort(a,2,3)
sort(a,0,0) sort(a,1,1) sort(a,2,2) sort(a,3,3)

1+ 2.3 =7 Aufrufe

n = 8: sort(0,7)
sort(0,3) sort(4,7)
sort(0,1) sort(2,3) sort(4,5) sort(6,7)

SN /N SN N

sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

1+ 2.7 =15 Aufrufe

f(1) =1 =1 =2.1-1
f2) =1+2-1 = 3 =2.2 -1
f(4) =1+2.3 = 7 =2.4 -1
f(8) =1+4+2.7 =15 = 2.8 -1
f(16)=1+2-15= 31 = 2.16-1
f(32)=1+2-31 =63 =2-32-1

allgemein:
f(n)=2.n-1

Offensichtlich ist f(n) Losung der rekursiv definierten Funktionalgleichung
f(n) =1+ 2.f(n/2)
mit der Anfangsbedingung f(1)=1.

Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der
Speicherplatzbedarf wahrend der Laufzeit wachst somit linear mit n, also
wesentlich schwacher als die Anzahl A(n) elementarer Rechenoperationen.

Die rekursiv veranlaBten Aufrufe der Funktion sort zerlegen die zu sortierende
Liste in Teillisten jeweils der Lange 1, die als ein-elementige Listen bereits
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils
einer sortierten Liste gemaB folgendem Diagramm:

Bemerkung: Der Pfeili —— bedeutet: ,wird gemischt"

al0] al1] al2] al3] al4] als] ale] al7]
merge(0,0,1) merge(2,2,3) merge(4,4,5) merge(6,6,7)
alo] a[1l al2] a[3] al4] a[s] a[6] a[7]
merge(0,1,3) merge(4,5,7)
alo] al1] al2] a[3) al4] a[5] al6] al7]

\./

merge(0,3,7)
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Fir die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar:

g(1) =0
g(n)=1+4+2.g(n/2) falls n=2% k>1

Lésung der vorstehenden Funktionalgleichung:

g(n)=n-1

Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe
der Funktion merge wachsen jeweils linear mit n.

Februar 2021
Bemerkung:

Fiar den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten
wir bei

- SelectionSort: A(n) ~ n?

- MergeSort: A(n) ~n - logy(n)

- Fibonacchi-Folge: A(n) ~ 2" (bei rekursiver Berechnung)
- BinarySearch: A(n) ~ logy(n)

Entsprechend haben

- SelectionSort quadratische Komplexitat,

MergeSort linear-logarithmische Komplexitat,

die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexitdt,
BinarySearch logarithmische Komplexitat.

Algorithmen mit exponentieller Komplexitdt erweisen sich in der Praxis als unbrauchbar.

T4 (1124 0ed 0ee 0Te 0o¢ OeT 08T 0LT 09T 0sT 0FT 0eT 0<tT 01T 00T

06

08

0L

09

0%

0¥

113

0Z

0T

wnisydepr sadJeauL|

x=A

(x)bo| #x=A

wnisysepm saydsLwyiLaeho|—aesauL|

wnaisys>em ssydsiiedpenb

00T

00z

00t

00t

00s

009

004

008

006

000T

00TT

00T

00ET

00+T

00ST

009T

004T

008T

006T

sort (0, 7)

a[0] a[1] a[2] aldr | B a[5] a[6] a[7]
7 6 8 L 2 o N 3 8 5
sort(O,‘3) solrt(4\,7)

a[0] a[11 /| \a[2] a[3] a[4] alsy” | \ale] a[7]
7 4 N 2 9 /3 AN 5
sort'(O(l) sott(g,3) sor.t(é‘l,S) sort(6,7)

af0] /

\al1]

7/

A

a[2]/

\ al3]

8/

\2

\ als]

a[41/
of

\ 3

/

\

/

\

/

\

sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]
7 6 8 2 9 3 8 5

» bedeutet: "ruft auf"

Beispiel: sort(4,7) veranlaf3t die Aufrufe sort(4,5) und sort (6,7)

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Text Box
bedeutet: "ruft auf"
Beispiel: sort(4,7) veranlaßt die Aufrufe sort(4,5) und sort (6,7)

al[0]

agl]

al2]

al[3]

a[4]

1

al[5]

a[6]

al[7]

7\

/6

/2

o\

o\

/5

erge(O 0/)

\perge(z,zdé)

&
|}\erge(4,4,§6

n\erge(6,6,/)

\ /

\

/

\

/

\

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]
6 7 2 8 3 9 5 8
\ merge(0,1,3) / \ merge(4,5,7) /

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]
2 6 7 8 3 5 8 9
\ merge(0,3,7) /

a[o0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]
2 3 5 6 7 8 8 9

bedeutet: "wird gemischt"
Beispiel: merge(0,3,7) mischt die sortierten Listen a[0], . .

