Informatik 12
September 2021

Boolesche Terme und Schaltalgebra

1. Datentyp boolean

Eine Boolesche Variable oder ein Boolescher Ausdruck (Term) nimmt nur zwei Werte an:
True oder False

(abkirzend: 1 oder 0; in Python sind True oder False zu verwenden)

Insbesondere sind folgende Terme Boolesche Ausdriicke, deren Wert sich auch einer
Variablen zuweisen |aBt:

8 >5
== 8
1= 8

w X X 3

Mita =

der Wert des Booleschen Terms 7

or b

hat den Wert True
hat den Wert False
hat den Wert True

hat den Wert True nach der Wertzuweisung x

hat den Wert False nach der Wertzuweisung x

den Wert True hat; andernfalls hat a or b

= 7 <12
== 6)
hat den Wert True genau dann, wenn mindestens eine der Variablen a, b
den Wert False.

7 '= 8 oder a = (7 '= 8) wird in Python der Booleschen Variablen a

'= 8 (hier: True) zugewiesen.

Wir definieren die Verknipfungen and und or sowie die Operation not jeweils Gber eine
Wahrheitstafel:

a b aorb a b a and b a not a
False | False False False False False False True
False True True False True False True False
True | False True True False False
True True True True True True

Abklirzende Schreibweisen (a, b, c sind Boolesche Variable oder Boolesche Terme):

aand b = aAb = a-b = ab
aorb = avb = a+b
not a = —a = a

Dabei gelte auch die aus der Algebra bekannte Vereinbarung “Punkt vor Strich”, d. h.

a

+ (b:-c) =a+b-c=a+bc

Die AND-Verknipfung nennen wir auch Konjunktion,
die OR-Verknipfung Disjunktion.

2. Rechenregeln fiir Boolesche Variable

Kommutativgesetz
(1) a+b=>b+ a (1’) a-b=>b:
Assoziativgesetz
(2) a+ (b+c) = (a+Db) +c (2’) a - (b : c)

Distributivgesetz

(3)

a-(b+c)=a-b + a-c (3’) a+b - -c

(a - b)

(a + b)-(a + ¢)

Absorptionsgesetz

(4) a(a + b) = a (4’) a + ab = a
Tautologie
(5) a-a=a (5) a + a=a

Gesetz iiber die Negation

(6) a-a=0 (6') a+a=1
Doppelte Negation

(7) z =a

Gesetz von De Morgan

8) a-b=a+b (8") a+b=a-b
Operationen mit 0 und 1

(9.1) a-1=a (9.1") a+0=a
(9.2) a-0=0 (9.2") a+l-=1
(9.3) not 0 =1 (9.3") not 1 =0

Bemerkung: Die jeweils in einer Zeile stehenden Gesetze sind duale Gesetze
voneinander; Beispiel: (3') ist das duale Gesetz von (3), (3) das duale Gesetz von (3').

Beweis von Rechengesetz (3):

a b c b + ¢ a(b + c) ab ac ab + ac
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

Da die Spalten zu a(b + ¢) und ab + ac Ubereinstimmen, gilt: a(b + ¢) = ab + ac .
Aufgaben:

1. Beweise das Distributivgesetz (3).

2. Beweise die Gesetze von De Morgan.
Hinweis: WahrljeitsEafeI; auBer den Spalten fir a und b (4 Zeilen) erstelle Spalten fir
a-b, a-b, a, b, a+b firRegel (8).

3. Unter der Disjunktion a or b versteht man das nichtausschlieBende oder (,,non-

exclusive or"), d. h., a or b ist genau dann True, falls a oder b oder sowohl a
als auch b True sind (,oder" im Sinne von lat. vel).

Unter der Verknipfung a xor b (andere Schreibweise: a @ b) versteht man
das ausschlieBende oder (exclusive or), d. h., a @ b ist genau dann True, falls
entweder a oder b den Wert True hat.

Zeige: a®b = a-b+ab

BEISPIEL 1

Die Boolesche Funktion
z = f(a,b,c)

ist durch nebenstehende
Wahrheitstafel

gegeben:

PP OO0O0CO0O|Y
P R OO|RrHRO|IO|T
= OO |IOR|OfO
OO0 (Rr Ok |]IN

a) Ermittle die disjunktive Normalform (DNF; Disjunktion von Konjunktionen) fir z.
b) Vereinfache den Funktionsterm unter Anwendung der Booleschen Rechengesetze.
c) Zeichne den Schaltplan flr die optimierte Funktion z.

