
Sortieren durch Mischen ("MergeSort")  
 
Aufgabe:  
 
Gegeben ist eine Liste L = {a[0], a[2], a[3], . . . . , a[n-1]}  

von n Datenelementen, für die die Ordnungsrelationen < , > , ≤, ≥ erklärt  

sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daß gilt:  

a[0] ≤ a[2] ≤. . . . . ≤ a[n-1] . 

Wir fassen die Elemente der Liste auf als Komponenten eines arrays a. 

 
 
Strategie: "Divide et impera"  
 
Eine Liste, die nur ein einziges Element enthält, ist bereits sortiert. 
 
Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, läßt sich in 4 Schritten 
bewältigen:  
 

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten  
 

2). Sortiere die erste Teilliste gemäß den Schritten 1). - 4).  
 

3). Sortiere die zweite Teilliste gemäß den Schritten 1). - 4).  
 

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste 
 
 
Falls left < right wahr ist, sortiert die rekursiv definierte Funktion 
 

sort(array, left, right)  
 

die Liste  
 

array[left], . . . . , array[right] 
 

unter Verwendung der Funktion merge. 
 

Die Funktion 
  

merge(array, left, middle, right) 
 

mischt die sortierten Teillisten  
 

array[left], . . . . , array[middle] 
 

und 
 

array[middle+1], . . . . , array[right] 
 

zu der sortierten Gesamtliste 
 

array[left], . . . . , array[right] . 
 
Quellcode der Funktion sort in Python: 
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def sort(array, left, right):   
     if left >= right:   
          return   
     middle = (left + right)//2   
     sort(array, left, middle)   
     sort(array, middle + 1, right)   
     merge(array, left, middle, right) 
 
 
Aufruf zum Sortieren der aus den n Komponenten  
 

 a[0], a[2], a[3], . . . . , a[n-1] 
 

bestehenden Liste a: 
 

 sort(a, 0, len(a)-1) 
 
 
 
Aufwandsbetrachtung: 
 

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie 
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus 
n Komponenten bestehende Liste zu sortieren. 
 

Dann gilt: 
 

A(n)  =  2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen  
+ Aufwand zum Mischen zweier sortierter Teillisten 

 

A(n)  =  A(n/2) + A(n/2)  
+ Aufwand zum Mischen zweier sortierter Teillisten 

 

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wächst linear mit der Anzahl n der zu sortierenden Datenelemente; somit 
erhalten wir für den Funktionsterm A(n) die Funktionalgleichung (c = Konstante 
= Proportionalitätsfaktor) 
 

(*)  A(n)  = A(n/2) + A(n/2) + c  n   mit der Bedingung 
(**)  A(1)  = 0 . 

 

Behauptung: Die Funktion  
 

A(n) = c  n  log2(n) 
 

ist Lösung der Funktionalgleichung (*) mit der Anfangsbedingung (**). 
 
Beweis: 
 
A(n/2) + A(n/2) + c  n   =  2  A(n/2) + c  n   

=  2  c  n/2  log2(n/2) + c  n  
=  c  n  (log2(n)   log2(2)) + c  n 
=  c  n  (log2(n)   1) + c  n 
=  c  n  log2(n)  
=  A(n)  
 

Damit ist (*) erfüllt; wegen log2(1) = 0 genügt A(n) auch der Bedingung (**). 
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Bemerkung: Mit Methoden der Analysis läßt sich die Eindeutigkeit der Lösung des 
Problems (*), (**) zeigen, somit ist mit A(n) = c  n  log2(n) die einzige Lösung 
der Funktionalgleichung gefunden. 
 
Allgemein läßt sich beweisen, daß der Aufwand zum Sortieren von n Datensätzen 
grundsätzlich mindestens von der Ordnung n  log2(n) wächst. In diesem Sinne 
kann das Sortierverfahren „MergeSort“ als optimales Vefahren gelten.  
 
 
Ergänzende Betrachtung zum Speicherplatzbedarf:  
 

Nachdem wir festgestellt haben, daß der Aufwand zum Sortieren von n 
Datenelementen von der Ordnung n  log2(n) wächst und damit ein Optimum 
erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar elegante, aber 
rekursive Formulierung des Sortieralgorithmus nicht aufgehoben wird; denn 
rekursive Algorithmen haben grundsätzlich den Nachteil, daß sie während der 
Laufzeit mehr Arbeitsspeicher beanspruchen als iterative. Daß dieser Effekt bei 
MergeSort nicht oder nur unwesentlich ins Gewicht fällt, zeigt folgende 
Überlegung:  
 

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion 
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.  
 

