Arbeitsauftrag GK inf12 fiir 08.01.2021

Ergdanzungen und Vertiefungen zum Konzept “Rekursion”

Die funktionale Formulierung eines Algorithmus bedient sich der mathematischen
Struktur eines Problems; wesentliche Kontrollstruktur ist die Rekursion (Bekanntlich
heiBt eine Funktion oder eine Prozedur (Teilprogramm) rekursiv, wenn sie
mindestens einen Aufruf ihrer selbst enthélt.).

In héheren Programmiersprachen (Pascal, C++, Python) ist die Méglichkeit der
rekursiven Formulierung implementiert, was haufig eine sehr elegante Formulierung
eines Algorithmus gestattet.

Bei rekursiven Programmen kann es jedoch zu einem ,stack overflow" kommen,
wenn die Anzahl der gleichzeitig aktiven Aufrufe der Prozedur oder der Funktion zu
groB wird. In Python ist eine Rekursionstiefe von 1000 (oder 1024?) voreingestellt;
nach Import des sys-Moduls mittels

import sys

[&Bt sich Uber

sys.getrecursionlimit ()

die aktuelle Rekursionstiefe ausgeben, und mit
sys.setrecursionlimit (a)

kann man die Rekursionstiefe auf den Wert a setzen.

Wir greifen noch mal die Funktion fact (siehe Beispiel 3 aus Arbeitsauftrag fir

24.11.2020) auf, die jeder natlirlichen Zahl n € {0, 1, 2, . . . } deren Falkultat
fact(n) zuordnet.

Python-Quelltext:

"factorial recursive"
import sys

print ('Rekursionstiefe: ',sys.getrecursionlimit())

a=int (input ('gewuenschte Rekursionstiefe: '))
sys.setrecursionlimit (a)

print ('aktuelle Rekursionstiefe: ', sys.getrecursionlimit())
print ()

def fact(x):

global =z
z =z + 1
if x == 0:
return 1
else:
return x * fact(x - 1)
z =0
n=int (input("n = "))
y = fact(n)
print (n,"! = ",vy)

print ('Anzahl der Aufrufe: ', z)

Beachte:

Die Variablen n, z und y sind globale Variable; bei Aufruf fact (n) in der
drittletzten Zeile wird der Wert der Variablen n an die lokale Variable x der Funktion
fact lGbergeben (selbst wenn man innerhalb der Funktion fact die lokale Variable
x mit n bezeichnen wiirde, wiirde flir dieses n ein eigener lokaler Speicherplatz
definiert).

Die globale Variable z zahlt die Anzahl der Aufrufe der Funktion fact. Vor dem
ersten Aufruf von fact wird z auf 0 gesetzt (initialisiert), und bei jeder Abarbeitung
der Funktion fact wird z um 1 erhéht (inkrementiert). Die Anweisung global z
verhindert, daB z innerhalb der Funktion als neue lokale Variable verstanden wird.

Aufrufschema fur fact(5) (nach http://www.saar.de/~awa/jrekursion.html):

Der griine Pfeil bedeutet jeweils ,ruft auf”, der rote ,gibt zurlick"; der
Rekursionsanfang fact(0)=1 erzwingt, daB der Algorithmus abbricht (terminiert).

Aufrufschema fiir fac(3)

= 120 Rekursionstiefe 0
5% fac(4) = 5%24 1

t

e fac(3) =4%6 S 2
V! 2
3*fac(2) = 3x9 3% :
2 £
2% fac(]g = 2% 0
J 5

1* fac{0)=1*1

g

Aufgabe:

Erstelle zur Berechnung der Hofstadter-Funktion und der Ackermann-Funktion
(Aufgabenblatt Nr. 2 vom 10.11.2020) jeweils einen Python-Programmtext, erweitert
um die Mdglichkeit, die Rekursionstiefe anzupassen und die Anzahl z der Aufrufe zu
zahlen und auszugeben; teste die Programme mit unterschiedlichen Werten.