Losung:
ay z=a-b-c+ab.c+ab-c+ab-c
by Z = SB(E + C) + bc(é + a) Kommutativ- und Distributivgesetz
=a-b-1+b-c-1
=a-b+b-c
=a+b +b-cC de Morgan’s Gesetz
c) Z=5-E+b-C (oben) Z=a+b + b-c (unten)
. 1
./i -
a &
& 1
l/' : +>:1
b A N ® Z
J &
B 5 '
a 1 ==1
"V ®
) ‘:=-:1
b . i @ Z
&

BEISPIEL 2

Gegeben ist folgende digitale Schaltung mit den Eingangsvariablen a, b und der
Ausgangsvariablen z:

=1

NOT(ab)

a) Ermittle den Booleschen Term flir die Boolesche Funktion z = f(a,b,c). Hinweis:
Notiere am Ausgang jedes Gatters jeweils den Booleschen Term (Beispiel: a-b am
Ausgang des NAND-Gatters).

b) Vereinfache den in a) erhaltenen Term unter Verwendung der Rechenregeln fir
Boolesche Ausdriicke;

c) Erstelle die Wahrheitstafel und zeichne das Schaltbild flir den vereinfachten
Funktionsterm; teste beide Schaltungsvarianten mit einem
Digitalsimulationsprogramm.

Lésung:
Zu a):
\ 1 a
a - .
L2510 a+b
1
T :
=1
. & 4. z
&

ZU C):

optimierte Schaltung:

NAND

&

@

(2-mal de Morgan)
(wegen 3 =a)
(Kommutativgesetze)
(wegen a=a-1)
(Distributivgesetz)
(wegen a+1=1)

(de Morgan)

Wertetabelle:
a b
0 0
0 1
z
1 0
1 1

Typen von Logikgattern und Symbolik

Logikgatter werden mit Schaltsymbolen bezeichnet, die nach unterschiedlichen, mehr oder
weniger parallel existierenden Standards definiert sind.

Name Funktion Symbol in Schaltplan Wahrheits-
IEC 60617-12 : tabelle
1997 & ANSI/IEEE Std DIN 40700 (vor
ANSI/IEEE Std 91/91a-1991 1976)

91/91a-1991

ABY
Und-Gatt A— & A i)7 010
nd-Gatter Y=A.B -] T
(AND) o\ ¥ B_D—Dut o | Y 010
100
111
ABY
000
} A —) =1 A —
Oder-Gatter V=A+B Ly A out Y 011
(OR) B — B 5
101
111
Nicht-G 1 o1
icht-Gatter | _— A —] O—v A out A Y o1
(NOT)
10
ABY
NAND-Gatter 001
(NICHT — A/ & A— ¢ T
= . Y
UND) Y=A B o\ C— B — oLl | 011
(NOT AND) Lol
110
ABY
NOR-Gatter 001
(NICHT — A— 2t A ¢ AT
ODER) Y=A+B 5 — O—Y B ou m | Y 010
(NOT OR) boo
110
XOR-Gatter ABY
(Exklusiv- A— =1 A A — 000
ODER, Y=A®B — Y B out @ Y 011
Antivalenz) B—] == 101
(eXclusiveOR)

110

XNOR-

Gatter ABY
(Exklusiv- A —] A 2 _j 001
Nicht-ODER, Y=A®B O— Y %— out @ Y 010
Aquivalenz)] a==] 100
(eXclusive 111
Not OR)

Friither waren auf dem européischen Kontinent die deutschen Symbole (rechte Spalte)
verbreitet; im englischen Sprachraum waren und sind die amerikanischen Symbole (mittlere
Spalte) iiblich. Die IEC-Symbole sind international auf beschrankte Akzeptanz gestoen und
werden in der amerikanischen Literatur (fast) durchgingig ignoriert.

JK-Flipflop

Ein Flip-Flop (bistabile Kippstufe oder bistabiler Multivibrator) hat zwei stabile Zustinde am
Ausgang Q; die Zusténde heillen ,,gesetzt* (set) oder ,,zuriickgesetzt™ (reset). Ein 1-Bit-
Speicher 146t sich somit als FlipFlop realisieren.

Ein JK-FlipFlop ist ein taktgesteuertes FlipFlop: die an den Eingéngen J und K liegende
Information wird mit einer Flanke (hier: der steigenden Flanke) des an C liegenden

Taktsignals auf die Ausgidnge Q und 6 iibernommen.

Mit dem Taktsignal (clock, C) und der Eingangsbelegung J = 1 und K = 0 wird am Ausgang
Q eine 1 erzeugt und gespeichert, alternativ eine 0 beiJ =0und K = 1.

