Sortieren durch direkte Auswahl
Wir beschränken uns zunächst darauf, eine Liste von ganzen Zahlen (hier: Zufallszahlen) der Größe nach, und zwar aufsteigend, zu sortieren. Den Algorithmus später auf andere Datenstrukturen (z. B. Namen, Verbundtypen) zu übertragen, ist vergleichsweise einfach und bereitet keine Schwierigkeiten.
Die Python-Anweisungen range, list und len:

a)
range-Anweisung

Die range-Anweisung definiert einen Bereich ganzer Zahlen.

range(10)
definiert den Bereich 0, 1, . . . , 9

range(4,21)
definiert den Bereich 4, 5, . . . , 20

range(4,21,3)
definiert den Bereich 4, 7, 10, . . . , 16, 19

range(-4,3)
definiert den Bereich -4, -3, -2, -1, 0, 1, 2

Allgemein gilt:

range(start, stop)

definiert den Bereich start, , stop-1 ganzer Zahlen,

range(start, stop, step)

definiert den Bereich start, mit der Schrittweite step, wobei die Zahl stop nicht mehr enthalten ist.

b)
Erstellen einer Liste ganzer Zahlen

a = list(range(4,13)) erzeugt die Liste

[4, 5, 6, 7, 8, 9, 10, 11, 12];

die (in diesem Fall 9) Elemente dieser Liste nennen wir auch Komponenten, auf die man mit a[0], a[1], . . . , a[8] zugreifen kann (mit Erzeugung der Liste dieses Beispiels sind die Komponenten a[0], a[1], . . . , a[8] in dieser Reihenfolge mit den Werten 4, 5, , 12 belegt). Allerdings läßt sich jeder Komponente a[i] eine beliebige andere ganze Zahl zuweisen.
Bemerkung:
Unter einem Feld oder array verstehen wir eine Folge von Variablen gleichen Typs; mit der Anweisung

a = list(range(4,13)) haben wir also ein array a erzeugt mit den Komponenten a[0], a[1], . . . , a[8].
c)
len(a) bestimmt die Anzahl der Komponenten der Liste a, in dem Beispiel aus b) gilt somit: len(a) = 9 .
1.
Erstellen einer Liste mit n Komponenten, denen Zufallszahlen zugewiesen werden (n ist eine natürliche Zahl)
Vorbemerkung:

Die Python-Anweisung randint ist eine vordefinierte Funktion des random- Moduls in Python; Syntax: randint(r,s) mit ganzen Zahlen r und s, r (s, erzeugt eine Zufallszahl aus dem Intervall [r, s].
Beispiele:
randint(1,1000)erzeugt eine Zufallszahl aus dem Bereich 1, , 1000

randint(-7,12)erzeugt eine Zufallszahl aus dem Bereich -7, , 12
Ein Algorithmus, der nach Eingabe einer natürlichen Zahl n eine Liste aus n Zufallszahlen generiert, formuliert als Python-Quelltext in der Schriftart Courier New, so daß man den Quelltext unmittelbar durch copy und paste in einen Editor für Python-Programme übernehmen kann:
array mit zufallszahlen

from random import randint

n = int(input('Laenge des arrays = '))

print()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , a[n-1]

a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a

for i in range(0,n):

 a[i] = randint(1,1000)

Ausgabe des arrays

for i in range(0,n):

 print(a[i])
2.
Bestimmung des kleinsten Elements der Liste aus n Komponenten
Der Inhalt des Speicherplatzes a[0] wird sukzessive mit den Inhalten von a[1], . . . , a[n-1] verglichen; falls gilt a[i] < a[0], 1 (i (n-1, werden die Inhalte der Speicherplätze a[i] und a[0] ausgetauscht; hierzu wird, bevor a[0] den Wert von a[i] erhält, der ursprüngliche Wert von a[0] mittels der Hilfsvariablen temp gesichert und nach der Zuweisung a[0] = a[i] mit
a[i] = temp an a[i] übergeben.
Die Durchführung der Vergleiche und der ggf. erforderliche Austausch der Inhalte von a[0]und a[i] werden hier an die Funktion min(x) delegiert:

def min(x):

 for i in range(1,len(x)):

 if x[i] < x[0]:

 temp = x[0]

 x[0] = x[i]

 x[i] = temp

Mit dem Aufruf min(a) wird die Funktion min auf das aus den Komponenten a[0], . . . , a[n-1] bestehende array a angewendet.
from random import randint

n = int(input('Laenge des arrays = '))

print()

