
Sortieren durch Mischen ("MergeSort")

Aufgabe:

Gegeben ist eine Liste L = {a[0], a[2], a[3], , a[n-1]}

von n Datenelementen, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt

sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daß gilt:

a[0] ≤ a[2] ≤. ≤ a[n-1] .

Wir fassen die Elemente der Liste auf als Komponenten eines arrays a.

Strategie: "Divide et impera"

Eine Liste, die nur ein einziges Element enthält, ist bereits sortiert.

Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, läßt sich in 4 Schritten
bewältigen:

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten

2). Sortiere die erste Teilliste gemäß den Schritten 1). - 4).

3). Sortiere die zweite Teilliste gemäß den Schritten 1). - 4).

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste

Falls left < right wahr ist, sortiert die rekursiv definierte Funktion

sort(array, left, right)

die Liste

array[left], , array[right]

unter Verwendung der Funktion merge.

Die Funktion

merge(array, left, middle, right)

mischt die sortierten Teillisten

array[left], , array[middle]

und

array[middle+1], , array[right]

zu der sortierten Gesamtliste

array[left], , array[right] .

Quellcode der Funktion sort in Python:

 2

def sort(array, left, right):
 if left >= right:
 return
 middle = (left + right)//2
 sort(array, left, middle)
 sort(array, middle + 1, right)
 merge(array, left, middle, right)

Aufruf zum Sortieren der aus den n Komponenten

 a[0], a[2], a[3], , a[n-1]

bestehenden Liste a:

 sort(a, 0, len(a)-1)

Aufwandsbetrachtung:

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus
n Komponenten bestehende Liste zu sortieren.

Dann gilt:

A(n) = 2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen
+ Aufwand zum Mischen zweier sortierter Teillisten

A(n) = A(n/2) + A(n/2)
+ Aufwand zum Mischen zweier sortierter Teillisten

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wächst linear mit der Anzahl n der zu sortierenden Datenelemente; somit
erhalten wir für den Funktionsterm A(n) die Funktionalgleichung (c = Konstante
= Proportionalitätsfaktor)

(*) A(n) = A(n/2) + A(n/2) + c  n mit der Bedingung
(**) A(1) = 0 .

Behauptung: Die Funktion

A(n) = c  n  log2(n)

ist Lösung der Funktionalgleichung (*) mit der Anfangsbedingung (**).

Beweis:

A(n/2) + A(n/2) + c  n = 2  A(n/2) + c  n

= 2  c  n/2  log2(n/2) + c  n
= c  n  (log2(n)  log2(2)) + c  n
= c  n  (log2(n)  1) + c  n
= c  n  log2(n)
= A(n)

Damit ist (*) erfüllt; wegen log2(1) = 0 genügt A(n) auch der Bedingung (**).

 3

Bemerkung: Mit Methoden der Analysis läßt sich die Eindeutigkeit der Lösung des
Problems (*), (**) zeigen, somit ist mit A(n) = c  n  log2(n) die einzige Lösung
der Funktionalgleichung gefunden.

Allgemein läßt sich beweisen, daß der Aufwand zum Sortieren von n Datensätzen
grundsätzlich mindestens von der Ordnung n  log2(n) wächst. In diesem Sinne
kann das Sortierverfahren „MergeSort“ als optimales Vefahren gelten.

Ergänzende Betrachtung zum Speicherplatzbedarf:

Nachdem wir festgestellt haben, daß der Aufwand zum Sortieren von n
Datenelementen von der Ordnung n  log2(n) wächst und damit ein Optimum
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn
rekursive Algorithmen haben grundsätzlich den Nachteil, daß sie während der
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. Daß dieser Effekt bei
MergeSort nicht oder nur unwesentlich ins Gewicht fällt, zeigt folgende
Überlegung:

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.

O. B. d. A. sei n eine Zweierpotenz, d. h. n=2k, k{0, 1, 2, 3, }.

Bemerkung: Der Pfeil bedeutet: „ruft auf“

n = 1: sort(a,0,0) 1 Aufruf

n = 2: sort(a,0,1)

 sort(a,0,0) sort(a,1,1)

 1 + 2  1 = 3 Aufrufe

n = 4: sort(a,0,3)

 sort(a,0,1) sort(a,2,3)

 sort(a,0,0) sort(a,1,1) sort(a,2,2) sort(a,3,3)

 1 + 2  3 = 7 Aufrufe

 4

n = 8: sort(0,7)

 sort(0,3) sort(4,7)

 sort(0,1) sort(2,3) sort(4,5) sort(6,7)

 sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

 1 + 2  7 = 15 Aufrufe

f(1) = 1 = 1 = 2  1 – 1

f(2) = 1 + 2  1 = 3 = 2  2 – 1

f(4) = 1 + 2  3 = 7 = 2  4 – 1

f(8) = 1 + 2  7 = 15 = 2  8 – 1

f(16) = 1 + 2  15 = 31 = 2  16 – 1

f(32) = 1 + 2  31 = 63 = 2  32 – 1

allgemein:

f(n) = 2  n – 1

Offensichtlich ist f(n) Lösung der rekursiv definierten Funktionalgleichung

 f(n) = 1 + 2  f(n/2)

mit der Anfangsbedingung f(1) = 1 .

Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der
Speicherplatzbedarf während der Laufzeit wächst somit linear mit n, also
wesentlich schwächer als die Anzahl A(n) elementarer Rechenoperationen.

Die rekursiv veranlaßten Aufrufe der Funktion sort zerlegen die zu sortierende
Liste in Teillisten jeweils der Länge 1, die als ein-elementige Listen bereits
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils
einer sortierten Liste gemäß folgendem Diagramm:

Bemerkung: Der Pfeil bedeutet: „wird gemischt“

 5

 merge(0,3,7)

 a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Für die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar:

g(1) = 0
g(n) = 1 + 2  g(n/2) falls n = 2k, k > 1

Lösung der vorstehenden Funktionalgleichung:

g(n) = n  1

Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe
der Funktion merge wachsen jeweils linear mit n.

Februar 2021

Bemerkung:
Für den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten
wir bei

- SelectionSort: A(n)  n2
- MergeSort: A(n)  n  log2(n)
- Fibonacchi-Folge: A(n)  2n (bei rekursiver Berechnung)
- BinarySearch: A(n)  log2(n)

Entsprechend haben

- SelectionSort quadratische Komplexität,
- MergeSort linear-logarithmische Komplexität,
- die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexität,
- BinarySearch logarithmische Komplexität.

Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar.

