Informatik
infl12 08.10.2020

Definition:

Unter einem Algorithmus verstehen wir ein aus endlich vielen Anweisun-
gen bestehendes allgemeines Verfahren, welches eine Klasse von Proble-
men in endlich vielen Schritten 16st.

Wir beschreiben einen Algorithmus, unabhangig von der Programmiersprache, in
der er codiert wird, durch ein FluBdiagramm oder ein Struktogramm (,Nassi-
Shneiderman®-Diagramm).

1. Lineare Algorithmen

Wenn bei der Abarbeitung eines Algorithmus die einzelnen Anweisungen sich
langs eines einzigen Pfades aneinanderreihen, sprechen wir von einem linearen
Algorithmus; insbesondere gibt es hier keine Verzweigungen. Beispiel: Zinses-
zinsberechnung.

Allgemeines FluBdiagramm FluBdiagramm des Algorithmus
eines Algorithmus: ~Zinseszins™:
Eingabe
. Anfangskapital kD
Eingabe Zinsfuss p
Laufzeit n

Verarbeitung

k = kO « (1+55)"

Ausgabe

r

Ausgabe

Endkapital k

2. Verzweigte Algorithmen

Ein Algorithmus, bei dessen Abarbeitung unterschiedliche Anweisungsblécke
durchlaufen werden kénnen, heilt verzweigter Algorithmus; dabei entscheidet die
Abfrage einer Bedingung (in Form einer booleschen Variablen oder eines boole-
schen Ausdrucks) darliber, welcher Zweig durchlaufen wird.

Beispiel:
Der Algorithmus ,QuadEquation®, der die Losungsmenge einer quadratischen
Gleichung bestimmt.

2

Der Ablauf ergibt sich aus einem FluBdiagramm oder einem Struktogramm (bei
letzterem fehlt die Abfrage b=0):

Eingabe a, b, c

- - - +

k4

x1=(-b + D¥?)/(2a)

x = -b/(2a) x2=(-b - D?)/(2a)
l ,
/ Ausgabe x // / Ausgabe x1, x2 /
Eingabea, b, ¢
+ a=0 i
Alusgabe D:=b*b - 4*a*c

"nicht quadratisch” i D=0 -

Alsgabe " D=0 B
"keine Losung” x:= -b/(2*a) x1:=(-b + sqri(D))/(2*a)
Ausgabe Xx2:=(-b - sgri(D))(2*a)

X Alsgabe

x1; %2

Quelltext des Algorithmus QuadEquation in Python codiert:

L&
File Edit Format Run Options Window Help
“”-Ael;a:_szhe Fleichungen™
"Eingabe der Koeffizienten"
print ("Eingabe der Koeffizienten der Gleichung a®*
a=float {(input ("a = ™"})
b=float {input ("b = "}
c=float {(input ("c = ™})
print ()
print ("Loesungen:™)
"Verarbeitung der Daten und Ausgabe der Loesungen™
ifa=—0=0
print (["nicht quadratisch™)

if D < O:
print {("keine Lo

sung!™)
elif D =— O:

x = -b/(2*%a)

print {("x = ",Xx)

{(-b + D** (1/2))/ (2*a)
x2 = (-b - D**(1/2)}/(2%a)
print {("x1 = ",x1)
print ("xZ2 = ",x2)

3. Schleifen

Soll ein Anweisungsblock innerhalb eines Algorithmus mehrmals durchlaufen wer-
den, sprechen wir von einer Schleife; der wiederholt durchlaufene Anweisungs-
block heiBt auch Schleifenrumpf. Wenn die Anzahl der Durchldaufe einer Schleife a
priori (von vorneherein) feststeht, 1aBt sich eine for- oder while-Schleife ver-
wenden; hat z. B. die Abfrage einer Bedingung (in Form eines Booleschen Aus-
drucks) innerhalb des Schleifenrumpfs EinfluB auf die Anzahl der Durchlaufe,

kommt nur die while-Schleife in Frage.

