
SelectionSort

Aufgabenstellung:

Gegeben ist ein Array a mit den n Komponenten a[0], a[2], , a[n-1] als

Datenelemente, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt sind (also

Komponenten z. B. vom Typ integer, char oder string). Die Inhalte dieser

Datenelemente sind aufsteigend so anzuordnen, daß gilt:

a[0] ≤ a[2] ≤ ≤ a[n-1] .

In Python läßt sich ein Array a als Liste realisieren.

Sortieren durch direkte Auswahl („SelectionSort“)

Bei diesem Verfahren handelt es um einen typischen Vertreter eines imperativ

formulierten Algorithmus’.

Der Algorithmus SelectionSort bestimmt

- das kleinste Element (Minimum) der Liste a[0], a[1], , a[n-1] und

weist dieses der Komponente a[0] zu, dabei wird der Inhalt von a[0] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[1], , a[n-1] und

weist dieses der Komponente a[1] zu, dabei wird der Inhalt von a[1] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

- das kleinste Element (Minimum) der Liste a[2], , a[n-1] und

weist dieses der Komponente a[2] zu, dabei wird der Inhalt von a[2] der-

jenigen Komponente zugewiesen, der das Minimum entnommen wurde;

-

-

- das kleinste Element (Minimum) der Liste a[n-2], a[n-1] und weist dieses

der Komponente a[n-2] zu, dabei wird der Inhalt von a[n-2] der Kompo-

nente a[n-1] zugewiesen.

Nach dem Abarbeiten der vorgenannten n-1 Schritte ist das Array a aufsteigend

sortiert.

In Python lassen sich die ersten vier Schritte wie folgt formulieren:

min = a[0]

i = 0 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[0]

 a[0] = min

 i = i + 1

min = a[1]

i = 1 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[1]

 a[1] = min

 i = i + 1

 2

min = a[2]

i = 2 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[2]

 a[2] = min

 i = i + 1

min = a[3]

i = 3 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[3]

 a[3] = min

 i = i + 1

Letzter Schritt:

min = a[n-2]

i = n-2 + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[n-2]

 a[n-2] = min

 i = i + 1

Zusammenfassend gilt: Der Anweisungsblock

min = a[j]

i = j + 1

while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[j]

 a[j] = min

 i = i + 1

ist nacheinander für j = 0, 1, 2, , n-2 abzuarbeiten; folglich fassen wir die-

sen Block als Schleifenrumpf einer weiteren Schleife (hier: for-Schleife) mit

Schleifenindex j auf:

for j in range(0,n-1):

 min = a[j]

 i = j + 1

 while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[j]

 a[j] = min

 i = i + 1

Alternativ können wir die äußere Schleife als while-Schleife formulieren:

 3

j = 0

while j <= n – 2:
 min = a[j]

 i = j + 1

 while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[j]

 a[j] = min

 i = i + 1

 j = j + 1

Das folgende Python-Programm

- weist nach Eingabe von n den Komponenten der Liste a Zufallszahlen aus

dem Bereich 1, . . . , 1000000 zu,

- sortiert diese Liste a aufsteigend,

- ermittelt den Zeitbedarf für das Sortieren der n Datenelemente,

- gibt jeweils einen Teil der Quelliste und der sortierten Liste sowie den

Zeitaufwand für den Sortiervorgang (in s) aus.

 4

Aufwandsbetrachtung

Wir untersuchen den Algorithmus SelectionSort hinsichtlich seiner zeitlichen

Komplexität, d. h. wir untersuchen, wie der Zeitbedarf zur Laufzeit sich in Abhän-

gigkeit von der Anzahl n der zu sortierenden Datensätze verhält. Den Aufwand

hinsichtlich des Speicherplatzbedarfs können wir hier vernachlässigen, da der Al-

gorithmus SelectionSort auf dem Array a operiert und keinen weiteren Speicher-

platz zur Laufzeit benötigt.

Hierzu betrachten wir denjenigen Programmteil, der das Sortieren ausführt:

 j = 0

 while j <= n-2:

 min = a[j]

 i = j + 1

 while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[j]

 a[j] = min

 i = i + 1

 j = j + 1

Wir fassen die Anweisungen aus dem Schleifenrumpf der inneren Schleife (hier:
rot markiert) dieses Programmauszugs gedanklich zum Anweisungsblock A zu-

sammen.

Um den Aufwand zu ermitteln, ein aus n Komponenten bestehendes array zu sor-

tieren, fragen wir, wie oft Block A in Abhängigkeit von n abgearbeitet wird.