,a[3] und a[4], ..

,a[7] zu der sortierten Liste a[0]

a[7]

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Text Box
bedeutet: "wird gemischt"
Beispiel: merge(0,3,7) mischt die sortierten Listen a[0], . . , a[3] und a[4], . . , a[7] zu der sortierten Liste a[0], . . . , a[7]

Zeitkomplexitat von Algorithmen

Verdeutlichung der O-Notation anhand eines Beispiels

Der Zeitbedarf A(n) von SelectionSort in Abhangigkeit von der Anzahl n der zu

verarbeitenden Datenelemente (,ProblemgréBe") wachst quadratisch fur groBe Werte

von n:

A(n) ~ n? fur groBe n.
Man sagt auch: Die Zeitkomplexitat von SelectionSort ist von der Ordnung O(n?).

Algorithmus | lineare binadre Selection- | MergeSort Fibonacci- | Ackermann-
Suche Suche Sort Folge Funktion
auf einer (rekursiv) | (rekursiv)
Fakultat sortierten Insertion-
(rekursiv | Menge Sort Tiirme von
oder Hanoi
iterativ)
Komplexitdt | O(n) O(log2n) o(n?) O(n-logzn) o(2")
Art des linear logarithmisch EiC)eIZ'nomlal linear- exponentiell hyper-
Wachstums) logarithmisch exponentiell

quadratisch

Algorithmen mit polynomialer Komplexitat sind bedingt brauchbar, Algorithmen mit
exponentieller Komplexitat erweisen sich in der Praxis als unbrauchbar.

Rechenzeiten in Abhdngigkeit von der Zeitkomplexitit des Algorithmus

Annahme:

Flr die Verarbeitung des jeweiligen Problems mit minimaler ProblemgréBe (n = 1) werde
ein Zeitbedarf von 1 us = 10°® s angesetzt.

Komplexitat n=1 n =100 n =103 n = 10* n = 10° n = 10°
-6 -4 3 2 103s =~
o(n) 10° s 107" s 107 s 10“ s 1s 17 min
O(log, n) 10°s 7-10°%s 10-10%s | 13.10%s [20-10%s | 30-10°s
O(n-log, n) 10°s 7-10%s 1072 s 0,13 s 20s gohooo s
2 -6 -2 10% s ~ 102 s ~
o(n”) 10° s 10 s 1s 100 s 12 d 31700 a
1,3.10%*s | 10®°s
o(2") 10°s ~ ~ 2. 103004 g
4.10%a |3,410% a
Rechenzeit bei exponentieller Zeitkomplexitat:
Komplexitat n=1 n=10 n=20 n =40 n =50 n =60
1,1-10%s | 1,1-10°s | 1,2-10*s
o(2") 10%s 0,001 s 1,05 s ~ ~ ~
12,7 d 35,7 a 36600 a
Alter des Universums: 13,8 Milliarden Jahre = 13,8 -10°a = 4,35 10" s

MergeSort
Anzahl und Reihenfolge der Aufrufe der Funktionen sort und merge

Quelltext

MergeSort
Rusgabe der Reihenfolge der Funktionsaufrufe

E::r random import randint

z =0

v =10

n = int{input{'lLaenge des arc]
print ()

Erzeugen des arrays mit dem Namen a
und den n FKomponenten al[0], . . . , aln-1]
a = list{range{0,n))

Zuweisung won Zufallszahlen an die Eomponenten des arrays a
for i in range{0O,n): a[i] = randint (0, 539)