Struktogramme:

Ln: 38 Col 0

while Bedingung fori=1...n

Schleifenrumpf Schleifenrumpf

Der Algorithmus ,Quadratzahlen® gibt die Quadrate der ganzen Zahlen aus dem
Intervall [a, b] aus:

Quellcode in Python, realisiert mit einer while-Schleife:

File Edit Format Run Options Window Help

Tabelle Quadratzahlen (while-Schleife)

i = Bchleifenindex

2 = kKleinste ganze Zahl, deren Quadrat berechnet wird

b = grosste ganze Zahl, deren Quadrat berechnet wird

print {'In welchem Bereich =o0ll das Quadrat berechnet werden?'})
a=int (input ['untere Grenze = '))

b=int (input {'obere Grenze = '})

print ()

Initialisierung des Schleifenindicis i
i=a

while-loop

while i<=b:
print (i, '*2 = ',i%**32)
i=i+l
alternativ: i += i

Lm: 19 Col 0

Quellcode in Python, realisiert mit einer for-Schleife:

File Edit Format Run Options Window Help

Tabelle Quadratzahlen (for-Schleife)

i = Schleifenindex

2 = kKleinste ganze Zahl, deren Quadrat bherechnet wird
b = grdsste ganze Zahl, deren Quadrat berechnet wird

print {'In welchem Bereich so0ll das Quadrat berechnet werden?')
nze = ")}

a=int {input { "untere Gre

b=int (input ['obere Grenze = '}})

print ()

|

for-loop

for i in rangef{a,b+l}):
printG{i; "3 = M;iw*3])

Lm: 11 Cok

Ausgabe der Quadratzahlen:

File Edit 5hell Debug Options Window Help

Python 3.8.6 (tags/v3.8.6:db455249, Sep 23 2020, 15:52:53
} [MSC v.18927 &4 bit (AMD&4)}] on win3Zz2

Type "help®™, "copyright™, "credits™ or "license()"™ for m
ore information.

FrF

= RESTART: F:\Informatik 2020\GK inf 2020-21\MS512%\Quadr
atzahlen while-Schleife.py

In welchem Bereich so0ll das Quadrat berechnet werden?
untere Grenze = 11

ocbere Gremze = 18
3 B3 et S e i |
L& a2a= 144
13 ~2 = 1493
14 ~2 = 19¢&
15 *2 = 2235
le "2 = 25L&
17 ~2 = 28B4
1g ~2 = 324
19 ~2 = 36l
FrF

Lm: 18 Col 4

6

Quadratwurzel aus einer positiven reellen Zahl

Der Algorithmus ,Wurzelberechnung" approximiert Ya fiir eine positive reelle
Zahl a. Die Iteration bricht ab, sobald der Abstand zweier aufeinanderfolgender
Folgenglieder kleiner als eine einzugebende Fehlerschranke d wird.

Der Abbruch erfolgt, sobald die Boolesche Variable condition innerhalb des
Schleifenrumpfs den Wert False erhalt, was eintritt, wenn abs(y - z) kleiner als
d wird.

Anmerkung:
Der hier vorgestellte Algorithmus stitzt sich darauf, daB die Folge {x;} mit

a . . .
Xi+1= %(Xi +—), Xo=a, gegen Ja konvergiert; dies sei hier ohne
Xi

Beweis und ohne néhere Begrindung mitgeteilt.

I]:. *sgrt_while-loop_mit_abbruchbedingung.py - F:/Informatik_2020/...

File Edit Format Run Options Window Help

print {'Eingabe des Radikanden:')

B =)

Die Iteration bricht ab, sobald der Abstand

zweier aufeinanderfolgender Iterationen kleiner als d wizd
print {'Eingabe Fehlerschranke d:')

d = float [(input('d = '})

Verarbeitung und &
condition = True #
X = a *
while condition:

Startwert; alternativ: x = 1

zZ =X

x = 0.5%({x + a/x)

¥y = X

print (x)

condition = {(abs{y - z) >= d)

Ln: 19 Col: 8

on 3.8.6 Shel

File Edit Shell Debug Options Window Help

Python 3.8.6 (tags/v3.8.6:db4552%, Sep 23 2020, 15:52:53) [MSC v.1927 64 bit (AMD&4)]
on win32

Type "help®, "copyright™, "credits™ or "license ()™ for more information.

x>

= RESTART: F:/Informatik 2020/GK_inf 2020-21/M5512/sqgrt while-loop mit abbruchbedingu
ng.py

Eingabe des Radikanden:

a = 85

Eingabe Fehlerschranke d:

d = 0.0001

43.0

22 .4B8372083023255
13.134051610110387
9.802E885441165137
9.236901144433745
9.219560764417094
©9.21554445730731

x>

= RESTART: F:/Informatik 2020/GK_inf 2020-21/M5512/sqgrt while-loop mit abbruchbedingu
ng.py