In folgender Tabelle gibt z(j) jeweils an, wie oft Block A in Abhängigkeit von j

abgearbeitet wird.

Für die Gesamtanzahl z der Abarbeitungen von Block A erhalten wir:

 z = z(0) + z(1) + z(2) + z(3) + + z(n-3) + z(n-2)

 = (n-1) + (n-2) + (n-3) + + 2 + 1

 = 1 + 2 + + n-1

 = ½  (n-1)  n (beachte untenstehenden Hinweis)

 = ½  (n2  n)

 = ½  n2  ½  n

Für große Werte von n können wir den Summand ½  n gegenüber dem Sum-

mand ½  n2 vernachlässigen; somit folgt:

Index j Index i z(j)

j = 0 1  i  n-1 n - 1

j = 1 2  i  n-1 n - 2

j = 2 3  i  n-1 n - 3

j = 3 4  i  n-1 n - 4

....

j = n-3 n-2  i  n-1 2

j = n-2 n-1  i  n-1 1

 5

 z  ½  n2

 z  n2

Bei SelectionSort wächst der Zeitbedarf proportional zum Quadrat der Anzahl n

der zu sortierenden Datenelemente.

SelectionSort ist von polynomialer (hier: quadratischer) Komplexität.

Hinweis:

Für die Summe der ersten n natürlichen Zahlen gilt:

 1 + 2 + + n = ½  n  (n + 1)

Aufgaben:

1. Bestätige die quadratische Komplexität von SelectionSort experimentell an-

hand geeigneter Testläufe.

2. Modifiziere den Quelltext so, daß SelectionSort absteigend sortiert.

3. Sobald in der Teilliste a[j], . . . , a[n-1], 0  j  n-2, ein Element

gefunden wird, welches kleiner ist als das jeweils aktuelle Minimum, werden
die Wertzuweisungen innerhalb des Blocks A ausgeführt, was für ein bestimm-

tes j ggf. auch mehrmals erfolgt. Optimiere den Algorithmus so, daß die Wert-

zuweisungen jeweils höchstens ein Mal für jeden Wert von j vorgenommen

werden.

 Bestimme experimentell die Laufzeit und bestätige die (insgesamt bescheide-

ne) Optimierung.

 Hinweis: Ermittle zunächst den Index derjenigen Komponente, welche den
kleinsten Inhalt innerhalb der Liste a[j], . . , a[n-1] hat, und führe an-

schließend einmalig die Wertzuweisungen des Blocks A aus.

Komplexität von Algorithmen

A(n) bezeichne den Aufwand und damit den Zeitbedarf zur Laufzeit in Abhängig-

keit von n (z. B. n = Anzahl der zu verarbeitenden Datenelemente).

Algorithmus Aufwand Art der Komplexität

sequentielle oder

lineare Suche
A(n)  n linear

binäre Suche A(n)  log2(n) logarithmisch

SelectionSort A(n)  n2 polynomial

(hier: quadratisch)

MergeSort A(n)  n  log2(n) linear-logarithmisch

Fibonacci-Folge

(rekursiv)
A(n)  2n exponentiell

Ackermann-Funktion

A(3,n)  2n+3 – 3

A(3,n)  2(n+3) – 3

A(4,n)  2(n+3) – 3

A(5,n)  2(n+3) – 3

exponentiell

hyper-exponentiell

Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als un-

brauchbar; selbst Algorithmen mit polynomialer Komplexität zeigen häufig ein

ungünstiges Laufzeitverhalten.
03.07.2023

inf12 14.09.2023

Entwicklung eines Algorithmus InsertionSort

Zu einer natürlichen Zahl n ist ein Array a mit den n Komponenten

a[0], . . . , a[n-1] gegeben (in Python läßt sich ein Array als Liste definieren),

für die die Operationen = , < und > definiert sind.

Ziel: Die Inhalte der Komponenten sind gemäß dem Algorithmus „Sortieren durch

direktes Einfügen“ (InsertionSort) so anzuordnen, daß gilt:

a[0]  a[1]  . . .  a[n-1]

Beispiel (n = 6):

a[0] a[1] a[2] a[3] a[4] a[5]

85 12 59 45 72 51

Die aus der Komponente a[0] bestehende 1-elementige Teilliste gilt als sortiert,

die aus den Komponenten a[1] , . . . , a[n-1] bestehende Teilliste ist zu

Anfang unsortiert.

Wir verwenden die Variable current als temporäre Variable.

