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Definition: 
Unter einem Algorithmus verstehen wir ein aus endlich vielen Anweisun-
gen bestehendes allgemeines Verfahren, welches eine Klasse von Proble-
men in endlich vielen Schritten löst. 
 
Wir beschreiben einen Algorithmus, unabhängig von der Programmiersprache, in 
der er codiert wird, durch ein Flußdiagramm oder ein Struktogramm („Nassi-
Shneiderman“-Diagramm). 
 
1.  Lineare Algorithmen 
 

Wenn bei der Abarbeitung eines Algorithmus die einzelnen Anweisungen sich 
längs eines einzigen Pfades aneinanderreihen, sprechen wir von einem linearen 
Algorithmus; insbesondere gibt es hier keine Verzweigungen. Beispiel: Zinses-
zinsberechnung. 
 
Allgemeines Flußdiagramm    Flußdiagramm des Algorithmus   
eines Algorithmus:             „Zinseszins“:    

  
2.  Verzweigte Algorithmen 
 
Ein Algorithmus, bei dessen Abarbeitung unterschiedliche Anweisungsblöcke 
durchlaufen werden können, heißt verzweigter Algorithmus; dabei entscheidet die 
Abfrage einer Bedingung (in Form einer booleschen Variablen oder eines boole-
schen Ausdrucks) darüber, welcher Zweig durchlaufen wird. 
 
Beispiel:  
Der Algorithmus „QuadEquation“, der die Lösungsmenge einer quadratischen 
Gleichung bestimmt. 
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Der Ablauf ergibt sich aus einem Flußdiagramm oder einem Struktogramm (bei 
letzterem fehlt die Abfrage b0): 
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Quelltext des Algorithmus QuadEquation in Python codiert: 
 

 
 
 
 
3. Schleifen 
 

Soll ein Anweisungsblock innerhalb eines Algorithmus mehrmals durchlaufen wer-
den, sprechen wir von einer Schleife; der wiederholt durchlaufene Anweisungs-
block heißt auch Schleifenrumpf. Wenn die Anzahl der Durchläufe einer Schleife a 
priori (von vorneherein) feststeht, läßt sich eine for- oder while-Schleife ver-
wenden; hat z. B. die Abfrage einer Bedingung (in Form eines Booleschen Aus-
drucks) innerhalb des Schleifenrumpfs Einfluß auf die Anzahl der Durchläufe, 
kommt nur die while-Schleife in Frage.  
 
Struktogramme: 
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Der Algorithmus „Quadratzahlen“ gibt die Quadrate der ganzen Zahlen aus dem  
Intervall [a, b] aus: 
 
 
Quellcode in Python, realisiert mit einer while-Schleife: 
 

 
 
 
 
Quellcode in Python, realisiert mit einer for-Schleife: 
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Ausgabe der Quadratzahlen: 
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Quadratwurzel aus einer positiven reellen Zahl 
 
Der Algorithmus „Wurzelberechnung“ approximiert a für eine positive reelle 
Zahl a. Die Iteration bricht ab, sobald der Abstand zweier aufeinanderfolgender 
Folgenglieder kleiner als eine einzugebende Fehlerschranke d wird.  
 
Der Abbruch erfolgt, sobald die Boolesche Variable condition innerhalb des 
Schleifenrumpfs den Wert False erhält, was eintritt, wenn abs(y - z) kleiner als 
d wird. 
 
 

Anmerkung: 
 

Der hier vorgestellte Algorithmus stützt sich darauf, daß die Folge {xi} mit 

1 1
2 ( )

i

i i
a

x
x x    ,   0x a ,   gegen a  konvergiert; dies sei hier ohne 

Beweis und ohne nähere Begründung mitgeteilt. 
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Algorithmus         QUADRATISCHE GLEICHUNGEN 
 
Spezifikation:  
Nach Eingabe der Koeffizienten a, b, c der allgemeinen quadratischen Gleichung  
ax2 + bx + c = 0 ermittelt der Algorithmus die Lösungsmenge und gibt diese 
aus. 
 