Definition der Hofstadter-Funktion, die jeder natiirlichen Zahl n>1 den Wert hof(n)
zuordnet:

Rekursionsanfang: hof(1) =1
hof(2) = 1

Rekursionsvorschrift: hof(n) = hof[n - hof(n - 1)] + hof[n - hof(n-2)], n> 2

Rekursionstiefe und Anzahl der Funktionsaufrufe
am Beispiel der Hofstadter-Funktion

Quellcode in Python:

def hof (x):
if x == 1:
return 1
elif x ==
return 1
elif x > 2:
return hof(x - hof(x - 1)) + hof(x - hof(x - 2)

endwert = int (input ('Bis zu welchem Wert soll Hofstadter berechnet werden? '))
n=1
while n <= endwert:

y = hof (n)
print('hof(',n,"') =',y)
n+=1
h(l) =1
1 Aufruf Rekursionstiefe = 1
h(2) =1
1 Aufruf Rekursionstiefe = 1
h(3) = h(3 - h(2)) + h(3 - h(1l)) & 2-fache Verschachtelung
1 1 1 <& # Aufrufe
= h(3 - 1) + h(3 - 1)
= h(2) + h(2)
1 1 <& # Aufrufe
=1 + 1
=2
5 Aufrufe Rekursionstiefe = 2
h(4) = h(4 - h(3)) + h(4 - h(2))
1 5 1 <& # Aufrufe
= h(4 - 2) + h(3)
= h(2) + h(3)
1 5 <& # Aufrufe
13 Aufrufe insgesamt
= h(4 - h(3)) + h(4 - h(2))
= h(4d - (h(3 - h(2)) + h(3 - h(l))) + h(3)
= h(4 - (h(3 - h(2)) + h(3 - h(1))) + h(3 - h(2)) + h(3 - h(1))
— _
—
3-fache Verschachtelung
= h(4 - (h(3 - 1) + h(3 - 1)) + h(3 = 1) + h(3 - 1)
= h(4 - (h(2) + h(2)) + h(2) + h(2)
=h(4 - (1 + 1)) +1 + 1
h(2) + 1 + 1
1 +1 + 1
=3
Rekursionstiefe = 3

08.01.2021

Sortieren durch direkte Auswahl

Wir beschranken uns zundchst darauf, eine Liste von ganzen Zahlen (hier:
Zufallszahlen) der GréBe nach, und zwar aufsteigend, zu sortieren. Den
Algorithmus spdter auf andere Datenstrukturen (z. B. Namen, Verbundtypen) zu
Ubertragen, ist vergleichsweise einfach und bereitet keine Schwierigkeiten.

Die Python-Anweisungen range, 1ist und len:

a)

b)

range-Anweisung

Die range-Anweisung definiert einen Bereich ganzer Zahlen.
range (10) definiert den Bereich 0, 1, ..., 9

range (4,21) definiert den Bereich 4, 5, . .., 20

range (4,21,3) definiert den Bereich 4, 7, 10, ..., 16, 19
range (-4, 3) definiert den Bereich -4, -3, -2,-1,0, 1, 2

Allgemein gilt:

range (start, stop)
definiert den Bereich start,..... , stop-1 ganzer Zahlen,

range (start, stop, step)
definiert den Bereich start,..... mit der Schrittweite step, wobei die
Zahl stop nicht mehr enthalten ist.

Erstellen einer Liste ganzer Zahlen

a = list(range(4,13)) erzeugt die Liste

[4, 5, 6, 7, 8, 9, 10, 11, 12];

die (in diesem Fall 9) Elemente dieser Liste nennen wir auch Komponenten,
auf die man mit a[0], a[1], . . ., a[8] zugreifen kann (mit Erzeugung der
Liste dieses Beispiels sind die Komponenten a[0], a[1], . . ., a[8] in dieser
Reihenfolge mit den Werten 4, 5,, 12 belegt). Allerdings laBt sich jeder
Komponente a[i] eine beliebige andere ganze Zahl zuweisen.

Bemerkung: Unter einem Feld oder array verstehen wir eine Folge von
Variablen gleichen Typs; mit der Anweisung
a = list(range(4,13)) haben wir also ein array a erzeugt

mit den Komponenten a[0], a[1], ..., a[8].

len (a) bestimmt die Anzahl der Komponenten der Liste a, in dem Beispiel
aus b) gilt somit: len(a) = 9.

