
Arbeitsauftrag GK inf12 für 08.01.2021 
 
Ergänzungen und Vertiefungen zum Konzept “Rekursion” 
 
Die funktionale Formulierung eines Algorithmus bedient sich der mathematischen 
Struktur eines Problems; wesentliche Kontrollstruktur ist die Rekursion (Bekanntlich 
heißt eine Funktion oder eine Prozedur (Teilprogramm) rekursiv, wenn sie 
mindestens einen Aufruf ihrer selbst enthält.). 
 
In höheren Programmiersprachen (Pascal, C++, Python) ist die Möglichkeit der 
rekursiven Formulierung implementiert, was häufig eine sehr elegante Formulierung 
eines Algorithmus gestattet.  
 
Bei rekursiven Programmen kann es jedoch zu einem „stack overflow“ kommen, 
wenn die Anzahl der gleichzeitig aktiven Aufrufe der Prozedur oder der Funktion zu 
groß wird. In Python ist eine Rekursionstiefe von 1000 (oder 1024?) voreingestellt; 
nach Import des sys-Moduls mittels   

import sys 
 

läßt sich über 
 

sys.getrecursionlimit() 
 

die aktuelle Rekursionstiefe ausgeben, und mit 
 

sys.setrecursionlimit(a) 
 

kann man die Rekursionstiefe auf den Wert a setzen. 
 
Wir greifen noch mal die Funktion fact (siehe Beispiel 3 aus Arbeitsauftrag für 
24.11.2020) auf, die jeder natürlichen Zahl n  {0, 1, 2, . . . } deren Falkultät 
fact(n) zuordnet. 
 
Python-Quelltext: 
 
"factorial recursive" 
 
import sys 
 
print('Rekursionstiefe: ',sys.getrecursionlimit()) 
a=int(input('gewuenschte Rekursionstiefe: ')) 
sys.setrecursionlimit(a) 
print('aktuelle Rekursionstiefe: ',sys.getrecursionlimit()) 
print() 
 
def fact(x): 
    global z 
    z = z + 1 
    if x == 0: 
       return 1 
    else: 
       return x * fact(x - 1) 
 
z = 0     
n=int(input("n =  ")) 
y = fact(n) 
print (n,"! = ",y) 
print('Anzahl der Aufrufe: ',z) 



 2 

Beachte:  
Die Variablen n, z und y sind globale Variable; bei Aufruf fact(n) in der 
drittletzten Zeile wird der Wert der Variablen n an die lokale Variable x der Funktion 
fact übergeben (selbst wenn man innerhalb der Funktion fact die lokale Variable 
x mit n bezeichnen würde, würde für dieses n ein eigener lokaler Speicherplatz 
definiert). 
Die globale Variable z zählt die Anzahl der Aufrufe der Funktion fact. Vor dem 
ersten Aufruf von fact wird z auf 0 gesetzt (initialisiert), und bei jeder Abarbeitung 
der Funktion fact wird z um 1 erhöht (inkrementiert). Die Anweisung global z 
verhindert, daß z innerhalb der Funktion als neue lokale Variable verstanden wird. 
 
Aufrufschema für fact(5) (nach http://www.saar.de/~awa/jrekursion.html ): 
 

Der grüne Pfeil bedeutet jeweils „ruft auf“, der rote „gibt zurück“; der 
Rekursionsanfang fact(0)=1 erzwingt, daß der Algorithmus abbricht (terminiert). 

 
Aufgabe: 
Erstelle zur Berechnung der Hofstadter-Funktion und der Ackermann-Funktion 
(Aufgabenblatt Nr. 2 vom 10.11.2020) jeweils einen Python-Programmtext, erweitert 
um die Möglichkeit, die Rekursionstiefe anzupassen und die Anzahl z der Aufrufe zu 
zählen und auszugeben; teste die Programme mit unterschiedlichen Werten. 
 
