Sortieren durch Mischen ("MergeSort")

Aufgabe:

Gegeben ist eine Liste L = {a[0], a[1], a[2],...., a[n-1]}
von n Datenelementen, flr die die Ordnungsrelationen <, >, <, > erklart
sind. Die Inhalte dieser Datenelemente sind so anzuordnen, daB gilt:
a[0] =a[1l] =..... < a[n-1].
Wir fassen die Elemente der Liste auf als Komponenten eines arrays a.

Strategie: "Divide et impera”
Eine Liste, die nur ein einziges Element enthalt, ist bereits sortiert.

Die Aufgabe, die n-elementige Liste (n > 1) zu sortieren, laBt sich in 4 Schritten
bewaltigen:

1). Teile die n-elementige Liste in zwei etwa gleichlange Teillisten
2). Sortiere die erste Teilliste gemaB den Schritten 1). - 4).
3). Sortiere die zweite Teilliste geman den Schritten 1). - 4).

4). Mische die sortierten Teillisten zu einer sortierten Gesamtliste

Falls left < right wahr ist, sortiert die rekursiv definierte Funktion
sort (array, left, right)

die Liste

array[left], , array[right]

unter Verwendung der Funktion merge.

Die Funktion

merge (array, left, middle, right)

mischt die sortierten Teillisten

array[left], , array[middle]
und
array[middle+l], , array[right]

zu der sortierten Gesamtliste

array[left], , array[right]

Quellcode der Funktion sort in Python:

def sort(array, left, right):
if left == right:
return
middle = (left + right)//2
sort (array, left, middle)
sort (array, middle + 1, right)
merge (array, left, middle, right)

Aufruf zum Sortieren der aus den n Komponenten
a[O]/ a[1]/ a[2]/ L 4 a[n_]-]
bestehenden Liste a:

sort(a, 0, len(a)-1) oder sort(a, 0, n-1)

Aufwandsbetrachtung fiir MergeSort in Abhdngigkeit von n

Mit A(n) werde der Aufwand (die Anzahl elementarer Verarbeitungsschritte wie
z. B. Additionen, Wertzuweisungen, Vergleichsoperationen) bezeichnet, eine aus
n Komponenten bestehende Liste zu sortieren.

Dann gilt:

A(n) = 2 x Aufwand zum Sortieren einer Teilliste mit n/2 Elementen +
Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten
Liste

A(n) = A(n/2) + A(n/2)
+ Aufwand zum Mischen zweier sortierter Teillisten

Der Aufwand zum Mischen zweier sortierter Teillisten zu einer sortierten Gesamt-
liste wachst linear mit der Anzahl n der zu sortierenden Datenelemente; somit
erhalten wir fir den Funktionsterm A(n) die Funktionalgleichung (c = Konstante
= Proportionalitatsfaktor)

(*) A(n) =A(n/2) + A(n/2) + c- n mit der Bedingung
(**) A(1) =0.
Behauptung: Die Funktion
A(n) = c-n-log,(n)

ist Losung der Funktionalgleichung (*) mit der Anfangsbedingung (**).
Beweis:

A(n/2) + A(n/2) + c-n -A(n/2) +c-n
-Cc-n/2-logx(n/2) + c-n

-n - (logz(n) - logx(2)) + c-n
-n-(logz(n) - 1) +c-n

-n - logx(n)

(n)

i nn
SO0 00NN

Damit ist (*) erflllt; wegen log,(1) = 0 genlgt A(n) auch der Bedingung (**).
Bemerkung: Mit Methoden der Analysis 148t sich die Eindeutigkeit der Lésung des
Problems (*), (**) zeigen, somit ist mit A(n) = ¢ - n - log,(n) die einzige Lésung
der Funktionalgleichung gefunden.

Allgemein 1aBt sich beweisen, daB der Aufwand zum Sortieren von n Datensatzen
grundsatzlich mindestens von der Ordnung n - log,(n) wachst. In diesem Sinne
kann das Sortierverfahren ,MergeSort" als optimales Verfahren gelten.