Flußdiagramm: 
 

 
Eingabe a, b, c 

x = c/b 

Ausgabe x 

+ 

keine 
Lösung 

 D = b2 – 4ac 

D<0 

keine 
Lösung 

+ 

 

x = b/(2a) 

 

Ausgabe x 

+ 

D=0 
 

x1=(b + D1/2)/(2a) 
 

x2=(b  D1/2)/(2a) 
 

 

Ausgabe x1, x2 
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a=0 

b0 

+  



Verzweigte Algorithmen  
 
Definition: Ein Anweisungsblock besteht aus einer Folge zusammengehören-

der Anweisungen, die nacheinander ausgeführt werden. 
Ein Anweisungsblock, der innerhalb einer Schleife wiederholt wird, 
heißt Schleifenrumpf.  
Den zu einer Funktion gehörenden Anweisungsblock nennen wir 
auch Funktionsrumpf. 

 
Bemerkungen: -  Anweisungsblöcke können auch ineinander verschachtelt sein. 
 

- In Python wird ein Anweisungsblock durch Einrücken des Pro-
grammtextes gekennzeichnet. 

 
Im folgenden verstehen wir unter condition einen Booleschen Term (der auch 
nur aus einer Booleschen Variablen bestehen kann), der die Werte True oder 
False annimmt. In Struktogrammen kennzeichnen wir True auch durch ‚ + ’, 
False durch ‚  ’. 
 
Einseitige Auswahl 
 

 
 
Zweiseitige Auswahl 
 

 
 

                                                             
                                                       condition 
       True                                                              False 
 
 
 
    
                Block1                                        Block2 
 
 
                                            
 
                                          Block3 

                                                             
                                                       condition 
       True                                                              False 
 
 
 
    
                Block1 
 
 
                                            
 
                                          Block2 
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Formulierung in Python: 
 
if condition:                if condition:                    
 
    Block1  Block1 
 
Block2                        else: 
 
                                   Block2 
                      
                              Block3 
Mehrstufige Auswahl 
 

 
 
Formulierung in Python: 
 
if condition1:                if condition1:                    
 
    Block1  Block1 
 
else:                         elif condition2: 
 
   if condition2:                  Block2 
         
       Block2                 else: 
    
   else:                           Block3 
 
       Block3                 Block4 
 
Block4 
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1.  Zinseszins (linearer Algorithmus, ohne Verzweigungen) 

 
Flußdiagramm: 

 
Wenn ein Anfangskapital k0 zu einem 
jährlichen Zinssatz p % über einen 
Zeitraum von n Jahren mit Zinseszins 
angelegt wird (der Zinsbetrag wird also 
am Ende jeden Jahres dem zu 
verzinsenden Kapital zugeschlagen), 
ermittelt der Algorithmus „Zinseszins“ das 
Endkapital k nach n Jahren. 
 
Schreibe den durch nebenstehendes 
Flußdiagramm gegebenen Algorithmus als 
Python-Programm und teste es. 
 
 
 
 
 
 
 
 
 
 

 
 
2.  Mobilfunkrechung 
 (Verzweigter Algorithmus) 
 

 Der Betreiber eines Mobilfunknetzes hat folgende Tarifgestaltung: 
 

Monatliche Grundgebühr (einschließlich 100 Gesprächsminuten): 20 €; 
für die nächsten, über 100 Minuten hinausgehenden 200 Minuten sind 5 ct je 
Minute zu entrichten; jede weitere Minute kostet 4 ct. 
 

Schreibe einen Algorithmus als 
 

a) Struktogramm, 
b) Pythonprogramm, 
 

um nach Eingabe der Anzahl x der monatlichen Gesprächsminuten den 
Rechnungsbetrag b zu bestimmen. 
 
 

 
3. n-te Wurzel aus einer positiven reellen Zahl a 
 (Algorithmus mit Wiederholung, also mit Iteration (lat. „iterare“, 

wiederholen)) 
 
Die Folge {xi} mit 

1
1 1 ( 1)( )

i
n

i in
a

x
x n x


      ,   0x a ,   konvergiert gegen n a ; 

dies sei hier ohne Beweis und ohne nähere Begründung mitgeteilt. 



 
Schreibe und teste ein Python-Programm, welches nach Eingabe des 
Radikanden a, der Ordnung n und der Fehlerschranke d (größter Abstand 
zwischen dem letzten und dem vorletzten Folgenglied) die n-te Wurzel aus a 
bestimmt. 
 