Eingabe des Radikanden:

a = 85

Eingabe Fehlerschranke d:
d = 0.0000000000001

43.0

22.488372093023255
13.134051610110387
0.802885441165137
.2365901144433745
.219560764417094
.21854445730731
.2159544457292887
.219544457292887

x>

= RESTART: F:/Informatik 2020/GK_inf 2020-21/MS5512/sqgrt_while-loop mit_ abbruchbedingu
ng.py

Eingabe des Radikanden:

a = 25

Eingabe Fehlerschranke d:
d = 0.00000000000001

w oo oo oo

13.0
T.461538461538462
5.406026962727994
5.015247601944E858
5.0000231782535948
5.000000000053722
=
=

Ln: 48 Cok 4

Algorithmus QUADRATISCHE GLEICHUNGEN

Spezifikation:
Nach Eingabe der Koeffizienten a, b, c der allgemeinen quadratischen Gleichung

ax? + bx + ¢ = 0 ermittelt der Algorithmus die Lésungsmenge und gibt diese
aus.

FluBdiagramm:

Eingabe a, b, ¢

_/a=0\ +

D = b? - 4ac + -
+
‘<D<> x=-c/b keine
l LAésung
Ausgabe x

keine
Losung

D=0\ _
+ x1=(-b + D¥?)/(2a)
x = —b/(2a) x2=(-b — DY?)/(2a)

A4 VL

/ Ausgabe x / Ausgabe x1, x2

05.10.2020

Verzweigte Algorithmen

Definition: Ein Anweisungsblock besteht aus einer Folge zusammengehdren-
der Anweisungen, die nacheinander ausgefiihrt werden.
Ein Anweisungsblock, der innerhalb einer Schleife wiederholt wird,
heiBt Schleifenrumpf.
Den zu einer Funktion gehérenden Anweisungsblock nennen wir
auch Funktionsrumpf.

Bemerkungen: - Anweisungsblécke kdnnen auch ineinander verschachtelt sein.

- In Python wird ein Anweisungsblock durch Einrlicken des Pro-
grammtextes gekennzeichnet.

Im folgenden verstehen wir unter condition einen Booleschen Term (der auch
nur aus einer Booleschen Variablen bestehen kann), der die Werte True oder

False annimmt. In Struktogrammen kennzeichnen wir True auch durch, + 7,
False durch, - ".

Einseitige Auswahl

condition
True False
Block1
Block?2
Zweiseitige Auswahl
condition
True False
Block1 Block2

Block3

Formulierung in Python:

if condition:

if condition:

Blockl Blockl
Block2 else:
Block?2
Block3
Mehrstufige Auswahl
condition1
True False
condition2
True False
Block1
Block2 Block3
Blockd

Formulierung in Python:

if conditionl:

Blockl

else:

if condition2:

Block2

else:

Block3

Block4

if conditionl:

Blockl

elif condition2:

Block2

else:

Block3

Block4

04.11.2020

Aufgabenblatt Nr. 1 inf12 27.10.2020

1. Zinseszins (linearer Algorithmus, ohne Verzweigungen)
FluBdiagramm:

Wenn ein Anfangskapital kO zu einem
Eingabe jahrlichen Zinssatz p % Uber einen
i Zeitraum von n Jahren mit Zinseszins
A”Fazr?ﬁgfsps'tsl L angelegt wird (der Zinsbetrag wird also
Laufzait 0 am Ende jeden Jahres dem zu
verzinsenden Kapital zugeschlagen),
ermittelt der Algorithmus ,Zinseszins" das
Endkapital k nach n Jahren.

Schreibe den durch nebenstehendes
k = kO - (1+% ” FluBdiagramm gegebenen Algorithmus als
Python-Programm und teste es.

Ausgabe

Endkapital k

2. Mobilfunkrechung
(Verzweigter Algorithmus)

Der Betreiber eines Mobilfunknetzes hat folgende Tarifgestaltung:

Monatliche Grundgeblihr (einschlieBlich 100 Gesprachsminuten): 20 €;
flr die nachsten, Gber 100 Minuten hinausgehenden 200 Minuten sind 5 ct je
Minute zu entrichten; jede weitere Minute kostet 4 ct.

Schreibe einen Algorithmus als

a) Struktogramm,
b) Pythonprogramm,

um nach Eingabe der Anzahl x der monatlichen Gesprachsminuten den
Rechnungsbetrag b zu bestimmen.