Komplexitidt von MergeSort hinsichtlich der Anzahl rekursiver Aufrufe

Nachdem wir festgestellt haben, daB der Aufwand zum Sortieren von n
Datenelementen in der GréBenordnung n - log,(n) wachst und damit ein
Optimum erreicht ist, erhebt sich die Frage, ob dieser Vorteil durch die zwar
elegante, aber rekursive Formulierung des Sortieralgorithmus nicht aufgehoben
wird; denn rekursive Algorithmen haben grundsatzlich den Nachteil, daB sie
wahrend der Laufzeit mehr Arbeitsspeicher beanspruchen als iterative,
insbesondere dann, wenn die Anzahl der gleichzeitig aktiven Aufrufe einer
rekursiven Funktion zu stark wachst (z. B. exponentiell bei der Fibonacci- oder
der Hofstadter-Folge). DaB dieser Effekt bei MergeSort nicht oder nur
unwesentlich ins Gewicht fallt, zeigt folgende Uberlegung:

Mit f(n) bezeichnen wir die Anzahl der gleichzeitig aktiven Aufrufe der Funktion
sort, wenn eine Liste mit n Datenelementen zu sortieren ist.

0. B. d. A. sei n eine Zweierpotenz, d. h. n=2%, ke{0, 1,2, 3, >,
n=1: sort(a,0,0) 1 Aufruf
n=2: sort(a,0,1)

SN

sort(a,0,0) sort(a,1,1)

1+ 2.1 =3 Aufrufe

n=4: sort(a,0,3)
sort(a,0,1) sort(a,2,3)
sort(a,0,0) sort(a,1,1) sort(a,2,2) sort(a,3,3)

1+ 2.3 =7 Aufrufe

n=8: sort(0,7)
sort(0,3) sort(4,7)
sort(0,1) sort(2,3) sort(4,5) sort(6,7)

SN /N SN N

sort(0,0) sort(1,1) sort(2,2) sort(3,3) sort(4,4) sort(5,5) sort(6,6) sort(7,7)

1+ 2.7 =15 Aufrufe

f(1) =1 = 1 =2.1-1
f2) =1+2-1 = 3 =2.2 -1
f(4) =1+2.3 = 7 =2.4 -1

f8 =1+2.7 =15 =2.8 -1
f(16)=1+2-15 = 31 =2-16-1
f(32) =1+2-31 =63 =2-32-1

allgemein:

f(n)=2.n-1

Offensichtlich ist f(n) Lésung der rekursiv definierten Funktionalgleichung
f(n) =1+ 2.f(n/2)

mit der Anfangsbedingung f(1)=1.

Die Anzahl f(n) der gleichzeitig aktiven Aufrufe der Funktion sort und damit der
Speicherplatzbedarf wahrend der Laufzeit wachst somit linear mit n, also
wesentlich schwacher als die Anzahl A(n) elementarer Rechenoperationen.

Bemerkung:

,Sortieren durch direkte Auswahl" (SelectionSort): A(n) ~ n?
»~Sortieren durch Mischen" (MergeSort): A(n) ~n - log,(n)
Rekursive Berechnung der Fibonacci-Folge: A(n) > (V2)"

Wir sagen daher auch:
Die Komplexitat
- von SelectionSort ist quadratisch,
- von MergeSort ist linear-logarithmisch,
- der rekursiven Berechnung der Fibonacci-Folge ist exponentiell.

08.03.2021

T4 (1124 0ed 0ee 0Te 0o¢ OeT 08T 0LT 09T 0sT 0FT 0eT 0<tT 01T 00T

06

08

0L

09

0%

0¥

113

0Z

0T

wnisydepr sadJeauL|

x=A

(x)bo| #x=A

wnisysepm saydsLwyiLaeho|—aesauL|

wnaisys>em ssydsiiedpenb

00T

00z

00t

00t

00s

009

004

008

006

000T

00TT

00T

00ET

00+T

00ST

009T

004T

008T

006T