Definition der Hofstadter-Funktion, die jeder natürlichen Zahl n1 den Wert hof(n) 
zuordnet: 
 
Rekursionsanfang:  hof(1) = 1 
 hof(2) = 1 
 

Rekursionsvorschrift: hof(n) = hof[n  hof(n  1)] + hof[n  hof(n  2)] ,  n > 2 



Rekursionstiefe und Anzahl der Funktionsaufrufe  
am Beispiel der Hofstadter-Funktion 
 
Quellcode in Python: 
 
def hof(x): 
    if x == 1: 
        return 1 
    elif x == 2: 
        return 1 
    elif x > 2: 
        return hof(x - hof(x - 1)) + hof(x - hof(x - 2)) 
 
endwert = int(input('Bis zu welchem Wert soll Hofstadter berechnet werden? ')) 
n = 1 
while n <= endwert: 
    y = hof(n) 
    print('hof(',n,') =',y) 
    n += 1 
 
 
h(1) = 1                
 
1 Aufruf    Rekursionstiefe = 1 
 
 
 
h(2) = 1    
 
1 Aufruf    Rekursionstiefe = 1 
 
 
 
h(3) = h(3 – h(2)) + h(3 – h(1))       2-fache Verschachtelung 
 1            1             1          # Aufrufe     
 = h(3 – 1) + h(3 – 1) 
 = h(2) + h(2) 
        1      1                       # Aufrufe 
 = 1  +  1   
 = 2   
       
5 Aufrufe   Rekursionstiefe = 2 
 
 
 
 
h(4) = h(4 – h(3)) + h(4 – h(2)) 
 1            5             1          # Aufrufe 
 = h(4 – 2)    + h(3)  
                       
 = h(2) + h(3)   
    1     5                       # Aufrufe 
 
13 Aufrufe insgesamt     

 
 = h(4 – h(3))                       + h(4 – h(2)) 
 = h(4 – (h(3 – h(2)) + h(3 – h(1))) + h(3) 
 = h(4 – (h(3 – h(2)) + h(3 – h(1))) + h(3 – h(2)) + h(3 – h(1))  
    
 
                              
                           3-fache Verschachtelung 
 

= h(4 – (h(3 – 1) + h(3 – 1)) + h(3 – 1) + h(3 – 1) 
= h(4 – (h(2) + h(2)) + h(2) + h(2) 
= h(4 – (1 + 1)) + 1 + 1 
= h(2) + 1 + 1 
= 1 + 1 + 1 
= 3  

  
Rekursionstiefe = 3           

08.01.2021 



Sortieren durch direkte Auswahl 
 
Wir beschränken uns zunächst darauf, eine Liste von ganzen Zahlen (hier: 
Zufallszahlen) der Größe nach, und zwar aufsteigend, zu sortieren. Den 
Algorithmus später auf andere Datenstrukturen (z. B. Namen, Verbundtypen) zu 
übertragen, ist vergleichsweise einfach und bereitet keine Schwierigkeiten. 
 
Die Python-Anweisungen range, list und len: 
 
a)  range-Anweisung 
 

Die range-Anweisung definiert einen Bereich ganzer Zahlen. 
range(10)  definiert den Bereich 0, 1, . . . , 9 
range(4,21)  definiert den Bereich 4, 5, . . . , 20 
range(4,21,3)  definiert den Bereich 4, 7, 10, . . . , 16, 19 
range(-4,3)  definiert den Bereich -4, -3, -2, -1, 0, 1, 2 

 

Allgemein gilt: 
 

range(start, stop) 
definiert den Bereich   start, . . . . . , stop-1   ganzer Zahlen, 

 

range(start, stop, step) 
definiert den Bereich   start, . . . . .  mit der Schrittweite step, wobei die 
Zahl stop nicht mehr enthalten ist.  

 
b) Erstellen einer Liste ganzer Zahlen 
 

a = list(range(4,13))  erzeugt die Liste  
[4, 5, 6, 7, 8, 9, 10, 11, 12];  
die (in diesem Fall 9) Elemente dieser Liste nennen wir auch Komponenten, 
auf die man mit  a[0], a[1], . . . , a[8] zugreifen kann (mit Erzeugung der 
Liste dieses Beispiels sind die Komponenten a[0], a[1], . . . , a[8] in dieser 
Reihenfolge mit den Werten 4, 5, . . . . , 12 belegt). Allerdings läßt sich jeder 
Komponente a[i] eine beliebige andere ganze Zahl zuweisen. 

 

Bemerkung:  Unter einem Feld oder array verstehen wir eine Folge von 
Variablen gleichen Typs; mit der Anweisung  
a = list(range(4,13)) haben wir also ein array a erzeugt 
mit den Komponenten a[0], a[1], . . . , a[8]. 

 
c) len(a) bestimmt die Anzahl der Komponenten der Liste a, in dem Beispiel 

aus b) gilt somit: len(a) = 9 . 
 