Bei der Realisierung des JK-Flipflops als taktflankengesteuertes Flipflop kann der Eingang C
fiir steigende Flanken (Wechsel von 0 auf 1) oder fiir fallende Flanken (Wechsel von 1 auf 0)
ausgelegt sein.

S glzllrtl:e?cl;lden Signal-Zeit-Diagramm Funktionstabelle
Flanken- Ubernahme der Eingangsinformation durch

gesteuertes steigende Flanke an C (clock) bis zur nach der
JK-Flipflop I 1 I | ... n-ten Taktflanke

clock ;K o,
-1 o] — I 0 0 Qu (unverdndert)
-+ - K | - L 0 1 0 (zuriickgesetzt)
1< ° @ T T T 1 0 1 (gesetzt)

Q 1 1 NOT Q, | (gewechselt)
T = toggle

(Wikipedia)

Halbaddierer und Volladdierer

Die Ziffern einer im Dezimalsystem geschriebenen Zahl a ergeben sich als Aneinanderrei-
hung der Koeffizienten aus der Dezimalzerlegung (Summe von Zehnerpotenzen) von a;
entsprechend erhalten wir die Darstellung von a im Dualsystem als Aneinanderreihung der
Koeffizienten aus der Dualzerlegung (Summe von Zweierpotenzen).

87dezimal = 8 - 101+ 7 . 10°
87dezimal = 1-2°+0-2°+1-2*+0-22+1-2241-2'+1-2°=1010111¢4y

Addition der Dualzahlen
a=a3-23+a2-22+a1-21+a0-20 und b=b3'23+b2'22+b1'21+b0'20:

a3 a ap Qo 1 1 0 1
+ bs b, by bg + 1 0 1 1
S4 S3 Sy S1 So 1 1 0 0 0

Den Ubertrag (,carry"), der sich aus der i-ten Stelle ergibt und der bei der Addition in der
(i + 1)-ten Stelle zu berticksichtigen ist, bezeichnen wir mit ¢;;q; i > 0.

Flr die O-te Stelle geniigt ein Halbaddierer mit den Eingangen a; und by und den Ergeb-

nissen sy und c;; die Addition in der i-ten Stelle, i > 1, erfordert einen Volladdierer mit den
Eingangen a;, b;, c;und den Ergebnissen s; und ¢, ;.

Halbaddierer HA

Wahrheitstafel:

dg bg I So Ci
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Wir ermitteln flr sq und c; jeweils die disjunktive Normalform (,,Disjunktion der Konjunkti-
onen“):

So = ao-bo + @ -bo = a ® bo

C: =ao-bo

Volladdierer VA

Wahrheitstafel:
aj b Ci Si Cit1
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Wir ermitteln fur s; und ¢;;1 jeweils die disjunktive Normalform (,Disjunktion der Konjunk-
tionen™) und vereinfachen ggf. die booleschen Funktionsterme:

Si :a'E'Ci+a'bi'a+ai'a'a+ai'bi‘Ci

ohne Index i geschrieben:

S

S

n

n

n

n

[0)]

[0)]

n

S

S

—a-b-c+a-b-c+a-b-c+a-b-c

=(a-b+a-b)-c+a-b-c+a-b-c

=(a®b)-c+(a-b+a-b)-c

=(@®b)-c+(0+a-b+a-b+0)-c

=(a®b)-c+(a-a+a-b+a-b+b-b)-c

=(@®b)-c+[(@a+b)-(a+b)]-c

_(a®b).-c+[(a+b)-(a+b)]-c

~(a®b)-c+[(a-b)-(a-b)]-c

=(@a®b)-c+[a-b+a-b]-c

=(@®b)-c+(@®b)-c

=(@a®b)®dc

mit Index i erhadlt man:

s =(@®b)®c

Ci+1
Ci+1
Ci+1

Ci+1

4-Bit-Paralleladdierer mit seriellem Ubertrag

=

o

-

=(ai@bi)'Ci+ai-bi

1Bit-VOLLADDIERER
i

el

y

— VAL :. P

—

=a'bi'Ci+ai'E'Ci+ai-bi'a+ai-bi'Ci
=(a'bi+ai'5)'Ci+ai'bi'(a+Ci)

=(a-bi+ai-5)-0+ai-bi-1

) 2 1Bit-voLLADDIERER M- 1Bit-VOLLADDIERER [l +sv@ HALBADDIERER
(3 : »

VA _—3

Merke:

Bei der Addition zweier Dualzahlen bendétigt man

flr das LSB (least significant bit) einen Halbaddierer (Eingange: ap, bg; Ausgange: sg, C1),
fur die héherwertigen Bits jeweils einen Volladdierer (Eingange: a;, b;, ¢;; Ausgange: s;, Ci+1)

