
Binäre Suche Informatik 12 Februar 2024

Gegeben: Ein sortiertes Array a mit den n Komponenten a[0], , a[n-1]

Aufgabe: Entscheide, ob ein für die Variable value eingegebener Suchwert mit dem Wert einer Komponente des

Arrays a übereinstimmt.

Wir durchlaufen den Algorithmus schrittweise anhand des folgenden Beispiels.

Gegeben: Array a mit den Komponenten a[0], , a[9]; n = len(a) = 10

value = 13

Die rekursiv formulierte Boolesche Funktion binarysearch liefert den Wert True, falls value mit dem Wert
irgendeiner Komponente von a übereinstimmt, andernfalls liefert sie den Wert False.

Wir übergeben value und die Liste a[0], . . . , a[9]

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21

der Funktion binarysearch,
welche a[0], . . . , a[9] als lokale Liste array[0], . . . , array[9] fortführt:

array[0] array [1] array [2] array [3] array [4] array [5] array [6] array [7] array [8] array [9]

3 4 5 5 7 8 11 13 19 21

 2

1. Schritt:
Bestimme den mittleren Index middle des Arrays array: middle = len(array)//2 = 10//2 = 5

2. Schritt:
midvalue = array[middle] = array[5] = 8
Vergleiche value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0], . . . , array[4] links von array[5]
Falls value > midvalue: suche in der Liste array[6], . . . , array[9] rechts von array[5]

hier: wegen 13 > 8 suche in der Liste array[6], . . . , array[9] .

binarysearch übergibt value und die Liste array[6], . . . , array[9]

array[6] array [7] array [8] array [9]

11 13 19 21

der Funktion binarysearch,
welche array [6], . . . , array [9] als lokale Liste array[0], . . . , array[3] fortführt:

array[0] array[1] array[2] array[3]

11 13 19 21

 3

1. Schritt:
Bestimme den mittleren Index middle des Arrays array: middle = len(array)//2 = 4//2 = 2

2. Schritt:
midvalue = array[middle] = array[2] = 19
Vergleiche value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0], array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suche in der Liste array[0], . . . , array[1] .

binarysearch übergibt value und die Liste array[0], . . . , array[1]

array[0] array[1]

11 13

der Funktion binarysearch,
welche array [0], . . . , array [1] als lokale Liste array[0], . . . , array[1] fortführt:

array[0] array[1]

11 13

 4

1. Schritt:
Bestimme den mittleren Index middle des Arrays array: middle = len(array)//2 = 2//2 = 1

2. Schritt:
midvalue = array[middle] = array[1] = 13
Vergleiche value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0] links von array[1]
Falls value > midvalue: die Liste [] rechts von array[1] ist leer;

dann gibt binarysearch den Wert False zurück: nicht gefunden!

Hier: da der Suchwert value und array[middle] übereinstimmen, hat der Boolesche Term

value == midvalue den Wert True; folglich liefert binarysearch den Wert True: gefunden!

Wäre 12 der Suchwert, erhielte man wegen 12<13 im 2. Schritt: suche in der Liste array[0] links von array[1]

binarysearch übergibt value und die Liste array[0]

array[0]

11

der Funktion binarysearch, welche den Wert False liefert, da array[0]value und array die Länge 1 hat.
Zusammengefaßt: binarysearch liefert den Wert False, falls

array == [] or (array[0] != value and len(array) == 1)

den Wert True annimmt.