Erzeugen des arrays mit dem Namen a

und den n Komponenten a[0], . . . , a[n-1]

a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a

for i in range(0,n):

 a[i] = randint(1,1000)

Ausgabe des arrays

for i in range(0,n):

 print(a[i])

Bestimmen des kleinsten Elements:

Wir definieren eine Funktion min(x), die auf

das array a angewendet wird, das kleinste Element

bestimmt und dieses der Komponente a[0] zuweist.

def min(x):

 for i in range(1,len(x)):

 if x[i] < x[0]:

 temp = x[0]

 x[0] = x[i]

 x[i] = temp

Aufruf der auf das array a anzuwendenden Funktion min

min(a)

Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle

print()

for i in range(0,n):

 print(a[i])
Nachdem das kleinste Element der Liste a[0], . . . , a[n-1] dem Speicherplatz a[0] zugewiesen wurde, bestimmen wir das kleinste Element der „Restliste“ a[1], . . . , a[n-1] und weisen es dem Speicherplatz a[1] zu.
Wenn wir dieses Verfahren sukzessive auf die weiteren „Restlisten“
a[j], . . . , a[n-1] mit 2 (j (n-2 anwenden, erhalten wir ein array a, dessen Komponenten gemäß a[0] (a[1] (. . . (a[n-1] aufsteigend sortiert sind.
Wir modifizieren die Funktion min(x), indem wir einen weiteren Parameter j ergänzen:
def min(x,j):

 for i in range(j+1,len(x)):

 if x[i] < x[j]:

 temp = x[j]

 x[j] = x[i]

 x[i] = temp

Die mit dem Parameterwert j auf das array a angewendete Funktion min(x,j)ermittelt in der Liste a[j], . . . , a[n-1] das kleinste Element und weist es dem Speicherplatz a[j] zu.
3. Variante zu 2:
from random import randint

n = int(input('Laenge des arrays = '))

print()

Erzeugen des arrays mit dem Namen a

und den n Komponenten a[0], . . . , a[n-1]

a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a

for i in range(0,n):

 a[i] = randint(1,1000)

Ausgabe des arrays

for i in range(0,n):

 print(a[i])

Bestimmen des kleinsten Elements:

Wir definieren eine Funktion min(x,j), die auf

die Komponenten a[j], . . , a[n-1] des arrays a

angewendet wird, das kleinste Element

bestimmt und dieses der Komponente a[j] zuweist.
def min(x,j):

 for i in range(j+1,len(x)):

 if x[i] < x[j]:

 temp = x[j]

 x[j] = x[i]

 x[i] = temp

Aufruf der auf das array a anzuwendenden Funktion min

min(a,0)

Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle

print()

for i in range(0,n):

 print(a[i])

4.
Bestimmung der 2 kleinsten Elemente der Liste aus n Komponenten

from random import randint

n = int(input('Laenge des arrays = '))

print()

Erzeugen des arrays mit dem Namen a

und den n Komponenten a[0], . . . , a[n-1]

a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a

for i in range(0,n):

 a[i] = randint(1,1000)

Ausgabe des arrays

for i in range(0,n):

 print(a[i])

Wir definieren eine Funktion min(x,j), die auf

die Komponenten a[j], . . , a[n-1] des arrays a

angewendet wird, das kleinste Element

bestimmt und dieses der Komponente a[j] zuweist.
def min(x,j):

 for i in range(j+1,len(x)):

 if x[i] < x[j]:

 temp = x[j]

 x[j] = x[i]

 x[i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min

min(a,0)
min(a,1)
Ausgabe der Liste
print()

for i in range(0,n):

 print(a[i])

5.
Bestimmung der 3 kleinsten Elemente der Liste aus n Komponenten
.

.

Aufrufe der auf das array a anzuwendenden Funktion min

min(a,0)
min(a,1)

min(a,2)

.

.

