
Zeitkomplexität von Algorithmen 
 
 

Verdeutlichung der O-Notation anhand eines Beispiels 
Der Zeitbedarf A(n) von SelectionSort in Abhängigkeit von der Anzahl n der zu 
verarbeitenden Datenelemente („Problemgröße“) wächst quadratisch für große Werte  
von n:  
A(n)  n2 für große n.  
Man sagt auch: Die Zeitkomplexität von SelectionSort ist von der Ordnung O(n2). 
 
Algorithmus lineare 

Suche 
 
Fakultät 
(rekursiv 
oder 
iterativ) 

binäre 
Suche  
auf einer 
sortierten 
Menge 

Selection-
Sort 
 
Insertion-
Sort 

MergeSort Fibonacci-
Folge 
(rekursiv) 
 
Türme von 
Hanoi 

Ackermann-
Funktion 
(rekursiv) 

Komplexität O(n) O(log2 n) O(n2) O(nlog2 n) O(2n)  

Art des  
Wachstums linear logarithmisch 

polynomial 
hier: 
quadratisch 

linear-
logarithmisch exponentiell 

hyper-
exponentiell 

 
 
Algorithmen mit polynomialer Komplexität sind bedingt brauchbar, Algorithmen mit 
exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar. 
 
 
Rechenzeiten in Abhängigkeit von der Zeitkomplexität des Algorithmus 
 
Annahme:  
Für die Verarbeitung des jeweiligen Problems mit minimaler Problemgröße (n = 1) werde 
ein Zeitbedarf von 1 s = 10-6 s angesetzt. 
 

Komplexität n = 1 n = 100 n = 103 n = 104 n = 106 n = 109 

O(n) 10-6 s 10-4 s 10-3 s 10-2 s 1 s 
103 s  
17 min 

O(log2 n) 10-6 s 7  10-6 s 10  10-6 s 13  10-6 s 20  10-6 s 30  10-6 s 

O(nlog2 n) 10-6 s 7  10-4 s 10-2 s 0,13 s 20 s 
30 000 s  
8 h 

O(n2) 10-6 s 10-2 s 1 s 100 s 
106 s   
12 d 

1012 s   
31 700 a 

O(2n) 10-6 s 
1,31024 s 
  
4  1016 a 

10295 s 
 
3,410287 a 

2 103004 s   

  
Rechenzeit bei exponentieller Zeitkomplexität: 
 

Komplexität n = 1 n = 10 n = 20 n = 40 n = 50 n = 60 

O(2n) 10-6 s 0,001 s 1,05  s 
1,1  106 s 
 
12,7 d 

1,1  109 s 
 
35,7 a 

1,2 1012 s 
 
36 600 a 

 
 
 
Alter des Universums:  13,8 Milliarden Jahre  =  13,8  109 a  =  4,35  1017 s 


