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Boolesche Terme und Schaltalgebra 
 
1. Datentyp boolean 
 
Eine Boolesche Variable oder ein Boolescher Ausdruck (Term) nimmt nur zwei Werte an: 
True oder False   
(abkürzend: 1 oder 0; in Python sind True oder False zu verwenden) 
 

Insbesondere sind folgende Terme Boolesche Ausdrücke, deren Wert sich auch einer 
Variablen zuweisen läßt: 
 
8 > 5     hat den Wert True 
7 == 8 hat den Wert False 
7 != 8 hat den Wert True 
x hat den Wert True     nach der Wertzuweisung x =  7 < 12  
x hat den Wert False   nach der Wertzuweisung x = (0 == 6) 
a or b hat den Wert True genau dann, wenn mindestens eine der Variablen  a, b 

den Wert True hat; andernfalls hat   a or b  den Wert False. 
 
Mit a = 7 != 8   oder   a = (7 != 8) wird in Python der Booleschen Variablen a 
der Wert des Booleschen Terms 7 != 8 (hier: True) zugewiesen. 
 
Wir definieren die Verknüpfungen and und or sowie die Operation not jeweils über eine 
Wahrheitstafel: 
 
a b a or b  a b a and b  a not a 

False False False  False False False  False True 

False True True  False True False  True False 

True False True  True False False    

True True True  True True True    

 
Abkürzende Schreibweisen (a, b, c sind Boolesche Variable oder Boolesche Terme): 
 

 a and b  =  a  b  =  a  b  =  a b 
 a or b   =  a  b  =  a + b 
 not a    =   a  =  a 
 

Dabei gelte auch die aus der Algebra bekannte Vereinbarung “Punkt vor Strich”, d. h. 
 a + (b  c) = a + b  c = a + b c 
Die AND-Verknüpfung nennen wir auch Konjunktion,  
die OR-Verknüpfung Disjunktion. 
 
2.  Rechenregeln für Boolesche Variable 
 

 Kommutativgesetz 
 

 (1)  a + b = b + a                   (1’)  a  b = b  a 
  

Assoziativgesetz 
 

 (2)  a + (b + c) = (a + b) + c       (2’)  a  (b  c) = (a  b)  c  
 
 Distributivgesetz 
 

 (3)  a  (b + c) = a  b  +  a  c     (3’)  a + b  c = (a + b)(a + c) 
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Absorptionsgesetz 
 

(4)  a(a + b) = a                    (4’)  a + ab = a 
 
      Tautologie 
 

    (5)  a  a = a                        (5’)  a + a = a 
 
    Gesetz über die Negation 
 

    (6) a a = 0                           (6’)  a + a = 1 
 
   Doppelte Negation 
 

    (7) a a  
 
    Gesetz von De Morgan 
 

    (8)  a b a b                         (8’)  a+b a b   
 
    Operationen mit 0 und 1 
 

    (9.1)   a  1 = a                     (9.1’)   a + 0 = a 
 
    (9.2)   a  0 = 0                     (9.2’)   a + 1 = 1 
 
    (9.3)   not 0 = 1                     (9.3’)   not 1 = 0 
 
Bemerkung: Die jeweils in einer Zeile stehenden Gesetze sind duale Gesetze 
voneinander; Beispiel: (3’) ist das duale Gesetz von (3), (3) das duale Gesetz von (3’). 
 
Beweis von Rechengesetz (3): 
  

a b c b + c a(b + c) ab ac ab + ac 
0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 
0 1 0 1 0 0 0 0 
0 1 1 1 0 0 0 0 
1 0 0 0 0 0 0 0 
1 0 1 1 1 0 1 1 
1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 

  
Da die Spalten zu  a(b + c) und  ab + ac  übereinstimmen, gilt:  a(b + c) = ab + ac . 
 
Aufgaben: 
 
1. Beweise das Distributivgesetz (3’). 
 

2.  Beweise die Gesetze von De Morgan.  
Hinweis: Wahrheitstafel; außer den Spalten für a und b (4 Zeilen) erstelle Spalten für 

a  b,   a b ,   a,   b ,   a b   für Regel (8). 
 

3. Unter der Disjunktion  a or b  versteht man das nichtausschließende oder („non-
exclusive or“),  d. h., a or b  ist genau dann True, falls a oder b oder sowohl a 
als auch b  True sind („oder“ im Sinne von lat. vel). 