Hinweis: Man orientiere sich am Algorithmus „Quadratwurzel“ auf S. 6 der 
Zusammenfassung vom 08.10.2020. 
 
 
 

4. Summe der Zahlen 1, 2, 3, . . . . . , n 
 (Algorithmus mit Wiederholung) 
 
 Der Algorithmus Sum ermittelt nach Eingabe der natürlichen Zahl n die 

Summe der Zahlen 1, 2, . . . . . , n. 
 
 Schreibe und teste jeweils ein Python-Programm unter Verwendung einer 

a) for-Schleife, 
b) while-Schleife. 



Prinzipien zur Erstellung eines Programms 
 
Imperativer Ansatz 
 

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal oder Python) 
besteht aus einer Folge von ausführbaren Anweisungen, die in der vorgegebenen 
Reihenfolge abgearbeitet werden.  
In Maschinensprache (Assembler) geschriebene Programme verfolgen stets den 
imperativen Ansatz, die elementaren (Maschinen-)Befehle werden nacheinander 
ausgeführt. 
 

Wesentliche Kontrollstruktur: Iterationen (for-, while-Schleife) 
 
Funktionaler Ansatz 
 

Der Quellcode bedient sich mathematischer Funktionen, durch die ein Algorithmus 
beschrieben wird.  
 

Wesentliche Kontrollstruktur: Rekursion 
 
Definition:  
Eine Prozedur (Teilprogramm) oder eine Funktion heißt rekursiv, wenn ihr 
Anweisungsteil mindestens einen Aufruf von sich selbst enthält. 
 
Bei beiden Ansätzen ist durch eine Abbruchbedingung sicherzustellen, daß der 
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu 
einem Ergebnis führt.  
 
 
 
Beispiel 1 
Der Algorithmus ggT (größter gemeinsamer Teiler) 
 
Nach Eingabe zweier natürlicher Zahlen a und b bestimmt ggT die größte ganze 
Zahl, durch die sich a und b jeweils ohne Rest teilen lassen. 
 
a)  Imperativer Ansatz, formuliert als iterativer Algorithmus 
 („Euklidischer Algorithmus“) 
 Struktogramm: 
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b)  Funktionaler Ansatz, formuliert als rekursiv definierte Funktion 
 
 Die Funktion    (a, b)   ggT(a,b)    läßt sich rekursiv definieren: 
 
 Rekursionsanfang:     ggT(a,a) = a 
 
 Rekursionsvorschrift: ggT(a,b) = ggT(a–b, b) ,     falls   a > b 
    

   ggT(a,b) = ggT(a, b–a) ,     falls   b > a 
 
 
Aufgabe:  
Realisiere den Algorithmus ggT als iteratives und als rekursives Python-
Programm; vergleiche die Laufzeiten. 
 
 
 
Beispiel 2 
Die Funktion „Fakultät“ (englisch: Factorial) 
 
Die Funktion fact ordent jeder natürlichen Zahl n das Produkt  
n! = 1  2  . . . . . .  n zu; definitionsgemäß gilt: 0! = 1. 
 
a) Imperativer Ansatz 
 
 Formuliere den Algorithmus iterativ (for- oder while-Schleife) als 

Struktogramm und als Python-Programm 
 
b) Funktionaler Ansatz 
  
 Die Funktion    n   fact(n)    läßt sich rekursiv definieren: 
 
 Rekursionsanfang:     fact(0)  =  1 
 

 Rekursionsvorschrift: fact(n) =  n  fact(n-1) ,     falls   n > 0 
    

    
 Formuliere die Funktion fact als rekursives Python-Programm! 
 
 
Beispiel 3 
Die Hofstadter-Funktion 
 
Die Funktion hof ist rekursiv definiert, n  {1, 2, 3, . . . . . } : 
 
Rekursionsanfang:     hof(1)  = 1 
  hof(2) = 1 
 

Rekursionsvorschrift: hof(n) = hof( n - hof( n - 1)) + hof( n - hof( n - 2 )) , n>2 
 
Aufgabe:  
Codiere den Algorithmus hofstadter 

a) rekursiv, 
b) iterativ 

jeweils in Python; vergleiche insbesondere die Laufzeiten! 
 