Schaltungen
Halbaddierer (HA) und Volladdierer (VA)

¥ A, ¥
it }'w&ﬁe’ﬂ A 2

. . : : 22 > a
el Benti P Ggin
-r?, Sa 3_,;, °’r} J’

. Eistide flsktiniim: o .‘,,.e‘,ug_ Volln A dx et s -

£ o= {a; ® é‘f'}\ @ <, | B e # e f!ﬁ :

4 { éfa by Ancti b3 oo ‘f"’{}
J:.:_i:.r‘-f o ﬁ'l‘ 16#.' + i: m‘: @ é}e-") J:":
o by #a
& J -3 . i""‘-‘:‘r::l‘ --B
P e e e g e o L e T o e ey e i T

N ’
TR g T i e E A lf‘)
{’?'.c- R '“”"“"'""""’“!’V“‘F‘_.?r_,] ﬂ‘f-- 8 ! -—AJJS -v—i ...{;f__* @"é

‘a..._.__....-..é

i v
&b A

Merke:

Die Schaltung des Volladdierers (VA) besteht aus zwei Halbaddierern (HA) und
einem oder-Gatter.

Volladdierer

: =1
& ’ @ S
3 Ny = & ‘

1 3 ' =1 ® C,
b ot =

Addier-Schaltungen fur Dualzahlen (hier: 4-Bit-Addierer)

a3 ax ap Qo
+ bs b, b, bg
S4 S3 S, S So

1. Paralleladdierer mit seriellem Ubertrag

Fir das Least Significant Bit (LSB) genlgt ein Halbaddierer (HA); die héherwertigen Bits
erfordern jeweils einen Volladdierer, da hier der Ubertrag aus der vorherigen Stelle zu
bertcksichtigen ist.

S

53 5, f 50

i ! 4 4

05 b 3 02 b 2 a i' b i' 00 b 0
Beachte:
Das Most Significant Bit s, des Ergebnisses (hier: der aus den Ziffern s4, . . , So bestehenden

Summe) erhalten wir als den Ubertrag (carry) c4, der auch als Uberlauf bezeichnet wird.

4

-
-

Al T VA

*+8 9

H
=z
(=]
*
=5 e
Li b S d i

7

%

-\.‘
*
L]

Ll 1Ll]
*
L

i 11l)]

Dezimal: 09 Hexadezimal: 09 Dual: 0000 1001
+ 10 + 0A + 0000 1010
19 13 0001 0011

2. Serieller 1-Bit-Addierer fiir 4-stellige Dualzahlen
Die Operanden (hier: die Summanden a und b) werden jeweils in einem 4-Bit-Schieberegister
abgelegt; nach 4 Taktimpulsen finden wir das 5-Bit-breite Ergebnis (hier: die Summe s) in
einem weiteren 4-Bit-Schieberegister in Verbindung mit einem Flip-Flop fiir das MSB.

Da der Ubertrag aus der vorherigen Stelle fiir die Addition in der jeweils aktuellen Stelle zu
bertcksichtigen ist, wird er in einem Flip-Flop zwischengespeichert. Dieses Flip-Flop
liefert auch das Most Significant Bit (MSB) des Ergebnisses.

—(® @ -]
[TTTY
*
b
-
*
‘a4 13 F :
[T —pie LT ke —_:-‘" —— |11
f E « gl e
III.L
1
14
—@ — @ @ -
‘\- L 13
g e I s ———.H: -
T —u ‘7_::.‘2

JJEe e

et
Lo llll]
Lallill]

LY S

Nach 4 Taktimpulsen (hier: Triggerung der Flip-Flops auf der steigenden Taktflanke) sind die
Schieberegister fur die Operanden geleert, das Schieberegister fir das Ergebnis enthalt
zusammen mit dem im Flip-Flop gespeicherten MSB das Ergebnis:

bva o —® e [
- [, o O P o I
@ e e [® L
Dezimal: 07 Hexadezimal: 07 Dual: 0000 0111
+ 14 + 0E + 0000 1110
21 15 0001 0101

Die wesentlichen Komponenten einer CENTRAL PROCESSING UNIT (CPU) bestehen
aus der CONTROL UNIT (CU) und der ARITHMETIC LOGIC UNIT (ALU).

Die ALU berechnet arithmetische und logische Funktionen, die CU decodiert die
im Arbeitsspeicher abgelegten Befehle und fihrt sie aus.

