
Zeitkomplexität von Algorithmen

Verdeutlichung der O-Notation anhand eines Beispiels
Der Zeitbedarf A(n) von SelectionSort in Abhängigkeit von der Anzahl n der zu
verarbeitenden Datenelemente („Problemgröße“) wächst quadratisch für große Werte
von n:
A(n)  n2 für große n.
Man sagt auch: Die Zeitkomplexität von SelectionSort ist von der Ordnung O(n2).

Algorithmus lineare

Suche

Fakultät
(rekursiv
oder
iterativ)

binäre
Suche
auf einer
sortierten
Menge

Selection-
Sort

Insertion-
Sort

MergeSort Fibonacci-
Folge
(rekursiv)

Türme von
Hanoi

Ackermann-
Funktion
(rekursiv)

Komplexität O(n) O(log2 n) O(n2) O(nlog2 n) O(2n)

Art des
Wachstums linear logarithmisch

polynomial
hier:
quadratisch

linear-
logarithmisch exponentiell

hyper-
exponentiell

Algorithmen mit polynomialer Komplexität sind bedingt brauchbar, Algorithmen mit
exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar.

Rechenzeiten in Abhängigkeit von der Zeitkomplexität des Algorithmus

Annahme:
Für die Verarbeitung des jeweiligen Problems mit minimaler Problemgröße (n = 1) werde
ein Zeitbedarf von 1 s = 10-6 s angesetzt.

Komplexität n = 1 n = 100 n = 103 n = 104 n = 106 n = 109

O(n) 10-6 s 10-4 s 10-3 s 10-2 s 1 s
103 s 
17 min

O(log2 n) 10-6 s 7  10-6 s 10  10-6 s 13  10-6 s 20  10-6 s 30  10-6 s

O(nlog2 n) 10-6 s 7  10-4 s 10-2 s 0,13 s 20 s
30 000 s 
8 h

O(n2) 10-6 s 10-2 s 1 s 100 s
106 s 
12 d

1012 s 
31 700 a

O(2n) 10-6 s
1,31024 s

4  1016 a

10295 s

3,410287 a

2 103004 s

Rechenzeit bei exponentieller Zeitkomplexität:

Komplexität n = 1 n = 10 n = 20 n = 40 n = 50 n = 60

O(2n) 10-6 s 0,001 s 1,05 s
1,1  106 s

12,7 d

1,1  109 s

35,7 a

1,2 1012 s

36 600 a

Alter des Universums: 13,8 Milliarden Jahre = 13,8  109 a = 4,35  1017 s