1. Schritt:

current = a[1]

i = 1 – 1
if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

Ergebnis des 1. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 85 59 45 72 51

 2

Die aus den Komponenten a[0], a[1] bestehende Teilliste ist sortiert, der

Bereich a[2] , . . . , a[5] unsortiert.

2. Schritt:

current = a[2]

i = 2 – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

Ergebnis des 2. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 59 85 45 72 51

Die aus den Komponenten a[0], a[1], a[2] bestehende Teilliste ist sortiert, der

Bereich a[3] , . . . , a[5] unsortiert.

3. Schritt:

current = a[3]

i = 3 – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

Ergebnis des 3. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 45 59 85 72 51

Die aus den Komponenten a[0], . . . , a[3] bestehende Teilliste ist sortiert, der

Bereich a[4] , a[5] unsortiert.

4. Schritt:

current = a[4]

i = 4 – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

Ergebnis des 4. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 45 59 72 85 51

 3

Die aus den Komponenten a[0], . . . , a[4] bestehende sortierte Teilliste ist mit

der Komponente a[5] zu einer sortierten Gesamtliste zu verschmelzen.

5. Schritt:

current = a[5]

i = 5 – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

Ergebnis des 5. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 45 51 59 72 85

Bei dem gewählten Beispiel (n = 6) ist der Anweisungsblock

current = a[j]

i = j – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

für j = 1, 2, . . . , 5 zu wiederholen.

Allgemein halten wir fest:

Die zu sortierende Gesamtliste besteht vor jedem Schritt aus einer bereits

sortierten Teilliste und einer unsortierten Teilleiste; vor dem ersten Schritt ist die

aus dem einen Element a[0] bestehende Liste sortiert und die Liste a[1] , . . ,

a[n-1] unsortiert. Nachfolgend wird das jeweils erste Element der unsortierten

Teilliste an der richtigen Stelle in die sortierte Teilliste eingefügt, so daß der

sortierte Bereich mit jedem Schritt wächst, bis die gesamte Liste sortiert ist.

Falls das Array a aus den n Komponenten a[0] , . . . , a[n-1] besteht,

ist der Anweisungsblock

current = a[j]

i = j – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

nacheinander für j = 1, . . . , n1 zu wiederholen. Folglich implementieren wir

diesen Anweisungsblock als Schleifenrumpf einer geeignet initialisierten for-

oder while-Schleife.

Aufgabenblatt Nr. 1 inf12 11.09.2023

Vorbemerkung:

Gegeben ist ein Array a mit den n Komponenten a[0], a[2], , a[n-1] als Datenele-

mente, für die die Ordnungsrelationen < , > , = erklärt sind (also Komponenten z. B. vom

Typ integer, char oder string). Die Inhalte dieser Datenelemente sind aufsteigend so anzu-

ordnen, daß gilt:

a[0] ≤ a[2] ≤ ≤ a[n-1] .

In Python läßt sich ein Array a als Liste realisieren.

1. Aufgabe

Optimierung des Algorithmus SelectionSort (Sortieren durch direkte Auswahl)

Der in Python geschriebene Quelltext SelectionSort_for-loop_while-loop_time.py

enthält eine Uhr, um den Zeitbedarf (in s) zum Sortieren eines aus n Komponenten

bestehenden Arrays zu ermitteln.

Der folgende Programmteil führt den Sortiervorgang aus:

for j in range(0,n-1):

 min = a[j]

 i = j + 1

 while i < n:

 if a[i] < min:

 min = a[i]

 a[i] = a[j]

 a[j] = min

 i = i + 1

Sobald in der Teilliste a[j], . . . , a[n-1], 0  j  n-2, ein Element ge-

funden wird, welches kleiner ist als das jeweils aktuell definierte Minimum min,

wird der „swap“ (Tausch der Werte zweier Variabler; hier: die Wertzuweisungen

innerhalb des Schleifenrumpfs der inneren Schleife) ausgeführt, was für ein be-
stimmtes j ggf. auch mehrmals erfolgt. Optimiere den Algorithmus so, daß die

Wertzuweisungen jeweils höchstens ein Mal für jeden Wert von j vorgenommen

werden.

Bestimme experimentell die Laufzeit und bestätige die (insgesamt bescheidene)

Optimierung. Zeige ferner empirisch, daß die Zeitkomplexität von der Ordnung n2

ist (d. h.: Der Zeitbedarf wächst mit dem Quadrat der Anzahl n der zu sortierenden

Datenelemente; Schreibweise: O(n2)).