Hinweis zu b): Definiere in geeigneter Weise ein array (Feld), in dem bereits 
berechnete Funktionswerte gespeichert werden. 
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Arbeitsauftrag GK inf für 17.11.2020 
 
1.) Zu Aufgabe 4, Aufgabenblatt Nr. 1 vom 27.10.2020 
 (Summe der ganzen Zahlen 1, . . . . . , n) 
 
 Struktogramm (10.11.2020):                                                                    
                                                                                                     
  
                                                                                      Initialisierung 
                                                                                                  des Schleifen- 
                                                                                                   index  i     
 
 
 
 
 
 
 
 
 
 

a) Vervollständige folgende Trace-Tabelle für n=6 (SD = Schleifendurchlauf): 
 

 n i summe i<=n 

vor dem 1. SD 6 1 0 True 

     

     

     

     

     

     
                                                    

b) Schreibe und teste ein Python-Programm, welches nach Eingabe einer 
natürlichen Zahl n die Summe 1 + . . . . . + n ermittelt! 

 
2.) Zu Beispiel 2 des am 27.10.2020 ausgeteilten Papers 

„Funktionaler_und_Imperativer Ansatz.pdf“ 
 Die n!-Funktion; lies: „n-Fakultät“ 
 
 Definition: n!  = Produkt der ganzen Zahlen 1, 2, . . . . , n 
  = 1  2  3  . . . . . . .  n     
 
 Beachte:   0! = 1    (daß diese Definition Sinn macht, werdet ihr noch im  
   Mathematikunterricht kennenlernen.) 
 

a) Erstelle ein Struktogramm (mit while-Schleife) für den Algorithmus, der 
nach Eingabe einer ganzen Zahl n, n0, die Fakultät von n bestimmt. 

b) Fertige eine Trace-Tabelle an für n = 5 (entsprechend obiger Tabelle). 
c) Schreibe und teste ein Python-Programm, welches nach Eingabe einer 

ganzen, nicht negativen Zahl n die Fakultät von n berechnet! 
 
3.) Freiwillige Zusatzaufgabe: Formuliere die Programme aus 2.) und 3.) jeweils 

mit einer for-Schleife statt einer while-Schleife! 

Eingabe n 
 
i = 1                                                                                
 
summe = 0 
 
while i <= n 
 
                         summe = summe + i 
  
                         i = i +1 
 
Ausgabe summe 



Aufgabenblatt Nr. 2                    inf12                          10.11.2020 
 

5. Summe ungerader Zahlen 
 Sei n eine ungerade ganze Zahl; gesucht ist die Summe der ungeraden 

Zahlen 1, . . . . , n. 
 Konzipiere diesen Algorithmus als Struktogramm und codiere ihn in Python; 

teste das Programm. Was fällt auf? 
 
6. Die Ackermann-Funktion 

Für m, n  0  ist die Ackermann-Funktion  f : 0  0      0  wie folgt 
definiert: 
 

1.  Rekursionsanfang: 
 

 (1)   f(0,n)  =  n+1 
 

2. Rekursionsvorschrift: 
 

 (2)   f(m,0)  =  f(m-1,1) 
 (3)   f(m,n)  =  f(m-1, f(m,n-1)) 
 

a) Man erhält: 
  f(0,0) = 1 

f(0,1) = 2 
f(0,2) = 3 
f(1,0) = f(0,1) = 2 
Berechne  f(2,0);   f(1,1);   f(1,2);   f(3,0) . 
 

b) Schreibe den Algorithmus zur Berechnung der Ackermann-Funktion als 
Python-Programm mit rekursivem Funktionsaufruf. 

 Berechne  f(3,7);  f(3,8);  f(4,1) ;  f(3,15) ;  f(4,3)  
 Bemerkung: Die Ackermann-Funktion ist eine berechenbare Funktion, 

allerdings übersteigt deren ungeheure Rekursionstiefe sehr schnell die 
Möglichkeiten jedes auch noch so leistungsfähigen Computers! 

 

7. Die Datenstruktur „array“ läßt sich in Python als Liste mit den Komponenten 
a[1], a[2], . . . . , a[n]  z. B. wie folgt realisieren: 

 

    

 Formuliere ein Struktogramm und erweitere oben stehendes Python-
Programm so, daß das größte (kleinste) Element der Liste in der ersten 
Komponente a[1] abgespeichert ist und der vorherige Inhalt von a[1] an 
derjenigen Stelle steht, von der das größte Element genommen wurde. 



