Sortieren durch direkte Auswahl

Wir beschranken uns zundchst darauf, eine Liste von ganzen Zahlen (hier:
Zufallszahlen) der GréBe nach, und zwar aufsteigend, zu sortieren. Den
Algorithmus spdter auf andere Datenstrukturen (z. B. Namen, Verbundtypen) zu
Ubertragen, ist vergleichsweise einfach und bereitet keine Schwierigkeiten.

Die Python-Anweisungen range, 1ist und len:

a)

b)

range-Anweisung

Die range-Anweisung definiert einen Bereich ganzer Zahlen.
range (10) definiert den Bereich 0, 1, ..., 9

range (4,21) definiert den Bereich 4, 5, . .., 20

range (4,21,3) definiert den Bereich 4, 7, 10, ..., 16, 19
range (-4, 3) definiert den Bereich -4, -3, -2,-1,0, 1, 2

Allgemein gilt:

range (start, stop)
definiert den Bereich start,..... , stop-1 ganzer Zahlen,

range (start, stop, step)
definiert den Bereich start,..... mit der Schrittweite step, wobei die
Zahl stop nicht mehr enthalten ist.

Erstellen einer Liste ganzer Zahlen

a = list(range(4,13)) erzeugt die Liste

[4, 5, 6, 7, 8, 9, 10, 11, 12];

die (in diesem Fall 9) Elemente dieser Liste nennen wir auch Komponenten,
auf die man mit a[0], a[1], . . ., a[8] zugreifen kann (mit Erzeugung der
Liste dieses Beispiels sind die Komponenten a[0], a[1], . . ., a[8] in dieser
Reihenfolge mit den Werten 4, 5,, 12 belegt). Allerdings laBt sich jeder
Komponente a[i] eine beliebige andere ganze Zahl zuweisen.

Bemerkung: Unter einem Feld oder array verstehen wir eine Folge von
Variablen gleichen Typs; mit der Anweisung
a = list(range(4,13)) haben wir also ein array a erzeugt

mit den Komponenten a[0], a[1], ..., a[8].

len (a) bestimmt die Anzahl der Komponenten der Liste a, in dem Beispiel
aus b) gilt somit: len(a) = 9.

. Erstellen einer Liste mit n Komponenten, denen Zufallszahlen

zugewiesen werden (n ist eine natiirliche Zahl)

Vorbemerkung:
Die Python-Anweisung randint ist eine vordefinierte Funktion des random-

Moduls in Python; Syntax: randint (r,s) mit ganzen Zahlenrunds, r<s,
erzeugt eine Zufallszahl aus dem Intervall [r, s].

Beispiele:
randint (1,1000) erzeugt eine Zufallszahl aus dem Bereich 1,, 1000
randint (-7,12) erzeugt eine Zufallszahl aus dem Bereich -7,, 12

Ein Algorithmus, der nach Eingabe einer natiirlichen Zahl n eine Liste aus n
Zufallszahlen generiert, formuliert als Python-Quelltext in der Schriftart
Courier New, so daBB man den Quelltext unmittelbar durch copy und paste in

einen Editor fur Python-Programme tGbernehmen kann:

array mit zufallszahlen
from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
print (af[il)

2. Bestimmung des kleinsten Elements der Liste aus n Komponenten

Der Inhalt des Speicherplatzes a[0] wird sukzessive mit den Inhalten von a[1],
, a[n-1] verglichen; falls gilt a[i] < a[0], 1< i<n-1, werden die

Inhalte der Speicherplatze a[i] und a[0] ausgetauscht; hierzu wird, bevor a[0]

den Wert von a[i] erhalt, der urspriingliche Wert von a[0] mittels der

Hilfsvariablen temp gesichert und nach der Zuweisung a[0] = a[i] mit

a[i] = temp an a[i] Ubergeben.