. Erstellen einer Liste mit n Komponenten, denen Zufallszahlen

zugewiesen werden (n ist eine natiirliche Zahl)

Vorbemerkung:
Die Python-Anweisung randint ist eine vordefinierte Funktion des random-

Moduls in Python; Syntax: randint (r,s) mit ganzen Zahlenrunds, r<s,
erzeugt eine Zufallszahl aus dem Intervall [r, s].

Beispiele:
randint (1,1000) erzeugt eine Zufallszahl aus dem Bereich 1,, 1000
randint (-7,12) erzeugt eine Zufallszahl aus dem Bereich -7,, 12

Ein Algorithmus, der nach Eingabe einer natiirlichen Zahl n eine Liste aus n
Zufallszahlen generiert, formuliert als Python-Quelltext in der Schriftart
Courier New, so daBB man den Quelltext unmittelbar durch copy und paste in

einen Editor fur Python-Programme tGbernehmen kann:

array mit zufallszahlen
from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
print (af[il)

2. Bestimmung des kleinsten Elements der Liste aus n Komponenten

Der Inhalt des Speicherplatzes a[0] wird sukzessive mit den Inhalten von a[1],
, a[n-1] verglichen; falls gilt a[i] < a[0], 1< i<n-1, werden die

Inhalte der Speicherplatze a[i] und a[0] ausgetauscht; hierzu wird, bevor a[0]

den Wert von a[i] erhalt, der urspriingliche Wert von a[0] mittels der

Hilfsvariablen temp gesichert und nach der Zuweisung a[0] = a[i] mit

a[i] = temp an a[i] Ubergeben.

Die Durchfiihrung der Vergleiche und der ggf. erforderliche Austausch der Inhalte
von a[0]und a[i] werden hier an die Funktion min (x) delegiert:

def min(x) :
for i in range(l,len(x)):
if x[i] < x[0]:

temp = x[0]
x[0] = x[1]
x[1] = temp

Mit dem Aufruf min (a) wird die Funktion min auf das aus den Komponenten
a[0], . . . , a[n-1] bestehende array a angewendet.

from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
print (af[il)

Bestimmen des kleinsten Elements:

Wir definieren eine Funktion min(x), die auf

das array a angewendet wird, das kleinste Element
bestimmt und dieses der Komponente a[0] zuweist.

def min(x) :
for i in range(l,len(x)):
if x[1] < x[0]:

temp = x[0]
x[0] = x[1]
x[1i] = temp

Aufruf der auf das array a anzuwendenden Funktion min
min (a)

Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle
print ()
for i in range(0,n):

print (al[il)

Nachdem das kleinste Element der Liste a[0], . . . , a[n-1] dem
Speicherplatz a[0] zugewiesen wurde, bestimmen wir das kleinste Element der
,Restliste" a[1], . . . , a[n-1] und weisen es dem Speicherplatz a[1] zu.
Wenn wir dieses Verfahren sukzessive auf die weiteren , Restlisten™

a[jl, . . . , a[n-1] mit 2 £ j £ n-2 anwenden, erhalten wir ein array
a, dessen Komponenten gemaB a[0] < a[l] £ . . . £ a[n-1] aufsteigend
sortiert sind.

Wir modifizieren die Funktion min (x), indem wir einen weiteren Parameter j
erganzen:

def min(x,Jj):
for i in range(j+1,len(x)):
if x[1] < x[]J]:

temp = x[7]
x[3] = x[1]
x[1i] = temp

Die mit dem Parameterwert j auf das array a angewendete Funktion
min (x,j)ermittelt in der Liste a[j], . . . , a[n-1] das kleinste Element
und weist es dem Speicherplatz a[j] zu.

3. Variante zu 2:
from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , a[n-1]
a = list(range(l,n+l))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):
print (al[il)

Bestimmen des kleinsten Elements:

Wir definieren eine Funktion min(x,7j), die auf
die Komponenten al[jl, . . , al[n-1] des arrays a
angewendet wird, das kleinste Element

bestimmt und dieses der Komponente a[]j] zuweist.