3. n-te Wurzel aus einer positiven reellen Zahl a
(Algorithmus mit Wiederholung, also mit Iteration (lat. ,iterare®,
wiederholen))

Die Folge {xi} mit

a
x”’l) , Xo=a, konvergiert gegen 4’/5;

i

Xi+1=%((n—1)-Xi+

dies sei hier ohne Beweis und ohne ndhere Begriindung mitgeteilt.

Schreibe und teste ein Python-Programm, welches nach Eingabe des
Radikanden a, der Ordnung n und der Fehlerschranke d (gréBter Abstand
zwischen dem letzten und dem vorletzten Folgenglied) die n-te Wurzel aus a
bestimmt.

Hinweis: Man orientiere sich am Algorithmus , Quadratwurzel™ auf S. 6 der
Zusammenfassung vom 08.10.2020.

Summe der Zahlen 1, 2,3, , n
(Algorithmus mit Wiederholung)

Der Algorithmus Sum ermittelt nach Eingabe der natlrlichen Zahl n die
Summe der Zahlen 1, 2, , n.

Schreibe und teste jeweils ein Python-Programm unter Verwendung einer
a) for-Schleife,
b) while-Schleife.

Prinzipien zur Erstellung eines Programms

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal oder Python)
besteht aus einer Folge von ausfiihrbaren Anweisungen, die in der vorgegebenen
Reihenfolge abgearbeitet werden.

In Maschinensprache (Assembler) geschriebene Programme verfolgen stets den
imperativen Ansatz, die elementaren (Maschinen-)Befehle werden nacheinander
ausgeflhrt.

Wesentliche Kontrollstruktur: Iterationen (for-, while-Schleife)

Funktionaler Ansatz

Der Quellcode bedient sich mathematischer Funktionen, durch die ein Algorithmus
beschrieben wird.

Wesentliche Kontrollstruktur: Rekursion

Definition:
Eine Prozedur (Teilprogramm) oder eine Funktion heiBt rekursiv, wenn ihr
Anweisungsteil mindestens einen Aufruf von sich selbst enthélt.

Bei beiden Ansatzen ist durch eine Abbruchbedingung sicherzustellen, daB der
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu
einem Ergebnis flhrt.

Beispiel 1
Der Algorithmus ggT (gréBter gemeinsamer Teiler)

Nach Eingabe zweier natlrlicher Zahlen a und b bestimmt ggT die gréBte ganze
Zahl, durch die sich a und b jeweils ohne Rest teilen lassen.

a) Imperativer Ansatz, formuliert als iterativer Algorithmus
(,Euklidischer Algorithmus")
Struktogramm:

Eingabe a, b

while (a>0 AND b=>0)

Ausgabe a Ausgabe b

b) Funktionaler Ansatz, formuliert als rekursiv definierte Funktion
Die Funktion (a, b) » ggT(a,b) 1aBt sich rekursiv definieren:
Rekursionsanfang: ggT(a,a) = a

Rekursionsvorschrift: ggT(a,b) = ggT(a-b, b), falls a>b
ggT(a,b) = ggT(a, b-a), falls b>a

Aufgabe:
Realisiere den Algorithmus ggT als iteratives und als rekursives Python-
Programm; vergleiche die Laufzeiten.

Beispiel 2
Die Funktion ,Fakultat™ (englisch: Factorial)

Die Funktion fact ordent jeder natirlichen Zahl n das Produkt
n'=1.2.......- n zu; definitionsgeman gilt: 0! = 1.

a) Imperativer Ansatz

Formuliere den Algorithmus iterativ (for- oder while-Schleife) als
Struktogramm und als Python-Programm

b) Funktionaler Ansatz

Die Funktion n — fact(n) |aBt sich rekursiv definieren:

1

Rekursionsanfang: fact(0)

n-fact(n-1), falls n>0

Rekursionsvorschrift: fact(n)

Formuliere die Funktion fact als rekursives Python-Programm!

Beispiel 3
Die Hofstadter-Funktion
Die Funktion hof ist rekursiv definiert, n € {1, 2, 3, b
Rekursionsanfang: hof(1) =1
hof(2) =1

Rekursionsvorschrift: hof(n) = hof(n - hof(n-1)) + hof(n-hof(n-2)), n>2

Aufgabe:
Codiere den Algorithmus hofstadter
a) rekursiv,
b) iterativ
jeweils in Python; vergleiche insbesondere die Laufzeiten!