Die Durchfiihrung der Vergleiche und der ggf. erforderliche Austausch der Inhalte
von a[0]und a[i] werden hier an die Funktion min (x) delegiert:

def min(x) :
for i in range(l,len(x)):
if x[i] < x[0]:

temp = x[0]
x[0] = x[1]
x[1] = temp

Mit dem Aufruf min (a) wird die Funktion min auf das aus den Komponenten
a[0], . . . , a[n-1] bestehende array a angewendet.

from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
print (af[il)

Bestimmen des kleinsten Elements:

Wir definieren eine Funktion min(x), die auf

das array a angewendet wird, das kleinste Element
bestimmt und dieses der Komponente a[0] zuweist.

def min(x) :
for i in range(l,len(x)):
if x[1] < x[0]:

temp = x[0]
x[0] = x[1]
x[1i] = temp

Aufruf der auf das array a anzuwendenden Funktion min
min (a)

Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle
print ()
for i in range(0,n):

print (al[il)

Nachdem das kleinste Element der Liste a[0], . . . , a[n-1] dem
Speicherplatz a[0] zugewiesen wurde, bestimmen wir das kleinste Element der
,Restliste" a[1], . . . , a[n-1] und weisen es dem Speicherplatz a[1] zu.
Wenn wir dieses Verfahren sukzessive auf die weiteren , Restlisten™

a[jl, . . . , a[n-1] mit 2 £ j £ n-2 anwenden, erhalten wir ein array
a, dessen Komponenten gemaB a[0] < a[l] £ . . . £ a[n-1] aufsteigend
sortiert sind.

Wir modifizieren die Funktion min (x), indem wir einen weiteren Parameter j
erganzen:

def min(x,Jj):
for i in range(j+1,len(x)):
if x[1] < x[]J]:

temp = x[7]
x[3] = x[1]
x[1i] = temp

Die mit dem Parameterwert j auf das array a angewendete Funktion
min (x,j)ermittelt in der Liste a[j], . . . , a[n-1] das kleinste Element
und weist es dem Speicherplatz a[j] zu.

3. Variante zu 2:
from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , a[n-1]
a = list(range(l,n+l))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
print (al[il)

Bestimmen des kleinsten Elements:

Wir definieren eine Funktion min(x,7j), die auf
die Komponenten al[jl, . . , al[n-1] des arrays a
angewendet wird, das kleinste Element

bestimmt und dieses der Komponente a[]j] zuweist.

H= = = =

def min(x,J):
for i in range(j+1,len(x)):
if x[1] < x[J]:

temp = x[7]
x[3] = x[1]
x[1i] = temp

Aufruf der auf das array a anzuwendenden Funktion min
min (a, 0)

Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle
print ()
for i in range(0,n):

print (al[il)

4. Bestimmung der 2 kleinsten Elemente der Liste aus n Komponenten
from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+l))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):

print (af[il)

Wir definieren eine Funktion min(x,j), die auf

die Komponenten al[j]l, . . , a[n-1] des arrays a
angewendet wird, das kleinste Element
bestimmt und dieses der Komponente al[j] zuweist.

def min(x,Jj):
for i in range(j+1,len(x)):
if x[1] < x[J]:

temp = x[7]
x[3] = x[1]
x[1i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min

min (a, 0)
min (a, 1)

Ausgabe der Liste

print ()

for i in range(0,n):
print (af[il)

5. Bestimmung der 3 kleinsten Elemente der Liste aus n Komponenten

Aufrufe der auf das array a anzuwendenden Funktion min

min (a, 0)
min(a, 1)
min (a, 2)

6. Sortieren der aus den Komponenten a[0],, a[n-1] bestehenden
Liste a

Wir sortieren das array a mit den Komponenten a[0], . . . , a[n-1], indem
wir die Funktion min (x,J) mitj =0, 1, ..., n-2 nacheinander auf das array a
anwenden; die wiederholte Anwendung realisieren wir mit einer while-Schleife,
deren Schleifenindex j mit dem Wert O initialisiert wird:

3 =0

while J <= n-2:
min(a, J)
3 +=1

Der hier vorgestellte Algorithmus ist unter der Bezeichnung
~Sortieren durch direkte Auswahl"

bekannt.

