
inf12 14.09.2023

Entwicklung eines Algorithmus InsertionSort

Zu einer natürlichen Zahl n ist ein Array a mit den n Komponenten

a[0], . . . , a[n-1] gegeben (in Python läßt sich ein Array als Liste definieren),

für die die Operationen = , < und > definiert sind.

Ziel: Die Inhalte der Komponenten sind gemäß dem Algorithmus „Sortieren durch

direktes Einfügen“ (InsertionSort) so anzuordnen, daß gilt:

a[0]  a[1]  . . .  a[n-1]

Beispiel (n = 6):

a[0] a[1] a[2] a[3] a[4] a[5]

85 12 59 45 72 51

Die aus der Komponente a[0] bestehende 1-elementige Teilliste gilt als sortiert,

die aus den Komponenten a[1] , . . . , a[n-1] bestehende Teilliste ist zu

Anfang unsortiert.

Wir verwenden die Variable current als temporäre Variable.

1. Schritt:

current = a[1]

i = 1 – 1
if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

Ergebnis des 1. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 85 59 45 72 51

 2

Die aus den Komponenten a[0], a[1] bestehende Teilliste ist sortiert, der

Bereich a[2] , . . . , a[5] unsortiert.

2. Schritt:

current = a[2]

i = 2 – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

Ergebnis des 2. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 59 85 45 72 51

Die aus den Komponenten a[0], a[1], a[2] bestehende Teilliste ist sortiert, der

Bereich a[3] , . . . , a[5] unsortiert.

3. Schritt:

current = a[3]

i = 3 – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

Ergebnis des 3. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 45 59 85 72 51

Die aus den Komponenten a[0], . . . , a[3] bestehende Teilliste ist sortiert, der

Bereich a[4] , a[5] unsortiert.

4. Schritt:

current = a[4]

i = 4 – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

Ergebnis des 4. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 45 59 72 85 51

 3

Die aus den Komponenten a[0], . . . , a[4] bestehende sortierte Teilliste ist mit

der Komponente a[5] zu einer sortierten Gesamtliste zu verschmelzen.

5. Schritt:

current = a[5]

i = 5 – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

Ergebnis des 5. Schritts:

a[0] a[1] a[2] a[3] a[4] a[5]

12 45 51 59 72 85

Bei dem gewählten Beispiel (n = 6) ist der Anweisungsblock

current = a[j]

i = j – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

für j = 1, 2, . . . , 5 zu wiederholen.

Allgemein halten wir fest:

Die zu sortierende Gesamtliste besteht vor jedem Schritt aus einer bereits

sortierten Teilliste und einer unsortierten Teilleiste; vor dem ersten Schritt ist die

aus dem einen Element a[0] bestehende Liste sortiert und die Liste a[1] , . . ,

a[n-1] unsortiert. Nachfolgend wird das jeweils erste Element der unsortierten

Teilliste an der richtigen Stelle in die sortierte Teilliste eingefügt, so daß der

sortierte Bereich mit jedem Schritt wächst, bis die gesamte Liste sortiert ist.

Falls das Array a aus den n Komponenten a[0] , . . . , a[n-1] besteht,

ist der Anweisungsblock

current = a[j]

i = j – 1
while i >= 0:

 if current < a[i]:

 a[i+1] = a[i]

 a[i] = current

 i = i – 1

nacheinander für j = 1, . . . , n1 zu wiederholen. Folglich implementieren wir

diesen Anweisungsblock als Schleifenrumpf einer geeignet initialisierten for-

oder while-Schleife.