  

1.  Erstellen einer Liste mit n Komponenten, denen Zufallszahlen 
zugewiesen werden (n ist eine natürliche Zahl) 

 

Vorbemerkung:  
Die Python-Anweisung randint ist eine vordefinierte Funktion des random- 
Moduls in Python; Syntax: randint(r,s) mit ganzen Zahlen r und s, r  s, 
erzeugt eine Zufallszahl aus dem Intervall [r, s]. 
Beispiele:  
randint(1,1000)erzeugt eine Zufallszahl aus dem Bereich 1, . . . . , 1000 
randint(-7,12)erzeugt eine Zufallszahl aus dem Bereich -7, . . . . , 12  
 

Ein Algorithmus, der nach Eingabe einer natürlichen Zahl n eine Liste aus n 
Zufallszahlen generiert, formuliert als Python-Quelltext in  der Schriftart 
Courier New, so daß man den Quelltext unmittelbar durch copy und paste in 
einen Editor für Python-Programme übernehmen kann:  



# array mit zufallszahlen 
 
from random import randint 
 
n = int(input('Laenge des arrays = ')) 
print() 
 
# Erzeugen des arrays mit dem Namen a  
# und den n Komponenten a[0], . . . , a[n-1] 
a = list(range(1,n+1)) 
 
# Zuweisung von Zufallszahlen an die Komponenten des arrays a 
for i in range(0,n): 
    a[i] = randint(1,1000) 
 
# Ausgabe des arrays 
for i in range(0,n): 
    print(a[i]) 
 
 
 
2.  Bestimmung des kleinsten Elements der Liste aus n Komponenten 
 

Der Inhalt des Speicherplatzes a[0] wird sukzessive mit den Inhalten von a[1], 
. . . , a[n-1] verglichen; falls gilt a[i] < a[0], 1   i  n-1, werden die 
Inhalte der Speicherplätze a[i] und a[0] ausgetauscht; hierzu wird, bevor a[0] 
den Wert von a[i] erhält, der ursprüngliche Wert von a[0] mittels der 
Hilfsvariablen temp gesichert und nach der Zuweisung a[0] = a[i] mit  
a[i] = temp  an  a[i] übergeben. 
 

Die Durchführung der Vergleiche und der ggf. erforderliche Austausch der Inhalte 
von a[0]und a[i] werden hier an die Funktion min(x) delegiert: 
 
def min(x): 
    for i in range(1,len(x)):   
        if x[i] < x[0]: 
             temp = x[0] 
             x[0] = x[i] 
             x[i] = temp 
 
Mit dem Aufruf min(a) wird die Funktion min auf das aus den Komponenten 
a[0], . . . , a[n-1] bestehende array a angewendet.  
 
 
from random import randint 
 
n = int(input('Laenge des arrays = ')) 
print() 
 
# Erzeugen des arrays mit dem Namen a  
# und den n Komponenten a[0], . . . , a[n-1] 
a = list(range(1,n+1)) 
 
# Zuweisung von Zufallszahlen an die Komponenten des arrays a 
for i in range(0,n): 
    a[i] = randint(1,1000) 
 



# Ausgabe des arrays 
for i in range(0,n): 
    print(a[i]) 
 
# Bestimmen des kleinsten Elements: 
# Wir definieren eine Funktion min(x), die auf  
# das array a angewendet wird, das kleinste Element  
# bestimmt und dieses der Komponente a[0] zuweist. 
 
def min(x): 
    for i in range(1,len(x)):   
        if x[i] < x[0]: 
             temp = x[0] 
             x[0] = x[i] 
             x[i] = temp 
 
# Aufruf der auf das array a anzuwendenden Funktion min 
 
min(a) 
   
# Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle 
print() 
for i in range(0,n): 
    print(a[i]) 
 
 
Nachdem das kleinste Element der Liste a[0], . . . , a[n-1] dem 
Speicherplatz a[0] zugewiesen wurde, bestimmen wir das kleinste Element der 
„Restliste“ a[1], . . . , a[n-1] und weisen es dem Speicherplatz a[1] zu.  
 

Wenn wir dieses Verfahren sukzessive auf die weiteren „Restlisten“  
a[j], . . . , a[n-1] mit  2  j  n-2  anwenden, erhalten wir ein array 
a, dessen Komponenten gemäß a[0]  a[1]  . . .  a[n-1] aufsteigend 
sortiert sind.  
 
Wir modifizieren die Funktion min(x), indem wir einen weiteren Parameter j 
ergänzen: 
 
def min(x,j): 
    for i in range(j+1,len(x)):   
        if x[i] < x[j]: 
             temp = x[j] 
             x[j] = x[i] 
             x[i] = temp 
 
 

Die mit dem Parameterwert j auf das array a angewendete Funktion 
min(x,j)ermittelt in der Liste  a[j], . . . , a[n-1] das kleinste Element 
und weist es dem Speicherplatz a[j] zu. 
  