Der folgende in Python codierte Algorithmus sortiert aufsteigend ein array a der
Léange n, dessen Komponenten a[0], . . . , a[n-1] Zufallszahlen aus dem
Bereich 1, ..., 100000 zugewiesen wurden:

sorting by direct selection
from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+l))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
al[i] = randint(1,100000)

Ausgabe des arrays
for i in range(0,n):
print (af[il)

Die auf die Komponenten a[j]l, . . , aln-1] des arrays a
angewendete Funktion min(x,j) bestimmt das kleinste Element
und weist dieses der Komponente a[j] zu.

def min(x,Jj):
for i in range(j+1,len(x)):
if x[1] < x[J]:

temp = x[7]
x[3] = x[1]
x[1i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min

3 =0

while J <= n-2:
min(a, J)
3 +=1

Ausgabe der sortierten Liste

print ()
print ('Sortierte Liste:')

for i in range(0,n):
print (af[il)

Selbach
update 26.01.2021

SelectionSort mit Ermittlung des Zeitbedarfs zur Laufzeit:

sorting by direct selection
Nach Eingabe einer natuerlichen Zahl n wird ein
aus n Eomponenten bestehendes array sortiert.

from random import randint
import time

n = int {input {'Laenge des arrays: "))
print(}

Erzeugen des arrays mit dem Namen a
und den n Komponenten af[0], . . . , a[n-1]
a = list (range (l,n+l})

Zuweisung von Zufallszahlen an die Homponenten des arrays a
for i in range{0,n):
a[i] = randint (1,1000000}

RAusgabe des arrays
r = int {input {("Wieviele Elemente sollen angezeligt werden? '})
print ()
for i in range{0,r):
print (a[i])

Die auf die Komponenten af[jl]l, - - , a[n-1] des arrays a
angewendete Funktion min(x,j) bestimmt das kleinste Element
und weist dieses der Komponente af[j] =zu.

def min(x,j):
for i in range (j+l,len(x)):
if =x[i] < =[3]):
temp = x[3j]
z[31 x[i]
x[i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min
mit Ermittlung des Zeitbedarfs zur Laufzeit

start = time.time ()

d0==0

while j <= n-2:
min(a,Jj)

i+l

end = time.time ()

Lusgabe der sortierten Liste

print ()
print ('Sortierte Liste:'})
print ()

for i in range{0,r):
print (a[i])

print ()
print {'Zeitaufwand zum Sortieren von',n, 'Elementen: {:7.3f} s'.format (end-start))

sorting by direct selection
Nach Eingabe einer natuerlichen Zahl n wird ein
aus n Komponenten bestehendes array sortiert.

from random import randint
import time

n = int (input ('Laenge des arrays: '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , aln-1]
a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint (1,1000000)

Ausgabe des arrays
r = int (input ('Wieviele Elemente sollen angezeigt werden? '))
print ()
for i in range(0,r):
print(ali])

Die auf die Komponenten al[j]l, . . , aln-1] des arrays a
angewendete Funktion min(x,j) bestimmt das kleinste Element
und weist dieses der Komponente al[]j] zu.

def min(x,J):
for i in range(j+1l,len(x)):
if x[1] < x[3]]:

temp = x[]]
x[3] = x[i]
x[1i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min
mit Ermittlung des Zeitbedarfs zur Laufzeit

start = time.time ()

3 =20

while j <= n-2:
min(a,J)
j +=1

end = time.time ()

Ausgabe der sortierten Liste

print ()
print ('Sortierte Liste:')
print ()

for i in range(0,r):
print(afli])

print ()
print ('Zeitaufwand zum Sortieren von',n, 'Elementen: {:7.3f}
s'.format (end-start))