H= = = =

def min(x,J):
for i in range(j+1,len(x)):
if x[1] < x[J]:

temp = x[7]
x[3] = x[1]
x[1i] = temp

Aufruf der auf das array a anzuwendenden Funktion min
min (a, 0)

Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle
print ()
for i in range(0,n):

print (al[il)

4. Bestimmung der 2 kleinsten Elemente der Liste aus n Komponenten
from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+l))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000)

Ausgabe des arrays
for i in range(0,n):

print (af[il)

Wir definieren eine Funktion min(x,j), die auf

die Komponenten al[j]l, . . , a[n-1] des arrays a
angewendet wird, das kleinste Element
bestimmt und dieses der Komponente al[j] zuweist.

def min(x,Jj):
for i in range(j+1,len(x)):
if x[1] < x[J]:

temp = x[7]
x[3] = x[1]
x[1i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min

min (a, 0)
min (a, 1)

Ausgabe der Liste

print ()

for i in range(0,n):
print (af[il)

5. Bestimmung der 3 kleinsten Elemente der Liste aus n Komponenten

Aufrufe der auf das array a anzuwendenden Funktion min

min (a, 0)
min(a, 1)
min (a, 2)

6. Sortieren der aus den Komponenten a[0],, a[n-1] bestehenden
Liste a

Wir sortieren das array a mit den Komponenten a[0], . . . , a[n-1], indem
wir die Funktion min (x,J) mitj =0, 1, ..., n-2 nacheinander auf das array a
anwenden; die wiederholte Anwendung realisieren wir mit einer while-Schleife,
deren Schleifenindex j mit dem Wert O initialisiert wird:

3 =0

while J <= n-2:
min(a, J)
3 +=1

Der hier vorgestellte Algorithmus ist unter der Bezeichnung
~Sortieren durch direkte Auswahl"

bekannt.

Der folgende in Python codierte Algorithmus sortiert aufsteigend ein array a der
Léange n, dessen Komponenten a[0], . . . , a[n-1] Zufallszahlen aus dem
Bereich 1, ..., 100000 zugewiesen wurden:

sorting by direct selection
from random import randint

n = int (input ('Laenge des arrays = '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+l))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
al[i] = randint(1,100000)

Ausgabe des arrays
for i in range(0,n):
print (af[il)

Die auf die Komponenten a[j]l, . . , aln-1] des arrays a
angewendete Funktion min(x,j) bestimmt das kleinste Element
und weist dieses der Komponente a[j] zu.

def min(x,Jj):
for i in range(j+1,len(x)):
if x[1] < x[J]:

temp = x[7]
x[3] = x[1]
x[1i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min

3 =0

while J <= n-2:
min(a, J)
3 +=1

Ausgabe der sortierten Liste

print ()
print ('Sortierte Liste:')

for i in range(0,n):
print (af[il)

Selbach
update 26.01.2021

SelectionSort mit Ermittlung des Zeitbedarfs zur Laufzeit:

sorting by direct selection
Nach Eingabe einer natuerlichen Zahl n wird ein
aus n Eomponenten bestehendes array sortiert.

from random import randint
import time

n = int {input {'Laenge des arrays: "))
print(}

Erzeugen des arrays mit dem Namen a
und den n Komponenten af[0], . . . , a[n-1]
a = list (range (l,n+l})

Zuweisung von Zufallszahlen an die Homponenten des arrays a
for i in range{0,n):
a[i] = randint (1,1000000}

RAusgabe des arrays
r = int {input {("Wieviele Elemente sollen angezeligt werden? '})
print ()
for i in range{0,r):
print (a[i])

Die auf die Komponenten af[jl]l, - - , a[n-1] des arrays a
angewendete Funktion min(x,j) bestimmt das kleinste Element
und weist dieses der Komponente af[j] =zu.

def min(x,j):
for i in range (j+l,len(x)):
if =x[i] < =[3]):
temp = x[3j]
z[31 x[i]
x[i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min
mit Ermittlung des Zeitbedarfs zur Laufzeit

start = time.time ()

d0==0

while j <= n-2:
min(a,Jj)

i+l

end = time.time ()