 Unter der Verknüpfung   a xor b  (andere Schreibweise:  a  b )  versteht man 

das ausschließende oder (exclusive or), d. h., a  b  ist genau dann True, falls 
entweder a  oder  b  den Wert True hat. 

 Zeige:         a  b   =     a b + a b  
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z = a b (c + c) + b c (a + a)

  = a b 1 + b c 1

  = a b + b c

  = a+b + b c

   

   

 



BEISPIEL 1 
 

Die Boolesche Funktion   
z = f(a,b,c)  
ist durch nebenstehende  
Wahrheitstafel  
gegeben: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

a) Ermittle die disjunktive Normalform (DNF; Disjunktion von Konjunktionen) für z. 
 

b) Vereinfache den Funktionsterm unter Anwendung der Booleschen Rechengesetze. 
 

c) Zeichne den Schaltplan für die optimierte Funktion z. 
 
Lösung: 
 

a) z = a b c + a b c + a b c + a b c         
 
b)                                                                            Kommutativ- und Distributivgesetz  
 
 
 
 
 
                                                                               de Morgan’s Gesetz      
 
   
 

c)  z = a b + b c     (oben)                       z = a+b + b c     (unten) 
 

 
 

a b c z 
0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 
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BEISPIEL 2 
 
Gegeben ist folgende digitale Schaltung mit den Eingangsvariablen a, b und der 
Ausgangsvariablen z: 
 

 
 

a) Ermittle den Booleschen Term für die Boolesche Funktion z = f(a,b,c). Hinweis: 
Notiere am Ausgang jedes Gatters jeweils den Booleschen Term (Beispiel: a b  am 
Ausgang des NAND-Gatters). 

 
b) Vereinfache den in a) erhaltenen Term unter Verwendung der Rechenregeln für 

Boolesche Ausdrücke;  
 
c) Erstelle die Wahrheitstafel und zeichne das Schaltbild für den vereinfachten 

Funktionsterm; teste beide Schaltungsvarianten mit einem 
Digitalsimulationsprogramm. 

 
 
Lösung: 
 
zu a): 
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zu b): 
 

z    =   a b a b    
  

 = a b (a b)                 (2-mal de Morgan) 
 

 = a b a b    (wegen a a ) 
 
 = a b a b    (Kommutativgesetze) 
 

 = a b a b 1     (wegen a a 1  ) 
 

 = a b (a 1)    (Distributivgesetz) 
 
 = a b  (wegen a 1 1  ) 
 
 = a b  (de Morgan) 
 
 
 
zu c): 
 
 
optimierte Schaltung:  Wertetabelle: 
 
 

 
 
 
 
 
 
 
 



Typen von Logikgattern und Symbolik 

Logikgatter werden mit Schaltsymbolen bezeichnet, die nach unterschiedlichen, mehr oder 
weniger parallel existierenden Standards definiert sind.  

Symbol in Schaltplan  Name  Funktion 

IEC 60617-12 : 
1997 & 

ANSI/IEEE Std 
91/91a-1991  

ANSI/IEEE Std 
91/91a-1991  

DIN 40700 (vor 
1976)  

Wahrheits- 
tabelle  

Und-Gatter 
(AND)  

 
 
 
Y=AB 

 
 
 

   

A B Y 
0 0 0  

0 1 0  

1 0 0  

1 1 1   

Oder-Gatter 
(OR)  

 
Y=A+B 
    

A B Y 
0 0 0  

0 1 1  

1 0 1  

1 1 1   

Nicht-Gatter 
(NOT)  

 
 

Y= A  
 
 

   

A Y 
0 1  

1 0   

NAND-Gatter 
(NICHT 
UND) 
(NOT AND)  

 
 
 

Y= A B  
 
 
 

   

A B Y 
0 0 1  

0 1 1  

1 0 1  

1 1 0   

NOR-Gatter 
(NICHT 
ODER) 
(NOT OR)  

 
 

Y= A+B  
 
 

   

A B Y 

0 0 1  

0 1 0  

1 0 0  

1 1 0   

XOR-Gatter 
(Exklusiv-
ODER, 
Antivalenz) 
(eXclusiveOR) 

 
Y=AB 
    

A B Y 
0 0 0  

0 1 1  

1 0 1  

1 1 0   



XNOR-
Gatter 
(Exklusiv-
Nicht-ODER, 
Äquivalenz) 
(eXclusive 
Not OR)  

 
 
 

Y= A B  
 
 
 

   

A B Y 

0 0 1  

0 1 0  

1 0 0  

1 1 1   

 

Früher waren auf dem europäischen Kontinent die deutschen Symbole (rechte Spalte) 
verbreitet; im englischen Sprachraum waren und sind die amerikanischen Symbole (mittlere 
Spalte) üblich. Die IEC-Symbole sind international auf beschränkte Akzeptanz gestoßen und 
werden in der amerikanischen Literatur (fast) durchgängig ignoriert.  