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld), in dem bereits
berechnete Funktionswerte gespeichert werden.

27.10.2020

Arbeitsauftrag GK inf fir 17.11.2020

1.) Zu Aufgabe 4, Aufgabenblatt Nr. 1 vom 27.10.2020
(Summe der ganzen Zahlen 1, , n)

Struktogramm (10.11.2020):

Eingabe n

] < Initialisierung

i=1 des Schleifen-
index i

summe =0

whilei <=n

summe = summe + i

i=i+1

Ausgabe summe

a) Vervollstéandige folgende Trace-Tabelle fir n=6 (SD = Schleifendurchlauf):

n i summe i<=n

vor dem 1. SD 6 1 0 True

b) Schreibe und teste ein Python-Programm, welches nach Eingabe einer
natldrlichen Zahl n die Summe 1 + + n ermittelt!

2.) Zu Beispiel 2 des am 27.10.2020 ausgeteilten Papers
,Funktionaler_und_Imperativer Ansatz.pdf*
Die n!-Funktion; lies: ,n-Fakultat"

Produkt der ganzen Zahlen 1, 2,....,n
1.2-3-....... -n

Definition: n!

Beachte: 0!

1 (daB diese Definition Sinn macht, werdet ihr noch im
Mathematikunterricht kennenlernen.)

a) Erstelle ein Struktogramm (mit while-Schleife) fir den Algorithmus, der
nach Eingabe einer ganzen Zahl n, n>0, die Fakultdt von n bestimmt.

b) Fertige eine Trace-Tabelle an flir n = 5 (entsprechend obiger Tabelle).

c) Schreibe und teste ein Python-Programm, welches nach Eingabe einer
ganzen, nicht negativen Zahl n die Fakultat von n berechnet!

3.) Freiwillige Zusatzaufgabe: Formuliere die Programme aus 2.) und 3.) jeweils
mit einer for-Schleife statt einer while-Schleife!

Aufgabenblatt Nr. 2 inf12 10.11.2020

5. Summe ungerader Zahlen
Sei n eine ungerade ganze Zahl; gesucht ist die Summe der ungeraden
Zahlen 1,,n.
Konzipiere diesen Algorithmus als Struktogramm und codiere ihn in Python;
teste das Programm. Was fallt auf?

6. Die Ackermann-Funktion
Fir m, n e Ny ist die Ackermann-Funktion f: Nox No — N, wie folgt
definiert:

1. Rekursionsanfang:
(1) f(O,n) = n+1
2. Rekursionsvorschrift:

(2) f(m,0) f(m-1,1)
(3) f(m,n) f(m-1, f(m,n-1))

a) Man erhalt:
f(0,0) =1
f(0,1) =2
f(0,2) =3
f(1,0) =f(0,1) =2
Berechne f(2,0); f(1,1); f(1,2); f(3,0).

b) Schreibe den Algorithmus zur Berechnung der Ackermann-Funktion als
Python-Programm mit rekursivem Funktionsaufruf.
Berechne f(3,7); f(3,8); f(4,1); f(3,15),; f(4,3)
Bemerkung: Die Ackermann-Funktion ist eine berechenbare Funktion,
allerdings (bersteigt deren ungeheure Rekursionstiefe sehr schnell die
Méglichkeiten jedes auch noch so leistungsféhigen Computers!

7. Die Datenstruktur ,array" 138t sich in Python als Liste mit den Komponenten
a[1], a[2],, a[n] z. B. wie folgt realisieren:

File Edit Format Run Options Window Help

from random import randint ~
n=int (input {'Lange der Liste = '})

die folgende Anweisung definiert eimne Liste mit

den Komponenten af[l], a[2], . . . , aln]

a=list (range(l,n+2))

den Komponenten der Liste werden Zufallszahlen

au= dem Bereich 1, . . . , 93555 zugewieszen

for i in range (1,n+1):
alil=randint (1,100000)

Ausgabe der Liste

for i in range{l,n+l):
print('a[',i,"'] =',a[i]) W

Lm: 18 Col 0

Formuliere ein Struktogramm und erweitere oben stehendes Python-
Programm so, daB das groBte (kleinste) Element der Liste in der ersten
Komponente a[1] abgespeichert ist und der vorherige Inhalt von a[1] an
derjenigen Stelle steht, von der das grofte Element genommen wurde.

