
Boolesche Funktionen 
 
a, b, c, d, e seien boolesche Variable, denen vermöge der 
Abbildungsvorschriften  
 
(a, b, c)    f(a, b, c)     bzw.    (a, b)    f(a, b)      
 
der boolsche Funktionswert  f(a, b, c)  bzw.  f(a,b)  zugeordnet wird. 
 
Mit  â  oder  NOT a  bezeichnen wir die Negation von a. 
 
 
 
1. Negation 
 

a â 
0 1 
1 0 

 
 
2. AND         (Konjunktion) 
 
(a, b)    a AND b         (Vereinbarung:   a AND b  =  a  b = ab  )      
 

a b a  b 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
 
 
3. OR            (Disjunktion) 
 
(a, b)    a OR b           (Vereinbarung:   a OR b  =  a + b  )      
 

a b a + b 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 
 
4. XOR  ( eXclusive OR) 
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(a, e)    a XOR e           (Vereinbarung:   a XOR e  =  a  e  ) 
 

a e a  e  
0 0 0  
0 1 1  
1 0 1  
1 1 0  

 
Disjunktion der Konjunktionen: 
 
a XOR e = 0 + â  e + a  ê + 0 =  â  e + a  ê 
 
 
5.  Gegeben ist die Zuordnung (a, b, c)    f(a, b, c)    
 mittels folgender Wertetabelle; ermittle einen möglichst 

einfachen Funktionsterm:  
 

a b c f(a, b, c)  

0 0 0 0  
0 0 1 0  
0 1 0 1  
0 1 1 0  
1 0 0 1  
1 0 1 0  
1 1 0 1  
1 1 1 0  

 
Disjunktion der Konjunktionen: 
 

f(a, b, c)  = NOTa  b  NOTc + a  NOTb  NOTc + a  b  NOTc 
 = [NOTa  b + a  NOTb + a  b] NOTc 
 = [NOTa  b + a  (NOTb + b)] NOTc 
 = [NOTa  b + a  1]  NOTc 
 = [NOTa  b + a]  NOTc 
 = [a + NOTa  b]  NOTc 
 = [(a + NOTa)  (a + b)]  NOTc 
 = [1  (a+b)]  NOTc 
 = (a+b)  NOTc 
 
Hinweis: 
a(b+c)   =  ab + ac  
a + bc   =  (a+b)  (a+c) 



Theoreme zum Rechnen mit Booleschen Variablen 
 
 
Voraussetzung:  a, e, u seien Boolesche Variable, mit â, ê, û werden die Negationen von 

a, e, u bezeichnet. 
 
 
Kommutativgesetz 
 
(1) a ⋅ e  =  e ⋅ a (1)’ a + e  =  e + a 
 
 
Assoziativgesetz 
 
(2) a ⋅ (e ⋅ u )  =  (a ⋅ e) ⋅ u  (2)’ a + (e + u )  =  (a + e) + u 
 
 
Distributivgesetz 
 
(3) a ⋅ (e + u ) =  a ⋅ e + a ⋅ u (3)’ a  +  e ⋅ u   =   (a + e) ⋅ (a + u) 
 
 
Absorptionsgesetz 
 
(4) a ⋅ (a + e)  =  a (4)’ a +  a ⋅ e  =  a 
 
 
Tautologie 
 
(5) a ⋅ a = a (5)’ a + a = a 
 
 
Gesetz über die Negation 
 
(6) a ⋅ â = 0 (6)’ a + â = 1 
 
 
Doppelte Negation 
 
(7) NOT (NOT a) = a 
 
 
De Morgans Gesetz 
 
(8) NOT (a ⋅ e) = NOT a  +  NOT e (8)’ NOT (a + e) = NOT a  ⋅  NOT e 
 
 
Operationen mit 0 und 1 
 
(9.1) a ⋅ 1 = a (9.1)’ a + 0 = a 
 
(9.2) a ⋅ 0 = 0 (9.2)’ a + 1 = 1 
 
(9.3) NOT 0 = 1 (9.3)’ NOT 1 = 0 
 
 



Halbaddierer und Volladdierer 
 
Die Ziffern einer im Dezimalsystem geschriebenen Zahl a ergeben sich als Aneinanderrei-
hung der Koeffizienten aus der Dezimalzerlegung (Summe von Zehnerpotenzen) von a; 
entsprechend erhalten wir die Darstellung von a im Dualsystem als Aneinanderreihung der 
Koeffizienten aus der Dualzerlegung (Summe von Zweierpotenzen). 
 