Rusgabe der Cuelliste

anzahl = int{input({'Wieviele Elemente sollen angezeigt werden? '})
print ()

for i in range{0,an=zahl): print{alil)

print ()

def merge (array, left, middle, right):
global ¥
v += 1
left_sublist = arrayl[left:omiddle + 1]
right_sublist = array[middle+l:right+l]
left sublist_index = 0
right_sublist_index = 0

sorted index = left
while left_sublist index = len{left_sublist) and right_sublist_ index < len{right_sublist):
if left sublist[left sublist_ index] <= right sublist[right sublist indexx]:
array[sorted_index] = left sublist[left_sublist_index]

left sublist index = left sublist index + 1
array[sorted index] = right sublist[right sublist index]
right_sublist index = right_ sublist_index + 1

sorted index = sorted index + 1

while left_sublist index < len{left sublist):

array[sorted index] = left sublist[left sublist_ index]

left_sublist index = left sublist_index + 1

sorted index = sorted index + 1

while right sublist_ index < leni{right sublist):

array[sorted index] = right sublist[right sublist index]

right_subklist index = right_ sublist_index + 1

sorted index = sorted_index + 1

def sort{array, left, right):
e

= right: return
= (left + right)/s2
print("sort(",left, ", ", middle, ") ")
sort (array, left, middle)
print("sort(’ ,middle + 1,",",xight, "1 ")
sort {array, middle + 1, right)
print ("merge (" ,left, ", ", middle, ", ", right, ") ")

merge {array, left, middle, right)

1 =20
r = len(a)-1
print{"sort({",1,",",xr, "} "}

sorti{a, 1, r)

print ()

print('Sortierte Liste:")

print ()

for i in range{0,an=zahl): print{al[i])
print ()

print{'g sort: |

print("§ merge: ",¥)

Durchfihrung von MergeSort und Auflistung der Aufrufe der Funktionen sort
und merge flr eine aus den 8 Komponenten a[0], . . . , a[7] bestehende
Liste a:

Wieviele Elemente sollen angezeigt werden? 8

89
37
31
0

1%
86
33
L

sSort (
sort (
sort (
sort (
sort(
merge{ 0 , 0 , 1)
sart(& 5 3

sorkf 2 . 2)
sortl & .05

mergel 2 ; 2 ; 3)

= o o o o
= O W =d

r
r
r
r
r

7)
sort{ 6 ;, 6)
sorty T - T}
merge(6 , 6 ,
merge| 4 5 5 ;
merge(0 , i

-] =]

Sortierte Liste:

0

1

15
31
33
37
86
859

Aufrufe sort: 15
BAufrufe merge: 7

Baumstruktur mit Reihenfolge flir die Funktionsaufrufe:

1
sort{0 ,E-’jl
a[0] a[1] a[2] _at3] o a[5) a[6] a[7]
E 7 & _ M 5 e 3 | o7
sort(0 , 2)] sort(4,7)]
a[0] a[i)f 2] a[3] al4] als)” ||\ al6] al7]
L 3 /A2 [o\, | [¢ T A [[7
3 EK 13 17
sort(0,1)] :":"_“.:.:1 ;3] su:uﬂii 4,5) su:u-'t; 6, 7)
afo] /|| \al1] a2/ ||\ al=1 al4) |\ als] ats)/ | \ al71
HEVAS [ol \s | [&][\ | 7 [\~
ﬂ IEK 8 9 Jﬂ |15| JE lEy
%
sort(0,0) sort(1,1) sort(Z2,2) sort(3,3) sort(4,4) sort(5,5) sort{6,8) sort(7,7)
a[0] al1] al2] a[3] al4] al5] al6] a[7]
| 3 | ‘ 7 | 9 5 =] 4 | z | 7
G ?EI .15 25
a[o] a[1] al2] al3] al4] lﬁ a[5] a[6] a[7]
3 7 9 5 B 4 2 7
mergel 0,0 ,1) | | merge(2, 2, 3) | merge(4, 4, 5) | | merge(6,6 ,7)
1_1 |?1.
a[o] a[1] al2] a[3] al4] a[5] a[s] al7]
3 7 5 9 4 6 L 2 7
merge(0, 1, 3) | merge(4,5,7)
2
a[o] af1] a[2] a[3] a[4] a[s] a[s] a[7]
3 3 7 9 2 4 =] 7
| merge(0,3 , 7)
a[0] al1] a[2] a[3] a[4] a[5] a[&] al7]
| 2 3 4 5 6 7 7 g
von sort veranlaBte sort-aufrufe:

von sort

veranlabte merge-Aufrufe:

08.12.2023

