
Boolesche Funktionen

a, b, c, d, e seien boolesche Variable, denen vermöge der
Abbildungsvorschriften

(a, b, c)  f(a, b, c) bzw. (a, b)  f(a, b)

der boolsche Funktionswert f(a, b, c) bzw. f(a,b) zugeordnet wird.

Mit â oder NOT a bezeichnen wir die Negation von a.

1. Negation

a â
0 1
1 0

2. AND (Konjunktion)

(a, b)  a AND b (Vereinbarung: a AND b = a  b = ab)

a b a  b
0 0 0
0 1 0
1 0 0
1 1 1

3. OR (Disjunktion)

(a, b)  a OR b (Vereinbarung: a OR b = a + b)

a b a + b
0 0 0
0 1 1
1 0 1
1 1 1

4. XOR (eXclusive OR)

 2

(a, e)  a XOR e (Vereinbarung: a XOR e = a  e)

a e a  e
0 0 0
0 1 1 
1 0 1 
1 1 0

Disjunktion der Konjunktionen:

a XOR e = 0 + â  e + a  ê + 0 = â  e + a  ê

5. Gegeben ist die Zuordnung (a, b, c)  f(a, b, c)
 mittels folgender Wertetabelle; ermittle einen möglichst

einfachen Funktionsterm:

a b c f(a, b, c)

0 0 0 0
0 0 1 0
0 1 0 1 
0 1 1 0
1 0 0 1 
1 0 1 0
1 1 0 1 
1 1 1 0

Disjunktion der Konjunktionen:

f(a, b, c) = NOTa  b  NOTc + a  NOTb  NOTc + a  b  NOTc
 = [NOTa  b + a  NOTb + a  b] NOTc
 = [NOTa  b + a  (NOTb + b)] NOTc
 = [NOTa  b + a  1]  NOTc
 = [NOTa  b + a]  NOTc
 = [a + NOTa  b]  NOTc
 = [(a + NOTa)  (a + b)]  NOTc
 = [1  (a+b)]  NOTc
 = (a+b)  NOTc

Hinweis:
a(b+c) = ab + ac
a + bc = (a+b)  (a+c)

Theoreme zum Rechnen mit Booleschen Variablen

Voraussetzung: a, e, u seien Boolesche Variable, mit â, ê, û werden die Negationen von

a, e, u bezeichnet.

Kommutativgesetz

(1) a ⋅ e = e ⋅ a (1)’ a + e = e + a

Assoziativgesetz

(2) a ⋅ (e ⋅ u) = (a ⋅ e) ⋅ u (2)’ a + (e + u) = (a + e) + u

Distributivgesetz

(3) a ⋅ (e + u) = a ⋅ e + a ⋅ u (3)’ a + e ⋅ u = (a + e) ⋅ (a + u)

Absorptionsgesetz

(4) a ⋅ (a + e) = a (4)’ a + a ⋅ e = a

Tautologie

(5) a ⋅ a = a (5)’ a + a = a

Gesetz über die Negation

(6) a ⋅ â = 0 (6)’ a + â = 1

Doppelte Negation

(7) NOT (NOT a) = a

De Morgans Gesetz

(8) NOT (a ⋅ e) = NOT a + NOT e (8)’ NOT (a + e) = NOT a ⋅ NOT e

Operationen mit 0 und 1

(9.1) a ⋅ 1 = a (9.1)’ a + 0 = a

(9.2) a ⋅ 0 = 0 (9.2)’ a + 1 = 1

(9.3) NOT 0 = 1 (9.3)’ NOT 1 = 0

Halbaddierer und Volladdierer

Die Ziffern einer im Dezimalsystem geschriebenen Zahl a ergeben sich als Aneinanderrei-
hung der Koeffizienten aus der Dezimalzerlegung (Summe von Zehnerpotenzen) von a;
entsprechend erhalten wir die Darstellung von a im Dualsystem als Aneinanderreihung der
Koeffizienten aus der Dualzerlegung (Summe von Zweierpotenzen).

87dezimal = 8  101 + 7  100

87dezimal = 1  26 + 0  25 + 1  24 + 0  23 + 1  22 + 1  21 + 1  20 = 1010111dual

Addition der Dualzahlen
a = a3 2

3 + a2  2
2 + a1  2

1 + a0  2
0 und b = b3 2

3 + b2  2
2 + b1  2

1 + b0  2
0 :

 a3 a2 a1 a0
 + b3 b2 b1 b0
 s4 s3 s2 s1 s0

Den Übertrag („carry“), der sich aus der i-ten Stelle ergibt und der bei der Addition in der
(i + 1)-ten Stelle zu berücksichtigen ist, bezeichnen wir mit ci+1; i  0.