Hinweis: Ermittle zunächst den Index derjenigen Komponente, welche den klein-
sten Inhalt innerhalb der Liste a[j], . . , a[n-1] hat, und führe anschließend

den swap höchstens einmalig aus.

2. Aufgabe

Algorithmus InsertionSort (Sortieren durch direktes Einfügen)

a) Erstelle, ausgehend von dem Skript InsertionSort_11-09-2023.pdf, einen in Py-

thon geschriebenen Quelltext zu InsertionSort.

b) Teste das Programm anhand diverser Eingaben.

c) Implementiere eine Uhr im Quelltext (wegen der Syntax orientiere man sich an

SelectionSort_for-loop_while-loop_time.py) und bestätige empirisch, daß die

Zeitkomplexität von der Ordnung O(n2) ist.

Aufgabenblatt Nr. 2 inf12 14.09.2023

3. Aufgabe
Optimierungen des Algorithmus InsertionSort (Sortieren durch direktes Ein-
fügen)

a) Der folgende Programmauszug veranlaßt das Sortieren des Arrays a, indem das

jeweils erste Element a[j], j  {1, . . . , n-1}, der noch unsortierten Teilliste an
der richtigen Stelle der bereits sortierten Teilliste eingefügt wird:

 j = 1

 while j <= n - 1:
 current = a[j]
 i = j - 1
 while i >= 0:
 if current < a[i]:
 a[i+1] = a[i]
 a[i] = current
 i = i - 1
 j = j + 1

 Begründe anhand eines Beispiels, daß dieser Programmcode nicht optimal ist.
 Modifiziere den Quelltext und zeige empirisch die Effizienzverbesserung, wobei

die quadratischen Zeitkomplexität allerdings erhalten bleibt.

 Zeige ferner, daß der modifizierte Algorithmus Vorteile bitte, falls das Array a

bereits in Teilen oder vollständig vorsortiert ist.

 Bemerkung:

Tatsächlich ist die Zeitkomplexität von der Ordnung O(n) (d. h., die Laufzeit
wächst im wesentlichen linear mit der Anzahl n), falls die Liste a bereits sortiert
ist; diesen Vorteil beobachtet man bei SelectionSort nicht.

b) Delegiere das Einfügen des jeweils ersten Elements a[j], j = 1, . . . , n-1, der

noch unsortierten Teilliste an die richtige Stelle der bereits sortierten Teilliste an
ein Unterprogramm (Prozedur; in Python: definiere in geeigneter Weise eine
Funktion).

 Zeige, daß sich mit dieser Modifikation eine weitere Verbesserung der Laufzeit
erzielen läßt (zumindest in Python); versuche, eine Erklärung zu geben.

 Bemerkung: Da hier das Merkmal der Rekursion fehlt, bleibt der Algorithmus
auch nach der Implementierung der Funktion „insert“ imperativ formuliert.

Lösung zu a): Lösung zu b):

Sortieren durch Mischen ("MergeSort")

Aufgabe:

Gegeben ist eine Liste L = {a[0], a[2], a[3], , a[n-1]}

von n Datenelementen, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt

sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daß gilt:

a[0] ≤ a[2] ≤. ≤ a[n-1] .

Wir fassen die Elemente der Liste auf als Komponenten eines arrays a.

Strategie: "Divide et impera"

Eine Liste, die nur ein einziges Element enthält, ist bereits sortiert.

Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, läßt sich in 4 Schritten
bewältigen:

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten

2). Sortiere die erste Teilliste gemäß den Schritten 1). - 4).

3). Sortiere die zweite Teilliste gemäß den Schritten 1). - 4).

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste

Falls left < right wahr ist, sortiert die rekursiv definierte Funktion

sort(array, left, right)

die Liste

array[left], , array[right]

unter Verwendung der Funktion merge.

Die Funktion

merge(array, left, middle, right)

mischt die sortierten Teillisten

array[left], , array[middle]

und

array[middle+1], , array[right]

zu der sortierten Gesamtliste

array[left], , array[right] .

Quellcode der Funktion sort in Python:

 2

def sort(array, left, right):
 if left >= right:
 return
 middle = (left + right)//2
 sort(array, left, middle)
 sort(array, middle + 1, right)
 merge(array, left, middle, right)

Aufruf zum Sortieren der aus den n Komponenten

 a[0], a[2], a[3], , a[n-1]

bestehenden Liste a:

 sort(a, 0, len(a)-1)

Aufwandsbetrachtung:

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus
n Komponenten bestehende Liste zu sortieren.