 
 

JK-Flipflop 
 

Ein Flip-Flop (bistabile Kippstufe oder bistabiler Multivibrator) hat zwei stabile Zustände am 
Ausgang Q; die Zustände heißen „gesetzt“ (set)  oder „zurückgesetzt“ (reset). Ein 1-Bit-
Speicher läßt sich somit als FlipFlop realisieren. 
 

Ein JK-FlipFlop ist ein taktgesteuertes FlipFlop: die an den Eingängen J und K liegende 
Information wird mit einer Flanke (hier: der steigenden Flanke) des an C liegenden 

Taktsignals auf die Ausgänge Q und Q  übernommen. 
 

Mit dem Taktsignal (clock, C) und der Eingangsbelegung J = 1 und K = 0 wird am Ausgang 
Q eine 1 erzeugt und gespeichert, alternativ eine 0 bei J = 0 und K = 1. 
 

Bei der Realisierung des JK-Flipflops als taktflankengesteuertes Flipflop kann der Eingang C 
für steigende Flanken (Wechsel von 0 auf 1) oder für fallende Flanken (Wechsel von 1 auf 0) 
ausgelegt sein. 
 

Name und 
Schaltzeichen  

Signal-Zeit-Diagramm  Funktionstabelle  

Flanken-
gesteuertes 
JK-Flipflop 

 

Übernahme der Eingangsinformation durch 
steigende Flanke an C (clock) bis zur       nach der  

     … n-ten Taktflanke  

J  K             Qn  
0  0  Qn−1 (unverändert)  

0  1  0 (zurückgesetzt)  

1  0  1 (gesetzt)  

1  1  NOT Qn−1 (gewechselt)   

 
(Wikipedia) 
 



 

 

Halbaddierer und Volladdierer 
 
Die Ziffern einer im Dezimalsystem geschriebenen Zahl a ergeben sich als Aneinanderrei-
hung der Koeffizienten aus der Dezimalzerlegung (Summe von Zehnerpotenzen) von a;  
entsprechend erhalten wir die Darstellung von a im Dualsystem als Aneinanderreihung der 
Koeffizienten aus der Dualzerlegung (Summe von Zweierpotenzen). 
 

87dezimal = 8  101 + 7  100 
 

87dezimal = 1  26 + 0  25 + 1  24 + 0  23 + 1  22 + 1  21 + 1  20 = 1010111dual 

 
Addition der Dualzahlen 
a = a3 2

3 + a2  2
2 + a1  2

1 + a0  2
0    und   b = b3 2

3 + b2  2
2 + b1  2

1 + b0  2
0  : 

                                              
  a3 a2 a1 a0 
 +  b3 b2 b1 b0 
  s4 s3 s2 s1 s0 
 
Den Übertrag („carry“), der sich aus der i-ten Stelle ergibt und der bei der Addition in der  
(i + 1)-ten Stelle zu berücksichtigen ist, bezeichnen wir mit ci+1; i  0. 
 
Für die 0-te Stelle genügt ein Halbaddierer mit den Eingängen a0 und b0 und den Ergeb-
nissen s0 und c1; die Addition in der i-ten Stelle, i  1, erfordert einen Volladdierer mit den  
Eingängen ai, bi, ci und den Ergebnissen si und ci+1. 
 
 
 
Halbaddierer HA 
 
Wahrheitstafel:  
 

a0 b0 s0 c1 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

 
Wir ermitteln für s0 und c1 jeweils die disjunktive Normalform („Disjunktion der Konjunkti-
onen“): 
 

    0 0 0 0 0 0 0 s a b  + a b a b  
 

 1 0 0 c a b  
 
 
 
Volladdierer VA 
 
Wahrheitstafel:  
 

ai bi ci si ci+1 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 
 
Wir ermitteln für si und ci+1 jeweils die disjunktive Normalform („Disjunktion der Konjunk-
tionen“) und vereinfachen ggf. die booleschen Funktionsterme: 
 

