
Informatik
inf12 08.10.2020

Definition:
Unter einem Algorithmus verstehen wir ein aus endlich vielen Anweisun-
gen bestehendes allgemeines Verfahren, welches eine Klasse von Proble-
men in endlich vielen Schritten löst.

Wir beschreiben einen Algorithmus, unabhängig von der Programmiersprache, in
der er codiert wird, durch ein Flußdiagramm oder ein Struktogramm („Nassi-
Shneiderman“-Diagramm).

1. Lineare Algorithmen

Wenn bei der Abarbeitung eines Algorithmus die einzelnen Anweisungen sich
längs eines einzigen Pfades aneinanderreihen, sprechen wir von einem linearen
Algorithmus; insbesondere gibt es hier keine Verzweigungen. Beispiel: Zinses-
zinsberechnung.

Allgemeines Flußdiagramm Flußdiagramm des Algorithmus
eines Algorithmus: „Zinseszins“:

2. Verzweigte Algorithmen

Ein Algorithmus, bei dessen Abarbeitung unterschiedliche Anweisungsblöcke
durchlaufen werden können, heißt verzweigter Algorithmus; dabei entscheidet die
Abfrage einer Bedingung (in Form einer booleschen Variablen oder eines boole-
schen Ausdrucks) darüber, welcher Zweig durchlaufen wird.

Beispiel:
Der Algorithmus „QuadEquation“, der die Lösungsmenge einer quadratischen
Gleichung bestimmt.

 2

Der Ablauf ergibt sich aus einem Flußdiagramm oder einem Struktogramm (bei
letzterem fehlt die Abfrage b0):

 3

Quelltext des Algorithmus QuadEquation in Python codiert:

3. Schleifen

Soll ein Anweisungsblock innerhalb eines Algorithmus mehrmals durchlaufen wer-
den, sprechen wir von einer Schleife; der wiederholt durchlaufene Anweisungs-
block heißt auch Schleifenrumpf. Wenn die Anzahl der Durchläufe einer Schleife a
priori (von vorneherein) feststeht, läßt sich eine for- oder while-Schleife ver-
wenden; hat z. B. die Abfrage einer Bedingung (in Form eines Booleschen Aus-
drucks) innerhalb des Schleifenrumpfs Einfluß auf die Anzahl der Durchläufe,
kommt nur die while-Schleife in Frage.

Struktogramme:

 4

Der Algorithmus „Quadratzahlen“ gibt die Quadrate der ganzen Zahlen aus dem
Intervall [a, b] aus:

Quellcode in Python, realisiert mit einer while-Schleife:

Quellcode in Python, realisiert mit einer for-Schleife:

 5

Ausgabe der Quadratzahlen:

 6

Quadratwurzel aus einer positiven reellen Zahl

Der Algorithmus „Wurzelberechnung“ approximiert a für eine positive reelle
Zahl a. Die Iteration bricht ab, sobald der Abstand zweier aufeinanderfolgender
Folgenglieder kleiner als eine einzugebende Fehlerschranke d wird.

Der Abbruch erfolgt, sobald die Boolesche Variable condition innerhalb des
Schleifenrumpfs den Wert False erhält, was eintritt, wenn abs(y - z) kleiner als
d wird.

Anmerkung:

Der hier vorgestellte Algorithmus stützt sich darauf, daß die Folge {xi} mit

1 1
2 ()

i

i i
a

x
x x   , 0x a , gegen a konvergiert; dies sei hier ohne

Beweis und ohne nähere Begründung mitgeteilt.

 7

Algorithmus QUADRATISCHE GLEICHUNGEN

Spezifikation:
Nach Eingabe der Koeffizienten a, b, c der allgemeinen quadratischen Gleichung
ax2 + bx + c = 0 ermittelt der Algorithmus die Lösungsmenge und gibt diese
aus.

Flußdiagramm:

Eingabe a, b, c

x = c/b

Ausgabe x

+

keine
Lösung

 D = b2 – 4ac

D<0

keine
Lösung

+



x = b/(2a)

Ausgabe x

+

D=0


x1=(b + D1/2)/(2a)

x2=(b  D1/2)/(2a)

Ausgabe x1, x2

05.10.2020

a=0

b0

+ 

Verzweigte Algorithmen

Definition: Ein Anweisungsblock besteht aus einer Folge zusammengehören-

der Anweisungen, die nacheinander ausgeführt werden.
Ein Anweisungsblock, der innerhalb einer Schleife wiederholt wird,
heißt Schleifenrumpf.
Den zu einer Funktion gehörenden Anweisungsblock nennen wir
auch Funktionsrumpf.

Bemerkungen: - Anweisungsblöcke können auch ineinander verschachtelt sein.