O. B. d. A. sei n eine Zweierpotenz, d. h.  n=2k,  k{0, 1, 2, 3, . . . . . . }.  
 
Bemerkung: Der Pfeil                    bedeutet: „ruft auf“ 
 
n = 1:                              sort(a,0,0)                                       1 Aufruf 
 
 
n = 2:                              sort(a,0,1) 
 
 
 
                             sort(a,0,0)        sort(a,1,1)                          
 
                                                                            1 + 2  1 = 3 Aufrufe 
 
 
 
n = 4:                                 sort(a,0,3) 
 
 
 
                          sort(a,0,1)                  sort(a,2,3)                       
 
 
 
 
         sort(a,0,0)        sort(a,1,1)         sort(a,2,2)       sort(a,3,3) 
 
                                                                             1 + 2  3 = 7 Aufrufe 
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n = 8:                                          sort(0,7) 
 
 
 
                                sort(0,3)                                           sort(4,7)                       
 
 
 
 
                  sort(0,1)                sort(2,3)                    sort(4,5)                   sort(6,7) 
 
 
 
   sort(0,0)     sort(1,1)    sort(2,2)   sort(3,3)       sort(4,4)    sort(5,5)     sort(6,6)     sort(7,7) 
 
 
                                                                             1 + 2  7 = 15 Aufrufe 
 
 
 
f(1)  = 1  =   1  =  2  1  – 1  

f(2)  = 1 + 2  1  =   3  =  2  2  – 1  

f(4)  = 1 + 2  3  =   7  =  2  4  – 1  

f(8)  = 1 + 2  7  =  15  =  2  8  – 1  

f(16) = 1 + 2  15 =  31  =  2  16 – 1  

f(32) = 1 + 2  31  =  63  =  2  32 – 1  

 
allgemein:  
 
f(n) = 2  n – 1  
 
Offensichtlich ist f(n) Lösung der rekursiv definierten Funktionalgleichung  

 f(n) = 1 + 2  f(n/2)  

mit der Anfangsbedingung  f(1) = 1 .  

 
Die Anzahl f(n) der gleichzeitig aktiven Aufrufe von MergeSort und damit der 
Speicherplatzbedarf während der Laufzeit wächst somit linear mit n, also 
wesentlich schwächer als die Anzahl A(n) elementarer Rechenoperationen. 
 
 
 
Die rekursiv veranlaßten Aufrufe der Funktion sort zerlegen die zu sortierende 
Liste in Teillisten jeweils der Länge 1, die als ein-elementige Listen bereits 
sortiert sind. Die Funktion merge mischt je zwei sortierte Teillisten zu jeweils 
einer sortierten Liste gemäß folgendem Diagramm: 
 
 
Bemerkung: Der Pfeil                    bedeutet: „wird gemischt“ 
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                                                                   merge(0,3,7) 
  

                                            a[0]   a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]       
 

 
Für die Anzahl g(n) der Aufrufe von merge verifiziert man unmittelbar: 

 
g(1) = 0 
g(n) = 1 + 2  g(n/2)      falls   n = 2k,  k > 1 
 
Lösung der vorstehenden Funktionalgleichung: 
 
g(n) = n  1 

 
 
Die Anzahl f(n) der Aufrufe der Funktion sort und die Anzahl g(n) der Aufrufe 
der Funktion merge wachsen jeweils linear mit n. 
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Bemerkung:  
Für den Aufwand A(n) und folglich den Zeitbedarf zur Laufzeit des Algorithmus erhalten 
wir bei 
 

- SelectionSort:  A(n)  n2 
- MergeSort:        A(n)  n  log2(n) 
- Fibonacchi-Folge:  A(n)  2n  (bei rekursiver Berechnung) 
- BinarySearch: A(n)  log2(n) 

 
 
Entsprechend haben 
 

- SelectionSort quadratische Komplexität, 
- MergeSort linear-logarithmische Komplexität, 
- die rekursive Berechnung der Fibonacchi-Folge exponentielle Komplexität, 
- BinarySearch logarithmische Komplexität. 

 
Algorithmen mit exponentieller Komplexität erweisen sich in der Praxis als unbrauchbar. 