Dann gilt:

A(n) = 2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen
+ Aufwand zum Mischen zweier sortierter Teillisten

A(n) = A(n/2) + A(n/2)
+ Aufwand zum Mischen zweier sortierter Teillisten

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wächst linear mit der Anzahl n der zu sortierenden Datenelemente; somit
erhalten wir für den Funktionsterm A(n) die Funktionalgleichung (c = Konstante
= Proportionalitätsfaktor)

(*) A(n) = A(n/2) + A(n/2) + c  n mit der Bedingung
(**) A(1) = 0 .

Behauptung: Die Funktion

A(n) = c  n  log2(n)

ist Lösung der Funktionalgleichung (*) mit der Anfangsbedingung (**).

Beweis:

A(n/2) + A(n/2) + c  n = 2  A(n/2) + c  n

= 2  c  n/2  log2(n/2) + c  n
= c  n  (log2(n)  log2(2)) + c  n
= c  n  (log2(n)  1) + c  n
= c  n  log2(n)
= A(n)

Damit ist (*) erfüllt; wegen log2(1) = 0 genügt A(n) auch der Bedingung (**).

 3

Bemerkung: Mit Methoden der Analysis läßt sich die Eindeutigkeit der Lösung des
Problems (*), (**) zeigen, somit ist mit A(n) = c  n  log2(n) die einzige Lösung
der Funktionalgleichung gefunden.

Allgemein läßt sich beweisen, daß der Aufwand zum Sortieren von n Datensätzen
grundsätzlich mindestens von der Ordnung n  log2(n) wächst. In diesem Sinne
kann das Sortierverfahren „MergeSort“ als optimales Vefahren gelten.

Ergänzende Betrachtung zum Speicherplatzbedarf:

Nachdem wir festgestellt haben, daß der Aufwand zum Sortieren von n
Datenelementen von der Ordnung n  log2(n) wächst und damit ein Optimum
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn
rekursive Algorithmen haben grundsätzlich den Nachteil, daß sie während der
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. Daß dieser Effekt bei
MergeSort nicht oder nur unwesentlich ins Gewicht fällt, zeigt folgende
Überlegung:

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.

O. B. d. A. sei n eine Zweierpotenz, d. h. n=2k, k{0, 1, 2, 3, }.

Bemerkung: Der Pfeil bedeutet: „ruft auf“

n = 1: sort(a,0,0) 1 Aufruf

n = 2: sort(a,0,1)

 sort(a,0,0) sort(a,1,1)

 1 + 2  1 = 3 Aufrufe

n = 4: sort(a,0,3)

 sort(a,0,1) sort(a,2,3)

 sort(a,0,0) sort(a,1,1) sort(a,2,2) sort(a,3,3)

 1 + 2  3 = 7 Aufrufe

 4

n = 8: sort(0,7)

 sort(0,3) sort(4,7)

 sort(0,1) sort(2,3) sort(4,5) sort(6,7)

 sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

 1 + 2  7 = 15 Aufrufe

f(1) = 1 = 1 = 2  1 – 1

f(2) = 1 + 2  1 = 3 = 2  2 – 1

f(4) = 1 + 2  3 = 7 = 2  4 – 1

f(8) = 1 + 2  7 = 15 = 2  8 – 1

f(16) = 1 + 2  15 = 31 = 2  16 – 1

f(32) = 1 + 2  31 = 63 = 2  32 – 1

allgemein:

f(n) = 2  n – 1

Offensichtlich ist f(n) Lösung der rekursiv definierten Funktionalgleichung

 f(n) = 1 + 2  f(n/2)

mit der Anfangsbedingung f(1) = 1 .

Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der
Speicherplatzbedarf während der Laufzeit wächst somit linear mit n, also
wesentlich schwächer als die Anzahl A(n) elementarer Rechenoperationen.

Die rekursiv veranlaßten Aufrufe der Funktion sort zerlegen die zu sortierende
Liste in Teillisten jeweils der Länge 1, die als ein-elementige Listen bereits
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils
einer sortierten Liste gemäß folgendem Diagramm:

Bemerkung: Der Pfeil bedeutet: „wird gemischt“

 5

 merge(0,3,7)

 a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Für die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar:

g(1) = 0
g(n) = 1 + 2  g(n/2) falls n = 2k, k > 1

Lösung der vorstehenden Funktionalgleichung:

g(n) = n  1

Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe
der Funktion merge wachsen jeweils linear mit n.