6.
Sortieren der aus den Komponenten a[0], , a[n-1] bestehenden Liste a
Wir sortieren das array a mit den Komponenten a[0], . . . , a[n-1], indem wir die Funktion min(x,j) mit j = 0, 1, . . . , n-2 nacheinander auf das array a anwenden; die wiederholte Anwendung realisieren wir mit einer while-Schleife, deren Schleifenindex j mit dem Wert 0 initialisiert wird:
j = 0

while j <= n-2:

 min(a,j)

 j +=1

Der hier vorgestellte Algorithmus ist unter der Bezeichnung
„Sortieren durch direkte Auswahl“
bekannt.

Der folgende in Python codierte Algorithmus sortiert aufsteigend ein array a der Länge n, dessen Komponenten a[0], . . . , a[n-1] Zufallszahlen aus dem Bereich 1, . . . , 100000 zugewiesen wurden:

sorting by direct selection

from random import randint

n = int(input('Laenge des arrays = '))

print()

Erzeugen des arrays mit dem Namen a

und den n Komponenten a[0], . . . , a[n-1]

a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a

for i in range(0,n):

 a[i] = randint(1,100000)

Ausgabe des arrays

for i in range(0,n):

 print(a[i])

Die auf die Komponenten a[j], . . , a[n-1] des arrays a

angewendete Funktion min(x,j) bestimmt das kleinste Element

und weist dieses der Komponente a[j] zu.

def min(x,j):

 for i in range(j+1,len(x)):

 if x[i] < x[j]:

 temp = x[j]

 x[j] = x[i]

 x[i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min

j = 0

while j <= n-2:

 min(a,j)

 j +=1

Ausgabe der sortierten Liste

print()

print('Sortierte Liste:')

for i in range(0,n):

 print(a[i])

Selbach
update 26.01.2021

SelectionSort mit Ermittlung des Zeitbedarfs zur Laufzeit:
[image: image1.png][sorting by direct selection
% Nach Zingabe eine: natuerlichen Zahl o wizd sin
aus n Komponenten bestenendes array sorcierc.

from random import randint
import cime

n = int(input('Laenge des arrays: '))
print()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0l, . . . , aln-1]
a = list(zange(l,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for 1 in range(0,m):
ali] = randint (1,1000000)

Busgabe des arrays
r = inc(input (*Wieviele Elemente sollen angezeigt werden? '))
print()
for 1 in range(0,1):

print(alil)

Dic auf dic Komponenten a[j], . . , aln-1] des arrays a
angewendete Funktion min(x,3) bestimmt das kleinste Element
und weist dieses der Komponente al3] zu.

def min(x,3):
£or 1 in range(3+1,len(x)):
if x(1] < %313
cemp = x(3]
x[3] = x(1]
x[1] = temp

Bufrufe der auf das array a anzuvendenden Funktion min
mit Ermittlung des Zeitbedarfs zur Laufzeit

starc = time.time()

3=0

while j <= n-
min(a,3)
341

end = time.time()

Busgabe der sortierten Liste

print()
print(*Sortierte Liste:')
print()

for 1 in range(0,1):
print(alil)

print()
print('Zeitaufwand zum Sortieren von',n, 'Elementen:

(:7.3£) s*

format (end-start))

sorting by direct selection

Nach Eingabe einer natuerlichen Zahl n wird ein

aus n Komponenten bestehendes array sortiert.

from random import randint

import time

n = int(input('Laenge des arrays: '))

print()

Erzeugen des arrays mit dem Namen a

und den n Komponenten a[0], . . . , a[n-1]

a = list(range(1,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a

for i in range(0,n):

 a[i] = randint(1,1000000)

Ausgabe des arrays

r = int(input('Wieviele Elemente sollen angezeigt werden? '))

print()

for i in range(0,r):

 print(a[i])

Die auf die Komponenten a[j], . . , a[n-1] des arrays a

angewendete Funktion min(x,j) bestimmt das kleinste Element

und weist dieses der Komponente a[j] zu.

def min(x,j):

 for i in range(j+1,len(x)):

 if x[i] < x[j]:

 temp = x[j]

 x[j] = x[i]

 x[i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min

mit Ermittlung des Zeitbedarfs zur Laufzeit

start = time.time()

j = 0

while j <= n-2:

 min(a,j)

 j +=1

end = time.time()

Ausgabe der sortierten Liste

print()

print('Sortierte Liste:')

print()

for i in range(0,r):

 print(a[i])

print()

print('Zeitaufwand zum Sortieren von',n,'Elementen: {:7.3f} s'.format(end-start))