87dezimal = 8  101 + 7  100 
 

87dezimal = 1  26 + 0  25 + 1  24 + 0  23 + 1  22 + 1  21 + 1  20 = 1010111dual 

 
Addition der Dualzahlen 
a = a3 2

3 + a2  2
2 + a1  2

1 + a0  2
0    und   b = b3 2

3 + b2  2
2 + b1  2

1 + b0  2
0  : 

                                              
  a3 a2 a1 a0 
 +  b3 b2 b1 b0 
  s4 s3 s2 s1 s0 
 
Den Übertrag („carry“), der sich aus der i-ten Stelle ergibt und der bei der Addition in der 
(i + 1)-ten Stelle zu berücksichtigen ist, bezeichnen wir mit ci+1; i  0. 
 
Für die 0-te Stelle genügt ein Halbaddierer mit den Eingängen a0 und b0 und den Ergebnis-
sen s0 und c1; die Addition in der i-ten Stelle, i  1, erfordert einen Volladdierer mit den 
Eingängen ai, bi, ci und den Ergebnissen si und ci+1. 
 
 
 
Halbaddierer HA 
 
Wahrheitstafel:  
 

a0 b0 s0 c1 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

 
Wir ermitteln für s0 und c1 jeweils die disjunktive Normalform („Disjunktion der Konjunkti-
onen“): 
 

    0 0 0 0 0 0 0 s a b  + a b a b  
 

 1 0 0 c a b  
 
 
 
Volladdierer VA 
 
Wahrheitstafel:  
 

ai bi ci si ci+1 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 
 
Wir ermitteln für si und ci+1 jeweils die disjunktive Normalform („Disjunktion der Konjunk-
tionen“) und vereinfachen ggf. die booleschen Funktionsterme: 
 

  1 1 0 1 
+  1 0 1 1 

 1 1 0 0 0 
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           i i i i i i i i i i i i i s a b c a b c a b c a b c  
 
ohne Index i geschrieben: 
 

            s a b c a b c a b c a b c  
 

           s (a b a b) c a b c a b c  

 

        s (a b) c (a b a b) c  

 

          s (a b) c (0 a b a b 0) c  

 

            s (a b) c (a a a b a b b b) c  

 

        s (a b) c [(a b) (a b)] c  

 

        s (a b) c [(a b) (a b)] c  

 

        s (a b) c [(a b) (a b)] c  

 

        s (a b) c [a b a b] c  

 

      s (a b) c (a b) c  

 

   s (a b) c  

 
mit Index i erhält man: 
 

  i i i i s (a b) c  

 

 
           i+1 i i i i i i i i i i i i c a b c a b c a b c a b c  

 

        i+1 i i i i i i i i i c (a b a b) c a b (c c)  

 

       i+1 i i i i i i i c (a b a b) c a b 1  

 

    i+1 i i i i i c (a b) c a b  
 

 
07.10.2020 



Typen von Logikgattern und Symbolik 

Logikgatter werden mit Schaltsymbolen bezeichnet, die nach unterschiedlichen, mehr oder 
weniger parallel existierenden Standards definiert sind.  

Symbol in Schaltplan  Name  Funktion 

IEC 60617-12 : 
1997 & 

ANSI/IEEE Std 
91/91a-1991  

ANSI/IEEE Std 
91/91a-1991  

DIN 40700 (vor 
1976)  

Wahrheits- 
tabelle  

Und-Gatter 
(AND)  

 
 
 
Y=AB 

 
 
 

   

A B Y 
0 0 0  

0 1 0  

1 0 0  

1 1 1   

Oder-Gatter 
(OR)  

 
Y=A+B 
    

A B Y 
0 0 0  

0 1 1  

1 0 1  

1 1 1   

Nicht-Gatter 
(NOT)  

 
 

Y= A  
 
 

   

A Y 
0 1  

1 0   

NAND-Gatter 
(NICHT 
UND) 
(NOT AND)  

 
 
 

Y= A B  
 
 
 

   

A B Y 
0 0 1  

0 1 1  

1 0 1  

1 1 0   

NOR-Gatter 
(NICHT 
ODER) 
(NOT OR)  

 
 

Y= A+B  
 
 

   

A B Y 

0 0 1  

0 1 0  

1 0 0  

1 1 0   

XOR-Gatter 
(Exklusiv-
ODER, 
Antivalenz) 
(eXclusiveOR) 