Lusgabe der sortierten Liste

print ()
print ('Sortierte Liste:'})
print ()

for i in range{0,r):
print (a[i])

print ()
print {'Zeitaufwand zum Sortieren von',n, 'Elementen: {:7.3f} s'.format (end-start))

sorting by direct selection
Nach Eingabe einer natuerlichen Zahl n wird ein
aus n Komponenten bestehendes array sortiert.

from random import randint
import time

n = int (input ('Laenge des arrays: '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , aln-1]
a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint (1,1000000)

Ausgabe des arrays
r = int (input ('Wieviele Elemente sollen angezeigt werden? '))
print ()
for i in range(0,r):
print(ali])

Die auf die Komponenten al[j]l, . . , aln-1] des arrays a
angewendete Funktion min(x,j) bestimmt das kleinste Element
und weist dieses der Komponente al[]j] zu.

def min(x,J):
for i in range(j+1l,len(x)):
if x[1] < x[3]]:

temp = x[]]
x[3] = x[i]
x[1i] = temp

Aufrufe der auf das array a anzuwendenden Funktion min
mit Ermittlung des Zeitbedarfs zur Laufzeit

start = time.time ()

3 =20

while j <= n-2:
min(a,J)
j +=1

end = time.time ()

Ausgabe der sortierten Liste

print ()
print ('Sortierte Liste:')
print ()

for i in range(0,r):
print(afli])

print ()
print ('Zeitaufwand zum Sortieren von',n, 'Elementen: {:7.3f}
s'.format (end-start))

Aufwandsbetrachtung , Sortieren durch direkte Auswahl|"

Wir formulieren einen funktionalen Zusammenhang zwischen dem zeitlichen Aufwand, um
eine Liste von n Datenelementen der GréBe nach zu sortieren, und der Anzahl n der
Datenelemente.

Wertzuweisungen, Abfragen, Rechenoperationen sind elementare Anweisungen, die eine
bestimmte Rechenzeit erfordern; obwohl diese Rechenzeiten mit fortschreitender
Leistungsfahigkeit der Hardware immer kirzer werden, gerat man rasch an Grenzen der
praktischen Durchflihrbarkeit eines Algorithmus, wenn die Anzahl der abzuarbeitenden
Anweisungen zu stark, z. B. exponentiell, wachst.

Wesentlicher Baustein des Algorithmus ,Sortieren durch direkte Auswahl" ist die
Funktion min (x, j), die das kleinste Element des arrays a[j], . . , a[n-1]
ermittelt und dieses der Komponente a[j] zuweist.

def min(x,Jj):
for i in range(j+1,len(x)):
if x[i] < x[3]:

temp = x[J]
x[3] = x[1]
x[1] = temp

Der Schleifenrumpf der in der der Funktion min (x, j) implementierten for-

Schleife besteht aus 3 Wertzuweisungen und 1 Abfrage, die wir gedanklich als
ganzes zum Anweisungsblock A zusammenfassen:

def min(x,J):
for i in range(j+1,len(x)):

A

3 =20

while 7 <= n-2:
min(a,j)
J o= Jj+1

Wir Gberlegen, wie oft der Block A abgearbeitet wird, indem wir zunachst die
Anzahl z (j) dieser Abarbeitungen in Abhangigkeit vom Schleifenindex j
notieren:

Index j Aufruf Index i z(3)
j=20 min (x,0) 1 <i<n-1 n-1
J =1 min(x,1) 2 <1< -
J =2 min(x,2) 3<1¢K
j =3 min (x, 3) 4 < i<
j = n-2 min (x,n-2) n-1 <1 < n-1 1
Gesamtzahl z der Abarbeitungen von Anweisungsblock A:
z=z(0)+z()+z(2)+....+2z(n-2) =(N-1)+(N-2)+(N-3) +..... +1
n-1
- 2.k
k=1
=% .(n-1)n (vgl. Anmerkung)
=1 .(n*-n)
~ ¥ .n? fir groBe n

Ergebnis:

Die Anzahl der abzuarbeitenden elementaren Anweisungen und damit der
Zeitaufwand wachsen quadratisch mit der Anzahl n der zu sortierenden
Datensatze.