Für die 0-te Stelle genügt ein Halbaddierer mit den Eingängen a0 und b0 und den Ergebnis-
sen s0 und c1; die Addition in der i-ten Stelle, i  1, erfordert einen Volladdierer mit den
Eingängen ai, bi, ci und den Ergebnissen si und ci+1.

Halbaddierer HA

Wahrheitstafel:

a0 b0 s0 c1
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Wir ermitteln für s0 und c1 jeweils die disjunktive Normalform („Disjunktion der Konjunkti-
onen“):

    0 0 0 0 0 0 0 s a b + a b a b

 1 0 0 c a b

Volladdierer VA

Wahrheitstafel:

ai bi ci si ci+1
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Wir ermitteln für si und ci+1 jeweils die disjunktive Normalform („Disjunktion der Konjunk-
tionen“) und vereinfachen ggf. die booleschen Funktionsterme:

 1 1 0 1
+ 1 0 1 1

 1 1 0 0 0

 2

           i i i i i i i i i i i i i s a b c a b c a b c a b c

ohne Index i geschrieben:

            s a b c a b c a b c a b c

           s (a b a b) c a b c a b c

        s (a b) c (a b a b) c

          s (a b) c (0 a b a b 0) c

            s (a b) c (a a a b a b b b) c

        s (a b) c [(a b) (a b)] c

        s (a b) c [(a b) (a b)] c

        s (a b) c [(a b) (a b)] c

        s (a b) c [a b a b] c

      s (a b) c (a b) c

   s (a b) c

mit Index i erhält man:

  i i i i s (a b) c

           i+1 i i i i i i i i i i i i c a b c a b c a b c a b c

        i+1 i i i i i i i i i c (a b a b) c a b (c c)

       i+1 i i i i i i i c (a b a b) c a b 1

    i+1 i i i i i c (a b) c a b

07.10.2020

Typen von Logikgattern und Symbolik

Logikgatter werden mit Schaltsymbolen bezeichnet, die nach unterschiedlichen, mehr oder
weniger parallel existierenden Standards definiert sind.

Symbol in Schaltplan Name Funktion

IEC 60617-12 :
1997 &

ANSI/IEEE Std
91/91a-1991

ANSI/IEEE Std
91/91a-1991

DIN 40700 (vor
1976)

Wahrheits-
tabelle

Und-Gatter
(AND)

Y=AB

A B Y
0 0 0

0 1 0

1 0 0

1 1 1

Oder-Gatter
(OR)

Y=A+B

A B Y
0 0 0

0 1 1

1 0 1

1 1 1

Nicht-Gatter
(NOT)

Y= A

A Y
0 1

1 0

NAND-Gatter
(NICHT
UND)
(NOT AND)

Y= A B

A B Y
0 0 1

0 1 1

1 0 1

1 1 0

NOR-Gatter
(NICHT
ODER)
(NOT OR)

Y= A+B

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

XOR-Gatter
(Exklusiv-
ODER,
Antivalenz)
(eXclusiveOR)

Y=AB

A B Y
0 0 0

0 1 1

1 0 1

1 1 0

XNOR-
Gatter
(Exklusiv-
Nicht-ODER,
Äquivalenz)
(eXclusive
Not OR)

Y= A B

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

Früher waren auf dem europäischen Kontinent die deutschen Symbole (rechte Spalte)
verbreitet; im englischen Sprachraum waren und sind die amerikanischen Symbole (mittlere
Spalte) üblich. Die IEC-Symbole sind international auf beschränkte Akzeptanz gestoßen und
werden in der amerikanischen Literatur (fast) durchgängig ignoriert.

JK-Flipflop

Ein Flip-Flop (bistabile Kippstufe oder bistabiler Multivibrator) hat zwei stabile Zustände am
Ausgang Q; die Zustände heißen „gesetzt“ (set) oder „zurückgesetzt“ (reset). Ein 1-Bit-
Speicher läßt sich somit als FlipFlop realisieren.

Ein JK-FlipFlop ist ein taktgesteuertes FlipFlop: die an den Eingängen J und K liegende
Information wird mit einer Flanke (hier: der steigenden Flanke) des an C liegenden

Taktsignals auf die Ausgänge Q und Q übernommen.

Mit dem Taktsignal (clock, C) und der Eingangsbelegung J = 1 und K = 0 wird am Ausgang
Q eine 1 erzeugt und gespeichert, alternativ eine 0 bei J = 0 und K = 1.

Bei der Realisierung des JK-Flipflops als taktflankengesteuertes Flipflop kann der Eingang C
für steigende Flanken (Wechsel von 0 auf 1) oder für fallende Flanken (Wechsel von 1 auf 0)
ausgelegt sein.