 
3. Variante zu 2: 
 
from random import randint 
 
n = int(input('Laenge des arrays = ')) 
print() 
 



# Erzeugen des arrays mit dem Namen a  
# und den n Komponenten a[0], . . . , a[n-1] 
a = list(range(1,n+1)) 
 
# Zuweisung von Zufallszahlen an die Komponenten des arrays a 
for i in range(0,n): 
    a[i] = randint(1,1000) 
 
# Ausgabe des arrays 
for i in range(0,n): 
    print(a[i]) 
 
# Bestimmen des kleinsten Elements: 
# Wir definieren eine Funktion min(x,j), die auf  
# die Komponenten a[j], . . , a[n-1] des arrays a  
# angewendet wird, das kleinste Element  
# bestimmt und dieses der Komponente a[j] zuweist. 
 
def min(x,j): 
    for i in range(j+1,len(x)):   
        if x[i] < x[j]: 
             temp = x[j] 
             x[j] = x[i] 
             x[i] = temp 
 
# Aufruf der auf das array a anzuwendenden Funktion min 
 
min(a,0) 
   
# Ausgabe der Liste mit dem kleinsten Element an der 1. Stelle 
print() 
for i in range(0,n): 
    print(a[i]) 
 
 
 
 
4.  Bestimmung der 2 kleinsten Elemente der Liste aus n Komponenten  
 
from random import randint 
 
n = int(input('Laenge des arrays = ')) 
print() 
 
# Erzeugen des arrays mit dem Namen a  
# und den n Komponenten a[0], . . . , a[n-1] 
a = list(range(1,n+1)) 
 
# Zuweisung von Zufallszahlen an die Komponenten des arrays a 
for i in range(0,n): 
    a[i] = randint(1,1000) 
 
# Ausgabe des arrays 
for i in range(0,n): 
    print(a[i]) 
 
# Wir definieren eine Funktion min(x,j), die auf  



# die Komponenten a[j], . . , a[n-1] des arrays a  
# angewendet wird, das kleinste Element  
# bestimmt und dieses der Komponente a[j] zuweist. 
 
def min(x,j): 
    for i in range(j+1,len(x)):   
        if x[i] < x[j]: 
             temp = x[j] 
             x[j] = x[i] 
             x[i] = temp 
 
# Aufrufe der auf das array a anzuwendenden Funktion min 
 
min(a,0) 
min(a,1) 
   
# Ausgabe der Liste  
print() 
for i in range(0,n): 
    print(a[i]) 
             
 
 
5.  Bestimmung der 3 kleinsten Elemente der Liste aus n Komponenten 
 
. . . . . . . 
. . . . . . . 
 
# Aufrufe der auf das array a anzuwendenden Funktion min 
 
min(a,0) 
min(a,1) 
min(a,2) 
 
. . . . . . . 
. . . . . . . 
 
 
 
6.  Sortieren der aus den Komponenten a[0], . . . . , a[n-1] bestehenden 

Liste a 
 
Wir sortieren das array a mit den Komponenten a[0], . . . , a[n-1], indem 
wir die Funktion min(x,j) mit j = 0, 1, . . . , n-2 nacheinander auf das array a 
anwenden; die wiederholte Anwendung realisieren wir mit einer while-Schleife, 
deren Schleifenindex j mit dem Wert 0 initialisiert wird: 
 
j = 0 
while j <= n-2: 
    min(a,j) 
    j +=1 
 
Der hier vorgestellte Algorithmus ist unter der Bezeichnung 
 

„Sortieren durch direkte Auswahl“ 
 
bekannt. 