Anmerkung: Zn:k —1.n.(n+1) 19.01.2021
k=1

Varianten des Python-Quellcodes zum Algorithmus
~Sortieren durch direkte Auswahl®

Informatik 12

Hinweis:
Python-Programmcode ist in der Schriftart Courier New gesetzt; der Code laBt sich
einfach mit copy and paste in einen Editor fir Python-Programmtexte ibernehmen.

sorting by direct selection
Ein aus n Komponenten bestehendes array wird sortiert.

from random import randint
import time

n = int (input ('Laenge des arrays: '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000000)

Ausgabe des arrays
r = int (input ('Wieviele Elemente sollen angezeigt werden? '))
print ()
for i in range(0,r):
print(ali])

Die auf die Komponenten al[Jj], . . , al[n-1] des arrays a
angewendete Funktion min(x,J) bestimmt das kleinste Element
und weist dieses der Komponente al[j] =zu.

def min(x,7) :
for i in range (j+1,len(x)):
if x[1] < x[3]:

temp = x[7J]
x[J] = x[1]
x[1] = temp

Aufrufe der auf das array a anzuwendenden Funktion min
mit Ermittlung des Zeitbedarfs zur Laufzeit

start = time.time ()
3 =0

while j <= n-2:
min(a,j)

§ +=1

end = time.time ()

Ausgabe der sortierten Liste

print ()
print ('Sortierte Liste:')
print ()

for i in range(0,r):
print(ali])

print ()
print ('Zeitaufwand zum Sortieren von',n, 'Elementen: {:7.3f}
s'.format (end-start))

Der rot markierte Programmcode umfaBt die Definition der Funktion min(x,j)
und deren wiederholte Aufrufe innerhalb der while-Schleife.

Diese Formulierung mit einer Funktion min(x,j) ist zweckmaBig, um den
Aufwand und damit das Wachstum der Rechenzeit in Abhangigkeit von der
Anzahl n der zu sortierenden Datenelemente zu ermitteln.

Wir kénnen min(x,j) und die while-Schleife zu einer neuen Funktion
sort(x) zusammenfassen:

sorting by direct selection
Ein aus n Komponenten bestehendes array wird sortiert.

from random import randint
import time

n = int (input ('Laenge des arrays: '))
print ()

Erzeugen des arrays mit dem Namen a
und den n Komponenten a[0], . . . , al[n-1]
a = list(range(l,n+1))

Zuweisung von Zufallszahlen an die Komponenten des arrays a
for i in range(0,n):
ali] = randint(1,1000000)

Ausgabe des zu sortierenden arrays
r = int (input ('Wieviele Elemente sollen angezeigt werden? "))
print ()

for i in range(0,r):
print(ali])

Definition der Funktion sort

def sort(x):
3 =20
while j <= n-2:
for i in range (j+1,len(x)):
if x[1] < x[3]:

temp = x[§]
x[J] = x[1]
x[1] = temp
7 +=1
return x # kann auch weggelassen werden

Aufruf der auf das array a anzuwendenden Funktion sort
mit Ermittlung des Zeitbedarfs zur Laufzeit

start = time.time ()
sort (a)
end = time.time ()

Ausgabe der sortierten Liste

print ()
print ('Sortierte Liste:')
print ()

for i in range(0,r):
print(ali])

print ()
print ('Zeitaufwand zum Sortieren von',n, 'Elementen: {:7.3f}
s'.format (end-start))

Die Variante mit der auf das Array a anzuwendenden Funktion sort ist
insofern flexibel, als daB man einen externen Programmierer mit der Aufgabe
betrauen kann, eine Funktion zu konzipieren, die, angewandt auf ein array a,
den Sortiervorgang Ubernimmt (in der professionellen Softwareentwicklung
ist es Ublich, ein komplexes Problem in Teilprobleme zu zerlegen); z. B. |aBt
sich der folgende Code mit Erfolg verwenden

(Quelle: https://en.wikipedia.org/wiki/Talk:Selection sort#Implementations):

def selectionsort(list):

for passesLeft in range(0,len(list)-1,+1):

min = passeslLeft

for index in range (passeslLeft+l,len(list),+1):

if (list[index]<list[min]):
min = index

list[min],list[passesleft]=1list[passesleft],list[min]

return list

Ersetze einfach die Funktion sort(x) durch selectionsort(list), der Aufruf
lautet dann natlrlich selectionsort(a) statt sort(a).

selectionsort scheint etwas effizienter zu laufen als sort. (Grund?)