Arbeitsauftrag GK inf12 fir 24.11.2020

In héheren Programmiersprachen (wie Python) ist die Mdglichkeit implementiert,
Funktionen, auch rekursiv formulierte Funktionen, zu definieren. Dabei verstehen
wir unter einer Funktion ein Unterprogramm (Prozedur), welches nach der
Ubergabe von Daten einen Funktionswert an das aufrufende Programm zuriickgibt.
Der zur Funktion gehérende Anweisungsblock heiBt auch Funktionsrumpf (in
Python wird der Funktionsrumpf durch Einriicken des Programmtextes kenntlich
gemacht). Eine Funktion, deren Funktionsrumpf mindestens einen Aufruf ihrer
selbst enthalt, heiBt rekursiv (lat. recurrere, zurticklaufen).

Die Funktion summe (siehe Arbeitsauftrag flir 17.11.2020), die einer natirlichen
Zahlnmitn e {0, 1, 2,...} die Summe
O+...... + n zuordnet, 1aBt sich rekursiv wie folgt definieren:

Rekursionsanfang: summe(0) =0
Rekursionsvorschrift: summe(n) = n + summe(n-1) fallsn=>1

Realisierung von summe in Python:

l}. sum_rekursiv.py - FA\Informatik_20200GE_inf_2020-274M... =

File Edit Format Run Options Window Help

® Summs 0 + . - . - - + D" L]

=f summe [x):

return X + summe (x-1}

n = int {input{'n = '}}
print ("D + . « & « #',;n,"'" = " gumme{n))
L
Lm: 14 Colk 0
Erlauterungen:
summe (X) : Funktionskopf;
summe = Name der Funktion
x = lokale (nur innerhalb der Funktion verfligbare)
Variable

Nach dem Doppelpunkt folgt der durch Einrlicken kenntlich
gemachte Funktionsrumpf.

mit return wird der berechnete Funktionswert an das
aufrufende Programm (bergeben

Der Aufruf summe (n) (hier: innerhalb der print-Anweisung) bewirkt:
- Der aktuelle Wert der Variablen n wird der lokalen, nur innerhalb der
Funktion verfligbaren Variablen x zugewiesen

- Nach der (hier rekursiv erfolgenden) Berechnung wird der Funktionswert mit
return zuriickgegeben.

Beispiel (n = 100):

File Edit Shell Debug Options Window Help

Python 3.8.6 (tags/v3.8.6:db45529, Sep 23 2020, 15:52:53) [MSC v.1927 €4 bit (AMD&4
}] on win3z2

Type "help™, "copyright™, "credits" or "license ()" for more information.

RESTART: F:\Informatik 2020\GE_inf 2020-21\MSS12\Python apps\sum rekursiv.py =
= 100
ot ogl & iR 1ARn = 25050

L= = | Y,

Die rekursive Berechnung von summe (6) = s (6) |aBt sich wie folgt
verdeutlichen:

s(6) = 6 + s(5)
=6+ (5 + s(4))
=6+ (5+ (4 + s(3)))
=6+ (5+ (4 + (3 + s(2))))
=6+ (5+ (4 + (3 + (2 + s(1)))))
=6+ (5+ (4+ (3 + (2+ (1 + s(0))))))

mit s (0) ist der Rekursionsanfang erreicht, die Rekursion bricht ab.

Arbeitsauftrage fiir 24.11.2020:

1.) Erstelle den Programmtext flir die rekursive Berechnung von summe (n); man
orientiere sich an dem obenstehenden screenshot.

2.) Teste das Programm sowohl als iterativ (gemaB Ziffer 1 aus Arbeitsauftrag fir
17.11.2020) als auch als rekursiv definierten Algorithmus fir unterschiedliche
Werte von n; wahle auch n = 1000, 10000, 100000, 1000000. Was fallt auf?

3.) Die Fakultatsfunktion (eng.: factorial) 1aBt sich rekursiv definieren (vgl. das
Paper ,Funktionaler_und_Imperativer_Ansatz" vom 27.10.2020):

Rekursionsanfang: fact(0) 1

Rekursionsvorschrift: fact(n) = n-fact(n-1), falls n>0
Schreibe und teste ein Python-Programm, um die Fakultatsfunktion rekursiv zu
berechnen; vergleiche mit dem iterativ formulierten Algorithmus gemaB Ziffer
2 des Arbeitsauftrags fiir 17.11.2020.

4.) fakultativ: Aufgabe Nr. 5 aus Aufgabenblatt Nr. 2 vom 10.11.2020