Der folgende in Python codierte Algorithmus sortiert aufsteigend ein array a der 
Länge n, dessen Komponenten a[0], . . . , a[n-1] Zufallszahlen aus dem 
Bereich 1, . . . , 100000 zugewiesen wurden:  
 
 
# sorting by direct selection 
 
from random import randint 
 
n = int(input('Laenge des arrays = ')) 
print() 
 
# Erzeugen des arrays mit dem Namen a  
# und den n Komponenten a[0], . . . , a[n-1] 
a = list(range(1,n+1)) 
 
# Zuweisung von Zufallszahlen an die Komponenten des arrays a 
for i in range(0,n): 
    a[i] = randint(1,100000) 
 
# Ausgabe des arrays 
for i in range(0,n): 
    print(a[i]) 
 
# Die auf die Komponenten a[j], . . , a[n-1] des arrays a  
# angewendete Funktion min(x,j) bestimmt das kleinste Element 
# und weist dieses der Komponente a[j] zu. 
 
def min(x,j): 
    for i in range(j+1,len(x)):   
        if x[i] < x[j]: 
             temp = x[j] 
             x[j] = x[i] 
             x[i] = temp 
 
# Aufrufe der auf das array a anzuwendenden Funktion min 
 
j = 0 
while j <= n-2: 
    min(a,j) 
    j +=1 
   
# Ausgabe der sortierten Liste  
 
print() 
print('Sortierte Liste:') 
 
for i in range(0,n): 
    print(a[i]) 
 
 
 
 

 Selbach 
update 26.01.2021 

 
 



SelectionSort mit Ermittlung des Zeitbedarfs zur Laufzeit: 
 

 
 
 



 
# sorting by direct selection 
# Nach Eingabe einer natuerlichen Zahl n wird ein 
# aus n Komponenten bestehendes array sortiert.  
 
from random import randint 
import time 
 
n = int(input('Laenge des arrays: ')) 
print() 
 
# Erzeugen des arrays mit dem Namen a  
# und den n Komponenten a[0], . . . , a[n-1] 
a = list(range(1,n+1)) 
 
# Zuweisung von Zufallszahlen an die Komponenten des arrays a 
for i in range(0,n): 
    a[i] = randint(1,1000000) 
 
# Ausgabe des arrays 
r = int(input('Wieviele Elemente sollen angezeigt werden? ')) 
print() 
for i in range(0,r): 
    print(a[i]) 
 
# Die auf die Komponenten a[j], . . , a[n-1] des arrays a  
# angewendete Funktion min(x,j) bestimmt das kleinste Element 
# und weist dieses der Komponente a[j] zu. 
 
def min(x,j): 
    for i in range(j+1,len(x)):   
        if x[i] < x[j]: 
             temp = x[j] 
             x[j] = x[i] 
             x[i] = temp 
 
# Aufrufe der auf das array a anzuwendenden Funktion min 
# mit Ermittlung des Zeitbedarfs zur Laufzeit 
 
start = time.time() 
 
j = 0 
while j <= n-2: 
    min(a,j) 
    j +=1 
 
end = time.time() 
 
 
# Ausgabe der sortierten Liste  
 
print() 
print('Sortierte Liste:') 
print() 
 
for i in range(0,r): 
    print(a[i]) 
 
print() 
print('Zeitaufwand zum Sortieren von',n,'Elementen: {:7.3f} 
s'.format(end-start)) 



Aufwandsbetrachtung „Sortieren durch direkte Auswahl“ 
 

Wir formulieren einen funktionalen Zusammenhang zwischen dem zeitlichen Aufwand, um 
eine Liste von n Datenelementen der Größe nach zu sortieren, und der Anzahl n der 
Datenelemente. 
 

Wertzuweisungen, Abfragen, Rechenoperationen sind elementare Anweisungen, die eine 
bestimmte Rechenzeit erfordern; obwohl diese Rechenzeiten mit fortschreitender 
Leistungsfähigkeit der Hardware immer kürzer werden, gerät man rasch an Grenzen der 
praktischen Durchführbarkeit eines Algorithmus, wenn die Anzahl der abzuarbeitenden 
Anweisungen zu stark, z. B. exponentiell, wächst. 
 

Wesentlicher Baustein des Algorithmus „Sortieren durch direkte Auswahl“ ist die 
Funktion min(x,j), die das kleinste Element des arrays  a[j], . . , a[n-1] 
ermittelt und dieses der Komponente a[j] zuweist. 
 

def min(x,j): 
    for i in range(j+1,len(x)):   
        if x[i] < x[j]: 
             temp = x[j] 
             x[j] = x[i] 
             x[i] = temp 
 

Der Schleifenrumpf der in der der Funktion min(x,j) implementierten for-
Schleife besteht aus 3 Wertzuweisungen und 1 Abfrage, die wir gedanklich als 
ganzes zum Anweisungsblock A zusammenfassen: 
 

def min(x,j): 
    for i in range(j+1,len(x)):   
 