Selbstverstandlich 1aBt sich der Programmcode auch ohne eine Funktion
sort(x) formulieren (zwei ineinander verschachtelte Schleifen):

from random import randint
import time

n = int (input ('Laenge des arrays: '))
print ()

a = list(range(l,n+1))

for i in range(0,n):
ali] = randint (1,1000000)

r = int (input ('Wieviele Elemente sollen angezeigt werden? "))
print ()
for i in range(0,r):

print(afli])

Sortieren:
start = time.time ()
7 =0

while j <= n-2:
for i in range(j+1l,len(a)):

if ali] < al3j]
temp = alJ]
alj] ali]
ali] = temp
3 +=1

end = time.time ()

print ()

print ('Sortierte Liste:'")

print ()

for i in range(0,r):
print(afli])

print ()
print ('Zeitaufwand zum Sortieren von',n, 'Elementen: {:7.3f}
s'.format (end-start))

Ausblick:

Der Algorithmus ,Sortieren durch direkte Auswahl® kann hinsichtlich seines
zeitlichen Aufwands, der quadratisch (also insbesondere polynomial) mit der
Anzahl n der zu sortierenden Datensatze wachst, noch als effizient gelten;
allerdings erfordert das Sortieren von 100 000 Zufallszahlen bereits eine
Rechenzeit in der GréBenordnung von 10 - 20 min (je nach Rechner), so daB
sich die Frage nach einem effizienteren Algorithmus stellt.

Tatsachlich arbeiten quicksort oder mergesort wesentlich effizienter. Ihr
kdnnt gerne mal das Python-Programm

https://kalle2k.lima-
city.de/computerscience/Informatik 13/MergeSort final.py.txt

downloaden und ausprobieren; ein absoluter Anfanger in Python hatte sich
einzelne Python-Teilcodes im Netz zusammengesucht und zu einem
Algorithmus ,,mergesort", der Zufallszahlen sortiert, zusammengebunden.

Selbach
26.01.2021

Aufgabenblatt Nr. 4 inf12 26.01.2021

10.

11.

12.

Die Hofstadter-Funktion ist rekursiv definiert (n natirliche Zahl):

Rekursionsanfang: hof(1) =1
hof(2) = 1

Rekursionsvorschrift: hof(n) = hof[n — hof(n - 1)] + hof[n — hof(nh - 2)], n>2

Formuliert man den Algorithmus zur Berechnung der Hofstadter-Funktion als
Python-Programm mit rekursivem Funktionsaufruf, haben wir die Erfahrung
gemacht, daB die Rechenzeit flir groBe Werte von n sehr schnell wachst; der
Grund ist die mit n sehr schnell wachsende Anzahl gleichzeitig aktiver Aufrufe
der Funktion hof.

Dieses unglinstige Laufzeitverhalten 1aBt sich umgehen, indem man den
Algorithmus zur Berechnung der Hofstader-Funktion iterativ formuliert.

Vorschlag zur iterativen Formulierung:

Definiere ein array a mit den Komponenten a[0], a[1], a[2], und
setze a[0] = hof(1) = 1, a[1] = hof(2) = 1.

Den weiteren Komponenten a[2], a[3], . . . werden in dieser Reihenfolge die
Werte hof(3), hof(4), zugewiesen.

Konzipiere und teste das iterativ formulierte Python-Programm!

Zusatzaufgabe:

Die Fibonacci-Folge {a;} ist wie folgt definiert:
a; = a, = 1

Qn = ap1 + ap> firn=3

Schreibe und teste ein Python-Programm zur Berechnung der Fibonacci-
Folge.

Der als Python-Programm formulierte Algorithmus
sorting_by_direct_selection.py.txt auf
https://kalle2k.lima-city.de/computerscience/Informatik 12/sorting/
sortiert ein array von Zufallszahlen aufsteigend, d. h. die sortierte Liste
beginnt mit dem kleinsten Element.

Modifiziere das Programm so, daB3 das Sortieren absteigend erfolgt.