- In Python wird ein Anweisungsblock durch Einrücken des Pro-
grammtextes gekennzeichnet.

Im folgenden verstehen wir unter condition einen Booleschen Term (der auch
nur aus einer Booleschen Variablen bestehen kann), der die Werte True oder
False annimmt. In Struktogrammen kennzeichnen wir True auch durch ‚ + ’,
False durch ‚  ’.

Einseitige Auswahl

Zweiseitige Auswahl

 condition
 True False

 Block1 Block2

 Block3

 condition
 True False

 Block1

 Block2

 2

Formulierung in Python:

if condition: if condition:

 Block1 Block1

Block2 else:

 Block2

 Block3
Mehrstufige Auswahl

Formulierung in Python:

if condition1: if condition1:

 Block1 Block1

else: elif condition2:

 if condition2: Block2

 Block2 else:

 else: Block3

 Block3 Block4

Block4

 04.11.2020

Aufgabenblatt Nr. 1 inf12 27.10.2020

1. Zinseszins (linearer Algorithmus, ohne Verzweigungen)

Flußdiagramm:

Wenn ein Anfangskapital k0 zu einem
jährlichen Zinssatz p % über einen
Zeitraum von n Jahren mit Zinseszins
angelegt wird (der Zinsbetrag wird also
am Ende jeden Jahres dem zu
verzinsenden Kapital zugeschlagen),
ermittelt der Algorithmus „Zinseszins“ das
Endkapital k nach n Jahren.

Schreibe den durch nebenstehendes
Flußdiagramm gegebenen Algorithmus als
Python-Programm und teste es.

2. Mobilfunkrechung
 (Verzweigter Algorithmus)

 Der Betreiber eines Mobilfunknetzes hat folgende Tarifgestaltung:

Monatliche Grundgebühr (einschließlich 100 Gesprächsminuten): 20 €;
für die nächsten, über 100 Minuten hinausgehenden 200 Minuten sind 5 ct je
Minute zu entrichten; jede weitere Minute kostet 4 ct.

Schreibe einen Algorithmus als

a) Struktogramm,
b) Pythonprogramm,

um nach Eingabe der Anzahl x der monatlichen Gesprächsminuten den
Rechnungsbetrag b zu bestimmen.

3. n-te Wurzel aus einer positiven reellen Zahl a
 (Algorithmus mit Wiederholung, also mit Iteration (lat. „iterare“,

wiederholen))

Die Folge {xi} mit

1
1 1 (1)()

i
n

i in
a

x
x n x


     , 0x a , konvergiert gegen n a ;

dies sei hier ohne Beweis und ohne nähere Begründung mitgeteilt.

Schreibe und teste ein Python-Programm, welches nach Eingabe des
Radikanden a, der Ordnung n und der Fehlerschranke d (größter Abstand
zwischen dem letzten und dem vorletzten Folgenglied) die n-te Wurzel aus a
bestimmt.

Hinweis: Man orientiere sich am Algorithmus „Quadratwurzel“ auf S. 6 der
Zusammenfassung vom 08.10.2020.

4. Summe der Zahlen 1, 2, 3, , n
 (Algorithmus mit Wiederholung)

 Der Algorithmus Sum ermittelt nach Eingabe der natürlichen Zahl n die

Summe der Zahlen 1, 2, , n.

 Schreibe und teste jeweils ein Python-Programm unter Verwendung einer

a) for-Schleife,
b) while-Schleife.

Prinzipien zur Erstellung eines Programms

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal oder Python)
besteht aus einer Folge von ausführbaren Anweisungen, die in der vorgegebenen
Reihenfolge abgearbeitet werden.
In Maschinensprache (Assembler) geschriebene Programme verfolgen stets den
imperativen Ansatz, die elementaren (Maschinen-)Befehle werden nacheinander
ausgeführt.

Wesentliche Kontrollstruktur: Iterationen (for-, while-Schleife)

Funktionaler Ansatz

Der Quellcode bedient sich mathematischer Funktionen, durch die ein Algorithmus
beschrieben wird.

Wesentliche Kontrollstruktur: Rekursion

Definition:
Eine Prozedur (Teilprogramm) oder eine Funktion heißt rekursiv, wenn ihr
Anweisungsteil mindestens einen Aufruf von sich selbst enthält.

Bei beiden Ansätzen ist durch eine Abbruchbedingung sicherzustellen, daß der
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu
einem Ergebnis führt.