Name und
Schaltzeichen

Signal-Zeit-Diagramm Funktionstabelle

Flanken-
gesteuertes
JK-Flipflop

Übernahme der Eingangsinformation durch
steigende Flanke an C (clock) bis zur nach der

 … n-ten Taktflanke

J K Qn
0 0 Qn−1 (unverändert)

0 1 0 (zurückgesetzt)

1 0 1 (gesetzt)

1 1 NOT Qn−1 (gewechselt)

(Wikipedia)

Halbaddierer (HA) und Volladdierer (VA)

Schaltungen

Informatik 13
Übungsaufgabe 07.10.2020

Gegeben ist die boolesche Funktion z = f(a, b, c) vermöge folgender Wahrheitstafel:

a b c z

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

a) Leite den Booleschen Funktionsterm für die Funktion f her.

b) Vereinfache diesen Term mit Hilfe der Rechenregeln für Boolesche Terme.

Aufgabenblatt Nr. 1 13inf 28.10.2020

1. Gegeben ist folgende digitale Schaltung mit den Eingängen a, b, c und dem

Ausgang z:

Z

a) Erstelle die Wahrheitstafel für diese Schaltung und ermittle die disjunktive
Normalform für die Boolesche Funktion z = f(a,b,c).

b) Vereinfache den Funktionsterm für z und zeichne die vereinfachte
Schaltung.

2. Die Boolesche Funktion z = f(a,b,c) ist durch folgende Wahrheitstafel

gegeben:

a b c z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a) Ermittle die disjunktive Normalform für z und vereinfache den
 Funktionsterm.

b) Zeichne den Schaltplan für die optimierte Funktion z.

Aufgabenblatt Nr. 2 inf13 29.10.2020

3. Gegeben ist folgende digitale Schaltung mit den Eingangsvariablen a, b und
der Ausgangsvariablen z:

a) Ermittle den Booleschen Term für die Boolesche Funktion z = f(a,b,c).

Hinweis: Notiere am Ausgang jedes Gatters jeweils den Booleschen Term
(Beispiel: a b am Ausgang des NAND-Gatters).

b) Vereinfache den in a) erhaltenen Term unter Verwendung der
Rechenregeln für Boolesche Ausdrücke; erstelle die Wahrheitstafel.

c) Zeichne das Schaltbild für den vereinfachten Funktionsterm und teste
beide Schaltungsvarianten mit einem Digitalsimulator.

4. 4-Bit-Paralleladdierer mit Anzeige der Summanden und der Summe jeweils im

Hexadezimalformat

Erweitere die Schaltung „4-bit-Paralleladdierer.dsim“ (auf www.kalle2000.de
downloadbar) zu einem 8-Bit-Addierer mit numerischer Anzeige.

Lösung zu Nr. 3 von Aufgabenblatt 2 vom 29.10.2020

z = a b a b  

 = a b (a b)   (2-mal de Morgan)

 = a b a b   (wegen a a)

 = a b a b   (Kommutativgesetze)

 = a b a b 1    (wegen a a 1 )

 = a b (a 1)   (Distributivgesetz)

 = a b (wegen a 1 1 )

 = a b (de Morgan)

optimierte Schaltung: Wertetabelle:

Aufgabenblatt Nr. 3 inf13 04.11.2020

5. Für die Boolesche Funktion y = f(a,b,c) ist folgende Wertetafel gegeben:

a) Ermittle die DNF (disjunktive Normalform) für y.

b) Vereinfache den Funktionsterm unter Verwendung der Booleschen

Rechenregeln.

c) Zeichne das Schaltbild für die vereinfachte Funktion.

13inf sHÜ 18.11.2020 Name: ________________________

Die Boolesche Funktion
z = f(a,b,c)
ist durch nebenstehende
Wahrheitstafel
gegeben:

a) Ermittle die disjunktive Normalform für z.

b) Vereinfache den Funktionsterm unter Anwendung der Booleschen Rechengesetze.

c) Zeichne den Schaltplan für die optimierte Funktion z.

Lösung:

a) z = a b c + a b c + a b c + a b c       

b) Kommutativ- und Distributivgesetz

c)

a b c z
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

z = a b (c + c) + b c (a + a)

 = a b 1 + b c 1

 = a b + b c

 = a+b + b c

   

   

 



Die wesentlichen Komponenten einer CENTRAL PROCESSING UNIT (CPU) bestehen
aus der CONTROL UNIT (CU) und der ARITHMETIC LOGIC UNIT (ALU).

Die ALU berechnet arithmetische und logische Funktionen, die CU decodiert die
im Arbeitsspeicher abgelegten Befehle und führt sie aus.

In der Minimalkonfiguration beherrscht die ALU die arithmetische Funktion
„Addition“ sowie die logischen Operationen „Negation“ (NOT) und
„Konjunktion“ (AND). Zu Lasten der Rechenzeit lassen sich die übrigen
arithmetischen und logischen Funktionen auf die genannten, minimal verfügbaren
Operationen zurückführen.

