Aufgabenblatt Nr. 8 inf12 26.02.2024

20.

21.

Folgende als Boolesche Funktion formulierte Funktion binarysearch

ef binarysearch(value, array):

array == [] (array[0] != walue len{array) == 1):
midvalue = array[len{array)//2]
value == midvalue: 1 T rue
value < midvalue: retu binarysearch(value, arrayl[:len(array)//2])

1 binarysearch(value, array([len(array}//2 + 1:])

liefert den Wert True, falls die Suche erfolgreich war, andernfalls den Wert False.

a) Formuliere eine rekursiv definierte Funktion binarysearch, welche bei erfolgreicher
Suche den ganzzahligen Index index (0 < index < n-1) derjenigen Komponente des
Arrays a ausgibt, flr die gilt: value = a[index], andernfalls fir index den Wert -1
ausgibt (beachte: der Wert -1 kommt als Index des Arrays a nicht vor).

Anleitung:

Wenn a[begin],, a[end] der jeweilige Suchbereich innerhalb des Arrays a
ist, ware der Aufruf der Funktion binarysearch zur Suche von value im sortierten
n-elementigen Feld a[0],, a[n-1]:

binarysearch(value, a, 0, n-1) oder binarysearch(value, a, 0, len(a)-1) .

Somit sind value, das gesamte Feld a und die jeweiligen Bereichsgrenzen bei jedem
Aufruf an die Funktion binarysearch zu lGbergeben; Formulierung in Python:

def binarysearch(value, array, begin, end):

b) Implementiere die in a) formulierte Funktion binarysearch innerhalb des Algorithmus
MergeSort; verwende hierzu als Quelltext z. B.
https://kalle2k.lima-city.de/computerscience/Informatik 12/2023-
24/BinarySearch/MergeSort.py.txt
und teste das Programm fiir verschiedene Eingaben.

c) Erganze das Programm, um die Anzahl der Aufrufe und den Zeitbedarf von
binarysearch zu ermitteln.

d) Freiwillige Zusatzaufgabe: Konvertiere den Python-Quelltext mittels eines online-
tools in einen C++-Quelltext; compiliere den C++-Quelltext zu einem ausfiihrbaren
Programm. Bestdtige, daB eine Compiler-Sprache (wie z. B. C++) einer Interpreter-
Sprache (wie z. B. Python) hinsichtlich des Zeitbedarfs wahrend der Laufzeit
Uberlegen ist.

Die Anzahl der Komponenten im zu sortierenden oder zu durchsuchenden Feld a betragt
n; allgemein ist diese Anzahl ein MaB fir die ,ProblemgréBe™ der jeweiligen
Aufgabenstellung.

Beispiele fur die zeitliche Komplexitat A(n) zur Laufzeit:

SelectionSort: A(n) ~ n?
Mergesort: A(n) ~ n - log,(n)
Fibonacci-Folge (rekursiv): A(n) ~ 2"
BinarySearch: A(n) ~ log,(n)
Sequentielle Suche: A(n) ~n

Bilde fir vorstehende Algorithmen jeweils die Quotienten

A(10 000)/A(1000)

A(100 000)/A(1000)

A(1 000 000)/A(1000)

A(1 000 000 000)/A(1000)

und beurteile die praktische Brauchbarkeit des jeweiligen Algorithmus bei wachsender
ProblemgréBe.