  1 1 0 1 
+  1 0 1 1 

 1 1 0 0 0 
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           i i i i i i i i i i i i i s a b c a b c a b c a b c  
 
ohne Index i geschrieben: 
 

            s a b c a b c a b c a b c  
 

           s (a b a b) c a b c a b c  

 

        s (a b) c (a b a b) c  

 

          s (a b) c (0 a b a b 0) c  

 

            s (a b) c (a a a b a b b b) c  

 

        s (a b) c [(a b) (a b)] c  

 

        s (a b) c [(a b) (a b)] c  

 

        s (a b) c [(a b) (a b)] c  

 

        s (a b) c [a b a b] c  

 

      s (a b) c (a b) c  

 

   s (a b) c  

 
mit Index i erhält man: 
 

  i i i i s (a b) c  

 

 
           i+1 i i i i i i i i i i i i c a b c a b c a b c a b c  

 

        i+1 i i i i i i i i i c (a b a b) c a b (c c)  

 

       i+1 i i i i i i i c (a b a b) c a b 1  

 

    i+1 i i i i i c (a b) c a b  
 

 
4-Bit-Paralleladdierer mit seriellem Übertrag 
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Merke: 
Bei der Addition zweier Dualzahlen benötigt man   
für das LSB (least significant bit) einen Halbaddierer (Eingänge: a0, b0; Ausgänge: s0, c1), 
für die höherwertigen Bits jeweils einen Volladdierer (Eingänge: ai, bi, ci; Ausgänge: si, ci+1). 
 

  
Schaltungen  
Halbaddierer (HA) und Volladdierer (VA) 
 
 

 
 
Merke: 
Die Schaltung des Volladdierers (VA) besteht aus zwei Halbaddierern (HA) und 
einem oder-Gatter. 
 
 
Volladdierer 

 
 



Addier-Schaltungen für Dualzahlen (hier: 4-Bit-Addierer) 
 

 
 
 

1.  Paralleladdierer mit seriellem Übertrag 
 

 Für das Least Significant Bit (LSB) genügt ein Halbaddierer (HA); die höherwertigen Bits 
erfordern jeweils einen Volladdierer, da hier der Übertrag aus der vorherigen Stelle zu 
berücksichtigen ist. 

 
Beachte:  
Das Most Significant Bit s4 des Ergebnisses (hier: der aus den Ziffern s4, . . , s0 bestehenden 
Summe) erhalten wir als den Übertrag (carry) c4, der auch als Überlauf bezeichnet wird. 

 
 

Dezimal:  09  Hexadezimal:  09    Dual: 0000 1001 
        + 10              + 0A        + 0000 1010 
          19                13          0001 0011 

  
 
2. Serieller 1-Bit-Addierer für 4-stellige Dualzahlen 

Die Operanden (hier: die Summanden a und b) werden jeweils in einem 4-Bit-Schieberegister 
abgelegt; nach 4 Taktimpulsen finden wir das 5-Bit-breite Ergebnis (hier: die Summe s) in 
einem weiteren 4-Bit-Schieberegister in Verbindung mit einem Flip-Flop für das MSB. 

  a3 a2 a1 a0 
+  b3 b2 b1 b0 

  s4 s3 s2 s1 s0 
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 Da der Übertrag aus der vorherigen Stelle für die Addition in der jeweils aktuellen Stelle zu 
berücksichtigen ist, wird er in einem Flip-Flop zwischengespeichert. Dieses Flip-Flop  
liefert auch das Most Significant Bit (MSB) des Ergebnisses. 

 
 

 
 
 

Nach 4 Taktimpulsen (hier: Triggerung der Flip-Flops auf der steigenden Taktflanke) sind die 
Schieberegister für die Operanden geleert, das Schieberegister für das Ergebnis enthält 
zusammen mit dem im Flip-Flop gespeicherten MSB das Ergebnis: 

 
 
 

 
 
 
Dezimal:  07  Hexadezimal:  07    Dual:  0000 0111 
        + 14              + 0E         + 0000 1110 
          21                15           0001 0101 

  



Die wesentlichen Komponenten einer CENTRAL PROCESSING UNIT (CPU) bestehen 
aus der CONTROL UNIT (CU) und der ARITHMETIC LOGIC UNIT (ALU). 
 
Die ALU berechnet arithmetische und logische Funktionen, die CU decodiert die 
im Arbeitsspeicher abgelegten Befehle und führt sie aus. 
 
In der Minimalkonfiguration beherrscht die ALU die arithmetische Funktion 
„Addition“ sowie die logischen Operationen „Negation“ (NOT) und 
„Konjunktion“ (AND). Zu Lasten der Rechenzeit lassen sich die übrigen 
arithmetischen und logischen Funktionen auf die genannten, minimal verfügbaren 
Operationen zurückführen. 
 