1. Subtraktion

Die duale Subtraktion

läßt sich auf eine duale Addition nach folgendem Verfahren zurückführen:

- Bilde das Einerkomplement des Subtrahenden b3 b2 b1 b0 , indem man alle
Ziffern negiert (invertiert; aus 0 wird 1 und aus 1 wird 0).

- Addiere das Einerkomplement und die Zahl 1 zum Minuenden.
- Das Ergebnis ist die gesuchte Differenz; dabei bleibt der Überlauf

unberücksichtigt.

a) Verdeutliche das genannte Verfahren anhand einiger selbst gewählter

Beispiele (ein Beweis des Verfahrens ist nicht erforderlich.).

b) Ergänze die Schaltung „4-bit-Paralleladdierer.dsim“ so, daß man nach

entsprechender Umschaltung wahlweise eine duale Addition oder eine duale
Subtraktion durchführen kann.
Hinweise:
- Ersetze den HA für das least significant bit (LSB) durch einen VA, um

erforderlichenfalls eine „1“ als Summand einspeisen zu können (wie?).
- Die Invertierung der Ziffern des Subtrahenden gelingt z. B. durch den

geeigneten Einsatz von XOR-Gattern.

2. Weitere Rechenoperationen

Gegeben sind die (im einfachsten Fall positiven ganzzahligen) Operanden a und
b. Um zu verdeutlichen, wie man die „höheren“ Rechenoperationen mittels
geeigneter Iteration auf die Grundoperationen „Addition“ und „Subtraktion“
zurückführen kann, schreibe und teste ein Python-Programm, welches die
Operationen „Multiplikation“ (a*b), „Division“ (a/b, ganzzahlige Division) und
„Potenzierung“ (a**b) realisiert.

3. Logische Operationen

Zeige examplarisch, daß sich die logischen Verknüpfungen

a) a + b
b) a  b
c) a (b+c)

auf die Operationen NOT und AND zurückführen lassen.

 a3 a2 a1 a0
  b3 b2 b1 b0

 d3 d2 d1 d0

Addier-Schaltungen für Dualzahlen

1. Paralleladdierer mit seriellem Übertrag (hier: 4-Bit-Addierer)

 Für das Least Significant Bit (LSB) genügt ein Halbaddierer (HA); die höherwertigen Bits
erfordern jeweils einen Volladdierer, da hier der Übertrag aus der vorherigen Stelle zu
berücksichtigen ist.

Dezimal: 09 Hexadezimal: 09 Dual: 0000 1001
 + 10 + 0A + 0000 1010
 19 13 0001 0011

2. Serieller 1-Bit-Addierer für 4-stellige Dualzahlen

 Die Operanden werden jeweils in einem 4-Bit-Schieberegister abgelegt, nach 4 Taktimpulsen
finden wir das Ergebnis (hier: die Summe) in einem weiteren 4-Bit-Schieberegister.

 a3 a2 a1 a0
+ b3 b2 b1 b0

 s4 s3 s2 s1 s0

 2

 Da der Übertrag aus der vorherigen Stelle für die Addition in der aktuellen Stelle zu
berücksichtigen ist, wird er in einem Flip-Flop zwischengespeichert. Dieses Flip-Flop
liefert auch das Most Significant Bit (MSB) des Ergebnisses.

Nach 4 Taktimpulsen (hier: Triggerung der Flip-Flops auf der steigenden Taktflanke):

Dezimal: 07 Hexadezimal: 07 Dual: 0000 0111
 + 14 + 0E + 0000 1110
 21 15 0001 0101

4-Bit-Paralleladdier mit Umschaltung auf 4-Bit-Parallelsubtraktion

Dezimal: 13 Hexadezimal: 0D Dual: 0000 1101
 + 11 + 0B + 0000 1011
 24 18 0001 1000

4-Bit-Paralleladdier mit Umschaltung auf 4-Bit-Parallelsubtraktion

Dezimal: 14 Hexadezimal: 0E Dual: 0000 1110
 - 05 - 05 - 0000 0101
 09 09 0000 1001

4-Bit-Dualzähler

Schaltung mit alphanumerischer Anzeige des Zählergebnisses

Anzahl der Zustände: 24

Zählbereich: 0 24  1

0000 - 1111 (dual)
00 - FF (hexadezimal)
0 - 255 (dezimal)

Die am Eingang C eintreffenden Taktimpulse werden gezählt.

Beachte:

Bei Triggerung auf der fallenden Taktflanke erfolgt die Anzeige
jeweils am Ausgang Q .

Bei Triggerung auf der steigenden Taktflanke erfolgt die Anzeige

jeweils am Ausgang Q .

 MSB C LSB

hier: Triggerung auf der steigenden Taktflanke, daher werden die Stellen
(Bits) der Dualzahl jeweils dem Ausgang Q eines jeden Flip-Flops
entnommen.