Beispiel 1
Der Algorithmus ggT (größter gemeinsamer Teiler)

Nach Eingabe zweier natürlicher Zahlen a und b bestimmt ggT die größte ganze
Zahl, durch die sich a und b jeweils ohne Rest teilen lassen.

a) Imperativer Ansatz, formuliert als iterativer Algorithmus
 („Euklidischer Algorithmus“)
 Struktogramm:

 2

b) Funktionaler Ansatz, formuliert als rekursiv definierte Funktion

 Die Funktion (a, b)  ggT(a,b) läßt sich rekursiv definieren:

 Rekursionsanfang: ggT(a,a) = a

 Rekursionsvorschrift: ggT(a,b) = ggT(a–b, b) , falls a > b

 ggT(a,b) = ggT(a, b–a) , falls b > a

Aufgabe:
Realisiere den Algorithmus ggT als iteratives und als rekursives Python-
Programm; vergleiche die Laufzeiten.

Beispiel 2
Die Funktion „Fakultät“ (englisch: Factorial)

Die Funktion fact ordent jeder natürlichen Zahl n das Produkt
n! = 1  2   n zu; definitionsgemäß gilt: 0! = 1.

a) Imperativer Ansatz

 Formuliere den Algorithmus iterativ (for- oder while-Schleife) als

Struktogramm und als Python-Programm

b) Funktionaler Ansatz

 Die Funktion n  fact(n) läßt sich rekursiv definieren:

 Rekursionsanfang: fact(0) = 1

 Rekursionsvorschrift: fact(n) = n  fact(n-1) , falls n > 0

 Formuliere die Funktion fact als rekursives Python-Programm!

Beispiel 3
Die Hofstadter-Funktion

Die Funktion hof ist rekursiv definiert, n  {1, 2, 3, } :

Rekursionsanfang: hof(1) = 1
 hof(2) = 1

Rekursionsvorschrift: hof(n) = hof(n - hof(n - 1)) + hof(n - hof(n - 2)) , n>2

Aufgabe:
Codiere den Algorithmus hofstadter

a) rekursiv,
b) iterativ

jeweils in Python; vergleiche insbesondere die Laufzeiten!

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld), in dem bereits
berechnete Funktionswerte gespeichert werden.

 27.10.2020

Arbeitsauftrag GK inf für 17.11.2020

1.) Zu Aufgabe 4, Aufgabenblatt Nr. 1 vom 27.10.2020
 (Summe der ganzen Zahlen 1, , n)

 Struktogramm (10.11.2020):

  Initialisierung
 des Schleifen-
 index i

a) Vervollständige folgende Trace-Tabelle für n=6 (SD = Schleifendurchlauf):

 n i summe i<=n

vor dem 1. SD 6 1 0 True

b) Schreibe und teste ein Python-Programm, welches nach Eingabe einer
natürlichen Zahl n die Summe 1 + + n ermittelt!

2.) Zu Beispiel 2 des am 27.10.2020 ausgeteilten Papers

„Funktionaler_und_Imperativer Ansatz.pdf“
 Die n!-Funktion; lies: „n-Fakultät“

 Definition: n! = Produkt der ganzen Zahlen 1, 2, , n
 = 1  2  3   n

 Beachte: 0! = 1 (daß diese Definition Sinn macht, werdet ihr noch im
 Mathematikunterricht kennenlernen.)

a) Erstelle ein Struktogramm (mit while-Schleife) für den Algorithmus, der
nach Eingabe einer ganzen Zahl n, n0, die Fakultät von n bestimmt.

b) Fertige eine Trace-Tabelle an für n = 5 (entsprechend obiger Tabelle).
c) Schreibe und teste ein Python-Programm, welches nach Eingabe einer

ganzen, nicht negativen Zahl n die Fakultät von n berechnet!

3.) Freiwillige Zusatzaufgabe: Formuliere die Programme aus 2.) und 3.) jeweils

mit einer for-Schleife statt einer while-Schleife!

Eingabe n

i = 1

summe = 0

while i <= n

 summe = summe + i

 i = i +1

Ausgabe summe

Aufgabenblatt Nr. 2 inf12 10.11.2020

5. Summe ungerader Zahlen
 Sei n eine ungerade ganze Zahl; gesucht ist die Summe der ungeraden

Zahlen 1, , n.
 Konzipiere diesen Algorithmus als Struktogramm und codiere ihn in Python;

teste das Programm. Was fällt auf?

6. Die Ackermann-Funktion

Für m, n  0 ist die Ackermann-Funktion f : 0  0  0 wie folgt
definiert:

1. Rekursionsanfang:

 (1) f(0,n) = n+1

2. Rekursionsvorschrift:

 (2) f(m,0) = f(m-1,1)
 (3) f(m,n) = f(m-1, f(m,n-1))

a) Man erhält:
 f(0,0) = 1

f(0,1) = 2
f(0,2) = 3
f(1,0) = f(0,1) = 2
Berechne f(2,0); f(1,1); f(1,2); f(3,0) .

b) Schreibe den Algorithmus zur Berechnung der Ackermann-Funktion als
Python-Programm mit rekursivem Funktionsaufruf.