 
1. Subtraktion 
 
Die duale Subtraktion  
 
 
 
läßt sich auf eine duale Addition nach folgendem Verfahren zurückführen: 

- Bilde das Einerkomplement des Subtrahenden b3 b2 b1 b0 , indem man alle 
Ziffern negiert (invertiert; aus 0 wird 1 und aus 1 wird 0). 

- Addiere das Einerkomplement und die Zahl 1 zum Minuenden. 
- Das Ergebnis ist die gesuchte Differenz; dabei bleibt der Überlauf 

unberücksichtigt. 
 
a) Verdeutliche das genannte Verfahren anhand einiger selbst gewählter 

Beispiele (ein Beweis des Verfahrens ist nicht erforderlich.). 
 
b) Ergänze die Schaltung „4-bit-Paralleladdierer.dsim“ so, daß man nach 

entsprechender Umschaltung wahlweise eine duale Addition oder eine duale 
Subtraktion durchführen kann. 
Hinweise: 
- Ersetze den HA für das least significant bit (LSB) durch einen VA, um 

erforderlichenfalls eine „1“ als Summand einspeisen zu können (wie?). 
- Die Invertierung der Ziffern des Subtrahenden gelingt z. B. durch den 

geeigneten Einsatz von XOR-Gattern. 
 
 
2. Weitere Rechenoperationen 
 
Gegeben sind die (im einfachsten Fall positiven ganzzahligen) Operanden a und 
b. Um zu verdeutlichen, wie man die „höheren“ Rechenoperationen mittels 
geeigneter Iteration auf die Grundoperationen „Addition“ und „Subtraktion“ 
zurückführen kann, schreibe und teste ein Python-Programm, welches die 
Operationen „Multiplikation“ (a*b), „Division“ (a/b, ganzzahlige Division) und 
„Potenzierung“ (a**b) realisiert. 
 
 
3. Logische Operationen 
 
Zeige examplarisch, daß sich die logischen Verknüpfungen 
 

a) a + b 
b) a  b 
c) a (b+c)  

 

auf die Operationen NOT und AND zurückführen lassen. 

  a3 a2 a1 a0 
   b3 b2 b1 b0 

   d3 d2 d1 d0 



Paralleladdierer mit seriellem Übertrag (4-Bit-Addierer) 
 

 
 

Dezimal:  13  Hexadezimal:  0D    Dual: 0000 1101 
        + 09              + 09        + 0000 1001 
          22                16          0001 0110 

 
  

Parallelsubtrahierer mit seriellem Übertrag (4-Bit-Subtrahierer) 
 

 
 

Dezimal:  13  Hexadezimal:  0D    Dual: 0000 1101 
        - 09              - 09        - 0000 1001 
          04                04          0000 0100 
 
Das Carry-Bit c4 (Überlauf) bleibt beim Ergebnis unberücksichtigt. 



# Grundrechenarten
# Die "höheren" Rechenoperationen Multiplizieren, Potenzieren, Dividieren 
# werden durch geeignete Iteration auf die Grundoperationen
# Addieren und Subtrahieren zurückgeführt.

def summe(a,b):
      return a + b

def differenz(a,b):
      return a - b
          
def produkt(a,b):
      ergebnis = 0
      i = 0
      while i <= b - 1:
          ergebnis = summe(ergebnis,a)
          i +=1
      return ergebnis

def potenz(a,b):
      if b == 0: return 1
      else:
        ergebnis = a
        i = 0
        while i <= b - 2:
          ergebnis = produkt(ergebnis,a)
          i = i + 1
        return ergebnis

def quotient(a,b):
      rest = a
      ergebnis = 0
      while rest >= b:
          rest = differenz(rest,b)
          ergebnis += 1
      return ergebnis

print ('Operanden:')
x = int(input('x = '))
y = int(input('y = '))
print()

print('Operation:')
print('  Addition < + >')
print('  Subtraktion < - >')
print('  Multiplikation < * >')
print('  Division < / >')
print('  Potenz < ** > ')
op = input()
print()

if op == '+':    print (x, ' + ', y, '=',summe(x,y))
elif op == '-':  print (x, ' - ', y, '=',differenz(x,y))
elif op == '*':  print (x, ' * ', y, '=',produkt(x,y))
elif op == '/':  print (x, ' // ', y, '=',quotient(x,y))
elif op == '**': print (x, ' ^ ', y, '=',potenz(x,y))
else: print('falsche Eingabe')