 
Y=AB 
    

A B Y 
0 0 0  

0 1 1  

1 0 1  

1 1 0   



XNOR-
Gatter 
(Exklusiv-
Nicht-ODER, 
Äquivalenz) 
(eXclusive 
Not OR)  

 
 
 

Y= A B  
 
 
 

   

A B Y 

0 0 1  

0 1 0  

1 0 0  

1 1 1   

 

Früher waren auf dem europäischen Kontinent die deutschen Symbole (rechte Spalte) 
verbreitet; im englischen Sprachraum waren und sind die amerikanischen Symbole (mittlere 
Spalte) üblich. Die IEC-Symbole sind international auf beschränkte Akzeptanz gestoßen und 
werden in der amerikanischen Literatur (fast) durchgängig ignoriert.  

 
 

JK-Flipflop 
 

Ein Flip-Flop (bistabile Kippstufe oder bistabiler Multivibrator) hat zwei stabile Zustände am 
Ausgang Q; die Zustände heißen „gesetzt“ (set)  oder „zurückgesetzt“ (reset). Ein 1-Bit-
Speicher läßt sich somit als FlipFlop realisieren. 
 

Ein JK-FlipFlop ist ein taktgesteuertes FlipFlop: die an den Eingängen J und K liegende 
Information wird mit einer Flanke (hier: der steigenden Flanke) des an C liegenden 

Taktsignals auf die Ausgänge Q und Q  übernommen. 
 

Mit dem Taktsignal (clock, C) und der Eingangsbelegung J = 1 und K = 0 wird am Ausgang 
Q eine 1 erzeugt und gespeichert, alternativ eine 0 bei J = 0 und K = 1. 
 

Bei der Realisierung des JK-Flipflops als taktflankengesteuertes Flipflop kann der Eingang C 
für steigende Flanken (Wechsel von 0 auf 1) oder für fallende Flanken (Wechsel von 1 auf 0) 
ausgelegt sein. 
 

Name und 
Schaltzeichen  

Signal-Zeit-Diagramm  Funktionstabelle  

Flanken-
gesteuertes 
JK-Flipflop 

 

Übernahme der Eingangsinformation durch 
steigende Flanke an C (clock) bis zur       nach der  

     … n-ten Taktflanke  

J  K             Qn  
0  0  Qn−1 (unverändert)  

0  1  0 (zurückgesetzt)  

1  0  1 (gesetzt)  

1  1  NOT Qn−1 (gewechselt)   

 
(Wikipedia) 
 



Halbaddierer (HA) und Volladdierer (VA) 
 
Schaltungen 
 

 
 
 
 

 



Informatik 13 
Übungsaufgabe 07.10.2020 
 
Gegeben ist die boolesche Funktion z = f(a, b, c) vermöge folgender Wahrheitstafel: 
 

a b c z 

0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

 
a) Leite den Booleschen Funktionsterm für die Funktion f her. 
 
b) Vereinfache diesen Term mit Hilfe der Rechenregeln für Boolesche Terme. 



Aufgabenblatt Nr. 1                     13inf                        28.10.2020 
 
1.  Gegeben ist folgende digitale Schaltung mit den Eingängen a, b, c und dem 

Ausgang z: 
 

  
  
 
 
 
 
 
 
 
 
 
 
Z 
 
 
 
 
 
 
 
 
 
 

a) Erstelle die Wahrheitstafel für diese Schaltung und ermittle die disjunktive 
Normalform für die Boolesche Funktion z = f(a,b,c). 

 

b) Vereinfache den Funktionsterm für z und zeichne die vereinfachte 
Schaltung. 

 
 
 
2.  Die Boolesche Funktion  z = f(a,b,c) ist durch folgende Wahrheitstafel 

gegeben: 
 
  

a b c z 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 
a) Ermittle die disjunktive Normalform für z und vereinfache den  
 Funktionsterm. 
 
b) Zeichne den Schaltplan für die optimierte Funktion z. 



Aufgabenblatt Nr. 2                    inf13                              29.10.2020 
 

3. Gegeben ist folgende digitale Schaltung mit den Eingangsvariablen a, b und 
der Ausgangsvariablen z: 

 
a) Ermittle den Booleschen Term für die Boolesche Funktion z = f(a,b,c). 

Hinweis: Notiere am Ausgang jedes Gatters jeweils den Booleschen Term 
(Beispiel: a b  am Ausgang des NAND-Gatters). 