 Berechne f(3,7); f(3,8); f(4,1) ; f(3,15) ; f(4,3)
 Bemerkung: Die Ackermann-Funktion ist eine berechenbare Funktion,

allerdings übersteigt deren ungeheure Rekursionstiefe sehr schnell die
Möglichkeiten jedes auch noch so leistungsfähigen Computers!

7. Die Datenstruktur „array“ läßt sich in Python als Liste mit den Komponenten
a[1], a[2], , a[n] z. B. wie folgt realisieren:

 Formuliere ein Struktogramm und erweitere oben stehendes Python-
Programm so, daß das größte (kleinste) Element der Liste in der ersten
Komponente a[1] abgespeichert ist und der vorherige Inhalt von a[1] an
derjenigen Stelle steht, von der das größte Element genommen wurde.

Arbeitsauftrag GK inf12 für 24.11.2020

In höheren Programmiersprachen (wie Python) ist die Möglichkeit implementiert,
Funktionen, auch rekursiv formulierte Funktionen, zu definieren. Dabei verstehen
wir unter einer Funktion ein Unterprogramm (Prozedur), welches nach der
Übergabe von Daten einen Funktionswert an das aufrufende Programm zurückgibt.
Der zur Funktion gehörende Anweisungsblock heißt auch Funktionsrumpf (in
Python wird der Funktionsrumpf durch Einrücken des Programmtextes kenntlich
gemacht). Eine Funktion, deren Funktionsrumpf mindestens einen Aufruf ihrer
selbst enthält, heißt rekursiv (lat. recurrere, zurücklaufen).

Die Funktion summe (siehe Arbeitsauftrag für 17.11.2020), die einer natürlichen
Zahl n mit n  {0, 1, 2, . . . } die Summe
0 + + n zuordnet, läßt sich rekursiv wie folgt definieren:

Rekursionsanfang: summe(0) = 0

Rekursionsvorschrift: summe(n) = n + summe(n  1) falls n  1

Realisierung von summe in Python:

Erläuterungen:

def summe(x): Funktionskopf;

summe = Name der Funktion
 x = lokale (nur innerhalb der Funktion verfügbare)
 Variable
 Nach dem Doppelpunkt folgt der durch Einrücken kenntlich

gemachte Funktionsrumpf.

return mit return wird der berechnete Funktionswert an das

aufrufende Programm übergeben

Der Aufruf summe(n) (hier: innerhalb der print-Anweisung) bewirkt:

- Der aktuelle Wert der Variablen n wird der lokalen, nur innerhalb der
Funktion verfügbaren Variablen x zugewiesen

- Nach der (hier rekursiv erfolgenden) Berechnung wird der Funktionswert mit
return zurückgegeben.

 2

Beispiel (n = 100):

Die rekursive Berechnung von summe(6) = s(6) läßt sich wie folgt
verdeutlichen:

s(6) = 6 + s(5)
 = 6 + (5 + s(4))
 = 6 + (5 + (4 + s(3)))
 = 6 + (5 + (4 + (3 + s(2))))
 = 6 + (5 + (4 + (3 + (2 + s(1)))))
 = 6 + (5 + (4 + (3 + (2 + (1 + s(0))))))

mit s(0) ist der Rekursionsanfang erreicht, die Rekursion bricht ab.

Arbeitsaufträge für 24.11.2020:

1.) Erstelle den Programmtext für die rekursive Berechnung von summe(n); man

orientiere sich an dem obenstehenden screenshot.

2.) Teste das Programm sowohl als iterativ (gemäß Ziffer 1 aus Arbeitsauftrag für

17.11.2020) als auch als rekursiv definierten Algorithmus für unterschiedliche
Werte von n; wähle auch n = 1000, 10000, 100000, 1000000. Was fällt auf?

3.) Die Fakultätsfunktion (eng.: factorial) läßt sich rekursiv definieren (vgl. das

Paper „Funktionaler_und_Imperativer_Ansatz“ vom 27.10.2020):

 Rekursionsanfang: fact(0) = 1

 Rekursionsvorschrift: fact(n) = n  fact(n  1) , falls n > 0

 Schreibe und teste ein Python-Programm, um die Fakultätsfunktion rekursiv zu

berechnen; vergleiche mit dem iterativ formulierten Algorithmus gemäß Ziffer
2 des Arbeitsauftrags für 17.11.2020.

4.) fakultativ: Aufgabe Nr. 5 aus Aufgabenblatt Nr. 2 vom 10.11.2020