Arbeitsauftrag GK inf12 für 24.11.2020 
 

In höheren Programmiersprachen (wie Python) ist die Möglichkeit implementiert, 
Funktionen, auch rekursiv formulierte Funktionen, zu definieren. Dabei  verstehen 
wir unter einer Funktion ein Unterprogramm (Prozedur), welches nach der 
Übergabe von Daten einen Funktionswert an das aufrufende Programm zurückgibt. 
Der zur Funktion gehörende Anweisungsblock heißt auch Funktionsrumpf (in 
Python wird der Funktionsrumpf durch Einrücken des Programmtextes kenntlich 
gemacht). Eine Funktion, deren Funktionsrumpf mindestens einen Aufruf ihrer 
selbst enthält, heißt rekursiv (lat. recurrere, zurücklaufen).  
 
Die Funktion summe (siehe Arbeitsauftrag für 17.11.2020), die einer natürlichen 
Zahl n mit n  {0, 1, 2, . . . } die Summe  
0 + . . . . . . + n zuordnet, läßt sich rekursiv wie folgt definieren: 
 
Rekursionsanfang:  summe(0) = 0 
 

Rekursionsvorschrift: summe(n) = n + summe(n  1)   falls n  1 
 
 
Realisierung von summe in Python: 
 

 
 
Erläuterungen: 
 
def summe(x):   Funktionskopf;  

summe = Name der Funktion 
 x =  lokale (nur innerhalb der Funktion verfügbare)  
  Variable 
 Nach dem Doppelpunkt folgt der durch Einrücken kenntlich 

gemachte Funktionsrumpf. 
 
return mit return wird der berechnete Funktionswert an das 

aufrufende Programm übergeben 
 
Der Aufruf   summe(n)   (hier: innerhalb der print-Anweisung) bewirkt: 

- Der aktuelle Wert der Variablen n wird der lokalen, nur innerhalb der 
Funktion verfügbaren Variablen x zugewiesen 

- Nach der (hier rekursiv erfolgenden) Berechnung wird der Funktionswert mit 
return zurückgegeben. 
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Beispiel (n = 100):  

 
 
Die rekursive Berechnung von summe(6) = s(6) läßt sich wie folgt 
verdeutlichen: 
 
s(6)  = 6 + s(5)  
 = 6 + (5 + s(4))   
 = 6 + (5 + (4 + s(3)))  
 = 6 + (5 + (4 + (3 + s(2)))) 
 = 6 + (5 + (4 + (3 + (2 + s(1))))) 
 = 6 + (5 + (4 + (3 + (2 + (1 + s(0))))))     
 
mit s(0) ist der Rekursionsanfang erreicht, die Rekursion bricht ab. 
   
 
 
Arbeitsaufträge für 24.11.2020: 
 
1.) Erstelle den Programmtext für die rekursive Berechnung von summe(n); man 

orientiere sich an dem obenstehenden screenshot. 
 
2.) Teste das Programm sowohl als iterativ (gemäß Ziffer 1 aus Arbeitsauftrag für 

17.11.2020) als auch als rekursiv definierten Algorithmus für unterschiedliche 
Werte von n; wähle auch n = 1000, 10000, 100000, 1000000. Was fällt auf? 

 
3.) Die Fakultätsfunktion (eng.: factorial) läßt sich rekursiv definieren (vgl. das 

Paper „Funktionaler_und_Imperativer_Ansatz“ vom 27.10.2020): 
 
 Rekursionsanfang:     fact(0)  =  1 
 

 Rekursionsvorschrift: fact(n) =  n  fact(n  1) ,     falls   n > 0 
 
 Schreibe und teste ein Python-Programm, um die Fakultätsfunktion rekursiv zu 

berechnen; vergleiche mit dem iterativ formulierten Algorithmus gemäß Ziffer 
2 des Arbeitsauftrags für 17.11.2020.  

  
4.) fakultativ: Aufgabe Nr. 5 aus Aufgabenblatt Nr. 2 vom 10.11.2020 
 
 
 


