
Aufwandsbetrachtung „Sortieren durch direkte Auswahl“

Wir formulieren einen funktionalen Zusammenhang zwischen dem zeitlichen Aufwand, um
eine Liste von n Datenelementen der Größe nach zu sortieren, und der Anzahl n der
Datenelemente.

Wertzuweisungen, Abfragen, Rechenoperationen sind elementare Anweisungen, die eine
bestimmte Rechenzeit erfordern; obwohl diese Rechenzeiten mit fortschreitender
Leistungsfähigkeit der Hardware immer kürzer werden, gerät man rasch an Grenzen der
praktischen Durchführbarkeit eines Algorithmus, wenn die Anzahl der abzuarbeitenden
Anweisungen zu stark, z. B. exponentiell, wächst.

Wesentlicher Baustein des Algorithmus „Sortieren durch direkte Auswahl“ ist die
Funktion min(x,j), die das kleinste Element des arrays a[j], . . , a[n-1]
ermittelt und dieses der Komponente a[j] zuweist.

def min(x,j):
 for i in range(j+1,len(x)):
 if x[i] < x[j]:
 temp = x[j]
 x[j] = x[i]
 x[i] = temp

Der Schleifenrumpf der in der der Funktion min(x,j) implementierten for-
Schleife besteht aus 3 Wertzuweisungen und 1 Abfrage, die wir gedanklich als
ganzes zum Anweisungsblock A zusammenfassen:

def min(x,j):
 for i in range(j+1,len(x)):

 A
j = 0
while j <= n-2:
 min(a,j)
 j = j+1

Wir überlegen, wie oft der Block A abgearbeitet wird, indem wir zunächst die
Anzahl z(j) dieser Abarbeitungen in Abhängigkeit vom Schleifenindex j
notieren:

Index j Aufruf Index i z(j)

j = 0 min(x,0) 1  i  n-1 n-1
j = 1 min(x,1) 2  i  n-1 n-2
j = 2 min(x,2) 3  i  n-1 n-3
j = 3 min(x,3) 4  i  n-1 n-4
....

j = n-2 min(x,n-2) n-1  i  n-1 1

Gesamtzahl z der Abarbeitungen von Anweisungsblock A:

z = z(0) + z(1) + z(2) + + z(n-2) = (n-1) + (n-2) + (n-3) + + 1

 =
n-1

k=1

k

 = ½  (n - 1)n (vgl. Anmerkung)
 = ½  (n2 - n)
  ½  n2 für große n
Ergebnis:
Die Anzahl der abzuarbeitenden elementaren Anweisungen und damit der
Zeitaufwand wachsen quadratisch mit der Anzahl n der zu sortierenden
Datensätze.
Anmerkung: 1

2
1

(1)
n

k

k n n


    19.01.2021