 

b) Vereinfache den in a) erhaltenen Term unter Verwendung der 
Rechenregeln für Boolesche Ausdrücke; erstelle die Wahrheitstafel. 

 

c) Zeichne das Schaltbild für den vereinfachten Funktionsterm und teste 
beide Schaltungsvarianten mit einem Digitalsimulator. 

 
4. 4-Bit-Paralleladdierer mit Anzeige der Summanden und der Summe jeweils im 

Hexadezimalformat 

 
Erweitere die Schaltung „4-bit-Paralleladdierer.dsim“ (auf www.kalle2000.de 
downloadbar) zu einem 8-Bit-Addierer mit numerischer Anzeige. 



Lösung zu Nr. 3 von Aufgabenblatt 2 vom 29.10.2020 

 
 

z    =   a b a b    
  

 = a b (a b)                 (2-mal de Morgan) 
 

 = a b a b    (wegen a a ) 
 
 = a b a b    (Kommutativgesetze) 
 

 = a b a b 1     (wegen a a 1  ) 
 

 = a b (a 1)    (Distributivgesetz) 
 
 = a b  (wegen a 1 1  ) 
 
 = a b  (de Morgan) 
 
 
optimierte Schaltung:  Wertetabelle: 
 

 
 
 
 
 
 
 



Aufgabenblatt Nr. 3                    inf13                              04.11.2020 
 

5. Für die Boolesche Funktion y = f(a,b,c) ist folgende Wertetafel gegeben: 
 

 
 
a)  Ermittle die DNF (disjunktive Normalform) für y. 
 
b)  Vereinfache den Funktionsterm unter Verwendung der Booleschen 

Rechenregeln. 
 
c)  Zeichne das Schaltbild für die vereinfachte Funktion. 
 
 
 



13inf        sHÜ       18.11.2020        Name: ________________________ 
 
Die Boolesche Funktion   
z = f(a,b,c)  
ist durch nebenstehende  
Wahrheitstafel  
gegeben: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a) Ermittle die disjunktive Normalform für z. 
 

b) Vereinfache den Funktionsterm unter Anwendung der Booleschen Rechengesetze. 
 

c) Zeichne den Schaltplan für die optimierte Funktion z. 
 
Lösung: 
 

a) z = a b c + a b c + a b c + a b c         
 
b) Kommutativ- und Distributivgesetz  
   
 
 
 
 
 
 
 
 
c) 

 

a b c z 
0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

z = a b (c + c) + b c (a + a)

  = a b 1 + b c 1

  = a b + b c

  = a+b + b c

   

   

 





Die wesentlichen Komponenten einer CENTRAL PROCESSING UNIT (CPU) bestehen 
aus der CONTROL UNIT (CU) und der ARITHMETIC LOGIC UNIT (ALU). 
 
Die ALU berechnet arithmetische und logische Funktionen, die CU decodiert die 
im Arbeitsspeicher abgelegten Befehle und führt sie aus. 
 
In der Minimalkonfiguration beherrscht die ALU die arithmetische Funktion 
„Addition“ sowie die logischen Operationen „Negation“ (NOT) und 
„Konjunktion“ (AND). Zu Lasten der Rechenzeit lassen sich die übrigen 
arithmetischen und logischen Funktionen auf die genannten, minimal verfügbaren 
Operationen zurückführen. 
 
 
1. Subtraktion 
 
Die duale Subtraktion  
 
 
 
läßt sich auf eine duale Addition nach folgendem Verfahren zurückführen: 

- Bilde das Einerkomplement des Subtrahenden b3 b2 b1 b0 , indem man alle 
Ziffern negiert (invertiert; aus 0 wird 1 und aus 1 wird 0). 

- Addiere das Einerkomplement und die Zahl 1 zum Minuenden. 
- Das Ergebnis ist die gesuchte Differenz; dabei bleibt der Überlauf 

unberücksichtigt. 
 
a) Verdeutliche das genannte Verfahren anhand einiger selbst gewählter 

Beispiele (ein Beweis des Verfahrens ist nicht erforderlich.). 
 
b) Ergänze die Schaltung „4-bit-Paralleladdierer.dsim“ so, daß man nach 

entsprechender Umschaltung wahlweise eine duale Addition oder eine duale 
Subtraktion durchführen kann. 
Hinweise: 
- Ersetze den HA für das least significant bit (LSB) durch einen VA, um 

erforderlichenfalls eine „1“ als Summand einspeisen zu können (wie?). 
- Die Invertierung der Ziffern des Subtrahenden gelingt z. B. durch den 

geeigneten Einsatz von XOR-Gattern. 
 