In der Minimalkonfiguration beherrscht die ALU die arithmetische Funktion
~Addition" sowie die logischen Operationen ,,Negation™ (NOT) und
~Konjunktion™ (AND). Zu Lasten der Rechenzeit lassen sich die librigen
arithmetischen und logischen Funktionen auf die genannten, minimal verfigbaren
Operationen zurickfihren.

1. Subtraktion

Die duale Subtraktion as a, a; ag
— b b, by by

d; d, d; do

|aBt sich auf eine duale Addition nach folgendem Verfahren zurickfihren:
- Bilde das Einerkomplement des Subtrahenden bz b, b; by , indem man alle
Ziffern negiert (invertiert; aus 0 wird 1 und aus 1 wird 0).
- Addiere das Einerkomplement und die Zahl 1 zum Minuenden.
- Das Ergebnis ist die gesuchte Differenz; dabei bleibt der Uberlauf
unbericksichtigt.

a) Verdeutliche das genannte Verfahren anhand einiger selbst gewahlter
Beispiele (ein Beweis des Verfahrens ist nicht erforderlich.).

b) Erganze die Schaltung ,4-bit-Paralleladdierer.dsim" so, daB man nach
entsprechender Umschaltung wahlweise eine duale Addition oder eine duale
Subtraktion durchfiihren kann.

Hinweise:

- Ersetze den HA fir das least significant bit (LSB) durch einen VA, um
erforderlichenfalls eine ,1" als Summand einspeisen zu kénnen (wie?).

- Die Invertierung der Ziffern des Subtrahenden gelingt z. B. durch den
geeignheten Einsatz von XOR-Gattern.

2. Weitere Rechenoperationen

Gegeben sind die (im einfachsten Fall positiven ganzzahligen) Operanden a und
b. Um zu verdeutlichen, wie man die ,héheren™ Rechenoperationen mittels
geeigneter Iteration auf die Grundoperationen ,Addition" und ,Subtraktion™
zurlckfihren kann, schreibe und teste ein Python-Programm, welches die
Operationen ,Multiplikation™ (a*b), ,Division™ (a/b, ganzzahlige Division) und
~Potenzierung" (a**b) realisiert.

3. Logische Operationen

Zeige examplarisch, daB sich die logischen Verknlipfungen

a)a+b
b)a®@b

c) a-(b+c)

auf die Operationen NOT und AND zurlickfihren lassen.

Paralleladdierer mit seriellem Ubertrag (4-Bit-Addierer)

. 5
o r—
af VS
e
*
.

L=
FH

Dezimal: 13
+ 09
22

Parallelsubtrahierer mit seriellem Ubertrag (4-Bit-Subtrahierer)

Hexadezimal:

0000 1101

+ 0000 1001

0001 0110

. kg
Jrval

i =5
A '{

L_ =1
r_._

Dezimal: 13
- 09

04

Das Carry-Bit c, (Uberlauf) bleibt beim Ergebnis unberiicksichtigt.

+*4

-8

LAl i 1]

-8

Hexadezimal:

0000 1101
0000 1001

0000 0100

*
*
L1111 1]

Grundrechenarten

Die "hoheren" Rechenoperationen Multiplizieren, Potenzieren, Dividieren
werden durch geeignete Iteration auf die Grundoperationen

Addieren und Subtrahieren zurickgefuhrt.

def summe(a,b):
return a + b

def differenz(a,b):
return a - b

def produkt(a,b):
ergebnis = 0
i=29
while i <= b - 1:
ergebnis = summe(ergebnis,a)
i+=1
return ergebnis

def potenz(a,b):

if b == @: return 1
else:
ergebnis = a
i=20

while i <= b - 2:
ergebnis = produkt(ergebnis,a)
i=1+1

return ergebnis

def quotient(a,b):
rest = a
ergebnis = 0
while rest >= b:
rest = differenz(rest,b)
ergebnis += 1
return ergebnis

print ('Operanden:')
x = int(input('x = '
y = int(input('y =
print()

))
"))

print('Operation:")

print(' Addition < + >')
print(' Subtraktion < - >")
print(' Multiplikation < * >')
print(' Division < / >")
print(' Potenz < ** > ')

op = input()

print()

if op == "+': print (x, '+ ', y, '=',summe(x,y))
elif op == '-': print (x, ' - ', y, '=",differenz(x,y))
elif op == '"*': print (x, " * ', y, '=',produkt(x,y))
elif op == '/': print (x, " // ', y, "=",quotient(x,y))
elif op == "**': print (x, ' ~ ', y, '=',potenz(x,y))

else: print('falsche Eingabe')

