
Aufgabenblatt Nr. 8 inf12 26.02.2024

20. Folgende als Boolesche Funktion formulierte Funktion binarysearch

 liefert den Wert True, falls die Suche erfolgreich war, andernfalls den Wert False.

a) Formuliere eine rekursiv definierte Funktion binarysearch, welche bei erfolgreicher
Suche den ganzzahligen Index index (0  index  n-1) derjenigen Komponente des
Arrays a ausgibt, für die gilt: value = a[index], andernfalls für index den Wert -1
ausgibt (beachte: der Wert -1 kommt als Index des Arrays a nicht vor).

 Anleitung:

Wenn a[begin], , a[end] der jeweilige Suchbereich innerhalb des Arrays a
ist, wäre der Aufruf der Funktion binarysearch zur Suche von value im sortierten
n-elementigen Feld a[0], , a[n-1]:
binarysearch(value, a, 0, n-1) oder binarysearch(value, a, 0, len(a)-1) .

Somit sind value, das gesamte Feld a und die jeweiligen Bereichsgrenzen bei jedem
Aufruf an die Funktion binarysearch zu übergeben; Formulierung in Python:

def binarysearch(value, array, begin, end):

b) Implementiere die in a) formulierte Funktion binarysearch innerhalb des Algorithmus
MergeSort; verwende hierzu als Quelltext z. B.

 https://kalle2k.lima-city.de/computerscience/Informatik_12/2023-
24/BinarySearch/MergeSort.py.txt

 und teste das Programm für verschiedene Eingaben.

c) Ergänze das Programm, um die Anzahl der Aufrufe und den Zeitbedarf von

binarysearch zu ermitteln.

d) Freiwillige Zusatzaufgabe: Konvertiere den Python-Quelltext mittels eines online-

tools in einen C++-Quelltext; compiliere den C++-Quelltext zu einem ausführbaren
Programm. Bestätige, daß eine Compiler-Sprache (wie z. B. C++) einer Interpreter-
Sprache (wie z. B. Python) hinsichtlich des Zeitbedarfs während der Laufzeit
überlegen ist.

21. Die Anzahl der Komponenten im zu sortierenden oder zu durchsuchenden Feld a beträgt

n; allgemein ist diese Anzahl ein Maß für die „Problemgröße“ der jeweiligen
Aufgabenstellung.

 Beispiele für die zeitliche Komplexität A(n) zur Laufzeit:

SelectionSort: A(n)  n2

Mergesort: A(n)  n  log2(n)
Fibonacci-Folge (rekursiv): A(n)  2n
BinarySearch: A(n)  log2(n)
Sequentielle Suche: A(n)  n

 Bilde für vorstehende Algorithmen jeweils die Quotienten

 A(10 000)/A(1000)
A(100 000)/A(1000)
A(1 000 000)/A(1000)
A(1 000 000 000)/A(1000)

und beurteile die praktische Brauchbarkeit des jeweiligen Algorithmus bei wachsender
Problemgröße.