 
2. Weitere Rechenoperationen 
 
Gegeben sind die (im einfachsten Fall positiven ganzzahligen) Operanden a und 
b. Um zu verdeutlichen, wie man die „höheren“ Rechenoperationen mittels 
geeigneter Iteration auf die Grundoperationen „Addition“ und „Subtraktion“ 
zurückführen kann, schreibe und teste ein Python-Programm, welches die 
Operationen „Multiplikation“ (a*b), „Division“ (a/b, ganzzahlige Division) und 
„Potenzierung“ (a**b) realisiert. 
 
 
3. Logische Operationen 
 
Zeige examplarisch, daß sich die logischen Verknüpfungen 
 

a) a + b 
b) a  b 
c) a (b+c)  

 

auf die Operationen NOT und AND zurückführen lassen. 

  a3 a2 a1 a0 
   b3 b2 b1 b0 

   d3 d2 d1 d0 







Addier-Schaltungen für Dualzahlen 
 

 
 
 

1.  Paralleladdierer mit seriellem Übertrag (hier: 4-Bit-Addierer) 
 

 Für das Least Significant Bit (LSB) genügt ein Halbaddierer (HA); die höherwertigen Bits 
erfordern jeweils einen Volladdierer, da hier der Übertrag aus der vorherigen Stelle zu 
berücksichtigen ist. 

 

 
 
 

Dezimal:  09  Hexadezimal:  09    Dual: 0000 1001 
        + 10              + 0A        + 0000 1010 
          19                13          0001 0011 

  
 

 
2. Serieller 1-Bit-Addierer für 4-stellige Dualzahlen  
 

 Die Operanden werden jeweils in einem 4-Bit-Schieberegister abgelegt, nach 4 Taktimpulsen 
finden wir das Ergebnis (hier: die Summe) in einem weiteren 4-Bit-Schieberegister. 

 

  a3 a2 a1 a0 
+  b3 b2 b1 b0 

  s4 s3 s2 s1 s0 
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 Da der Übertrag aus der vorherigen Stelle für die Addition in der aktuellen Stelle zu 
berücksichtigen ist, wird er in einem Flip-Flop zwischengespeichert. Dieses Flip-Flop  
liefert auch das Most Significant Bit (MSB) des Ergebnisses. 

 
 
 

 
 
 
Nach 4 Taktimpulsen (hier: Triggerung der Flip-Flops auf der steigenden Taktflanke): 
 
 
 

 
 
 
Dezimal:  07  Hexadezimal:  07    Dual:  0000 0111 
        + 14              + 0E         + 0000 1110 
          21                15           0001 0101 

  
 



4-Bit-Paralleladdier mit Umschaltung auf 4-Bit-Parallelsubtraktion 

 
Dezimal:   13        Hexadezimal:     0D             Dual:     0000 1101 
         + 11                       + 0B                     + 0000 1011 
           24                         18                       0001 1000 
 
 



4-Bit-Paralleladdier mit Umschaltung auf 4-Bit-Parallelsubtraktion 

 
 
Dezimal:   14        Hexadezimal:     0E             Dual:     0000 1110 
         - 05                       - 05                     - 0000 0101 
           09                         09                       0000 1001 
 
 





4-Bit-Dualzähler 
 
Schaltung mit alphanumerischer Anzeige des Zählergebnisses 
 
 
Anzahl der Zustände: 24 
 
 
Zählbereich:   0 . . . . . . . 24  1 
    
0000   -    1111       (dual) 
00       -      FF    (hexadezimal) 
0 -     255 (dezimal) 
 
 
Die am Eingang C eintreffenden Taktimpulse werden gezählt. 
 
Beachte: 
 
Bei Triggerung auf der fallenden Taktflanke erfolgt die Anzeige 
jeweils am Ausgang Q . 
 
Bei Triggerung auf der steigenden Taktflanke erfolgt die Anzeige 

jeweils am Ausgang Q . 

 
 
 

 
         MSB                                 C                                LSB 
       
 
 
hier: Triggerung auf der steigenden Taktflanke, daher werden die Stellen 
(Bits) der Dualzahl jeweils dem Ausgang Q  eines jeden Flip-Flops 
entnommen. 