Februar 2021

Bemerkung:
Für den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten
wir bei

- SelectionSort: A(n)  n2
- MergeSort: A(n)  n  log2(n)
- Fibonacchi-Folge: A(n)  2n (bei rekursiver Berechnung)
- BinarySearch: A(n)  log2(n)

Entsprechend haben

- SelectionSort quadratische Komplexität,
- MergeSort linear-logarithmische Komplexität,
- die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexität,
- BinarySearch logarithmische Komplexität.

Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar.

sort(0,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

7 6 8 2 9 3 8 5

sort(0,3) sort(4,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

7 6 8 2

9 3 8 5

sort(0,1) sort(2,3) sort(4,5) sort(6,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

7 6

8 2

9 3

8 5

sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

7

6

8

2

9

3

8

5

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Text Box
bedeutet: "ruft auf"
Beispiel: sort(4,7) veranlaßt die Aufrufe sort(4,5) und sort (6,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

7

6 8

2 9

3 8

5

merge(0,0,1)

merge(2,2,3)

merge(4,4,5)

merge(6,6,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

6 7

2 8 3 9

5 8

merge(0,1,3)

merge(4,5,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

2 6 7 8

3 5 8 9

merge(0,3,7)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

2 3 5 6 7 8 8 9

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Line

x
Text Box
bedeutet: "wird gemischt"
Beispiel: merge(0,3,7) mischt die sortierten Listen a[0], . . , a[3] und a[4], . . , a[7] zu der sortierten Liste a[0], . . . , a[7]

Zeitkomplexität von Algorithmen

Verdeutlichung der O-Notation anhand eines Beispiels
Der Zeitbedarf A(n) von SelectionSort in Abhängigkeit von der Anzahl n der zu
verarbeitenden Datenelemente („Problemgröße“) wächst quadratisch für große Werte
von n:
A(n)  n2 für große n.
Man sagt auch: Die Zeitkomplexität von SelectionSort ist von der Ordnung O(n2).

Algorithmus lineare

Suche

Fakultät
(rekursiv
oder
iterativ)

binäre
Suche
auf einer
sortierten
Menge

Selection-
Sort

Insertion-
Sort

MergeSort Fibonacci-
Folge
(rekursiv)

Türme von
Hanoi

Ackermann-
Funktion
(rekursiv)

Komplexität O(n) O(log2 n) O(n2) O(nlog2 n) O(2n)

Art des
Wachstums linear logarithmisch

polynomial
hier:
quadratisch

linear-
logarithmisch exponentiell

hyper-
exponentiell

Algorithmen mit polynomialer Komplexität sind bedingt brauchbar, Algorithmen mit
exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar.

Rechenzeiten in Abhängigkeit von der Zeitkomplexität des Algorithmus

Annahme:
Für die Verarbeitung des jeweiligen Problems mit minimaler Problemgröße (n = 1) werde
ein Zeitbedarf von 1 s = 10-6 s angesetzt.

Komplexität n = 1 n = 100 n = 103 n = 104 n = 106 n = 109

O(n) 10-6 s 10-4 s 10-3 s 10-2 s 1 s
103 s 
17 min

O(log2 n) 10-6 s 7  10-6 s 10  10-6 s 13  10-6 s 20  10-6 s 30  10-6 s

O(nlog2 n) 10-6 s 7  10-4 s 10-2 s 0,13 s 20 s
30 000 s 
8 h

O(n2) 10-6 s 10-2 s 1 s 100 s
106 s 
12 d

1012 s 
31 700 a

O(2n) 10-6 s
1,31024 s

4  1016 a

10295 s

3,410287 a

2 103004 s

Rechenzeit bei exponentieller Zeitkomplexität:

Komplexität n = 1 n = 10 n = 20 n = 40 n = 50 n = 60

O(2n) 10-6 s 0,001 s 1,05 s
1,1  106 s

12,7 d

1,1  109 s

35,7 a

1,2 1012 s

36 600 a

Alter des Universums: 13,8 Milliarden Jahre = 13,8  109 a = 4,35  1017 s

MergeSort
Anzahl und Reihenfolge der Aufrufe der Funktionen sort und merge

Quelltext

 2

Durchführung von MergeSort und Auflistung der Aufrufe der Funktionen sort
und merge für eine aus den 8 Komponenten a[0], . . . , a[7] bestehende
Liste a:

 3

Baumstruktur mit Reihenfolge für die Funktionsaufrufe:

08.12.2023