           A 
j = 0 
while j <= n-2: 
    min(a,j) 
    j = j+1 
 

Wir überlegen, wie oft der Block A abgearbeitet wird, indem wir zunächst die 
Anzahl z(j) dieser Abarbeitungen in Abhängigkeit vom Schleifenindex j 
notieren: 
  

Index j Aufruf Index i z(j) 

j = 0 min(x,0) 1  i  n-1 n-1 
j = 1 min(x,1) 2  i  n-1 n-2 
j = 2 min(x,2) 3  i  n-1 n-3 
j = 3 min(x,3) 4  i  n-1 n-4 
.... .... .... .... 

j = n-2 min(x,n-2) n-1  i  n-1 1 
 

Gesamtzahl z der Abarbeitungen von Anweisungsblock A: 
 

z = z(0) + z(1) + z(2) + . . . . + z(n-2)  = (n-1) + (n-2) + (n-3) + . . . . . + 1 

 = 
n-1

k=1

k  

 = ½  (n - 1)n       (vgl. Anmerkung) 
 = ½  (n2 - n) 
   ½  n2            für große n 
Ergebnis:  
Die Anzahl der abzuarbeitenden elementaren Anweisungen und damit der 
Zeitaufwand wachsen quadratisch mit der Anzahl n der zu sortierenden 
Datensätze. 
Anmerkung:    1

2
1

( 1)
n

k

k n n


                                                                              19.01.2021 



Varianten des Python-Quellcodes zum Algorithmus 
„Sortieren durch direkte Auswahl“ 
 
Informatik 12     
 
Hinweis:  
Python-Programmcode ist in der Schriftart Courier New gesetzt; der Code läßt sich 
einfach mit copy and paste in einen Editor für Python-Programmtexte übernehmen. 
 
 
# sorting by direct selection 
# Ein aus n Komponenten bestehendes array wird sortiert.  
 
from random import randint 
import time 
 
n = int(input('Laenge des arrays: ')) 
print() 
 
# Erzeugen des arrays mit dem Namen a  
# und den n Komponenten a[0], . . . , a[n-1] 
a = list(range(1,n+1)) 
 
# Zuweisung von Zufallszahlen an die Komponenten des arrays a 
for i in range(0,n): 
    a[i] = randint(1,1000000) 
 
# Ausgabe des arrays 
r = int(input('Wieviele Elemente sollen angezeigt werden? ')) 
print() 
for i in range(0,r): 
    print(a[i]) 
 
# Die auf die Komponenten a[j], . . , a[n-1] des arrays a  
# angewendete Funktion min(x,j) bestimmt das kleinste Element 
# und weist dieses der Komponente a[j] zu. 
 
def min(x,j): 
    for i in range(j+1,len(x)):   
        if x[i] < x[j]: 
             temp = x[j] 
             x[j] = x[i] 
             x[i] = temp 
 
# Aufrufe der auf das array a anzuwendenden Funktion min 
# mit Ermittlung des Zeitbedarfs zur Laufzeit 
 
start = time.time() 
 
j = 0 
while j <= n-2: 
    min(a,j) 



    j +=1 
 
end = time.time() 
 
 
# Ausgabe der sortierten Liste  
 
print() 
print('Sortierte Liste:') 
print() 
 
for i in range(0,r): 
    print(a[i]) 
 
print() 
print('Zeitaufwand zum Sortieren von',n,'Elementen: {:7.3f} 
s'.format(end-start)) 
 
 
 
Der rot markierte Programmcode umfaßt die Definition der Funktion min(x,j) 
und deren wiederholte Aufrufe innerhalb der while-Schleife. 
 
Diese Formulierung mit einer Funktion min(x,j) ist zweckmäßig, um den 
Aufwand und damit das Wachstum der Rechenzeit in Abhängigkeit von der 
Anzahl n der zu sortierenden Datenelemente zu ermitteln. 
 
Wir können min(x,j) und die while-Schleife zu einer neuen Funktion 
sort(x) zusammenfassen: 
 
 
 
# sorting by direct selection 
# Ein aus n Komponenten bestehendes array wird sortiert.  
 
from random import randint 
import time 
 
n = int(input('Laenge des arrays: ')) 
print() 
 
# Erzeugen des arrays mit dem Namen a  
# und den n Komponenten a[0], . . . , a[n-1] 
a = list(range(1,n+1)) 
 
# Zuweisung von Zufallszahlen an die Komponenten des arrays a 
for i in range(0,n): 
    a[i] = randint(1,1000000) 
 
# Ausgabe des zu sortierenden arrays 
r = int(input('Wieviele Elemente sollen angezeigt werden? ')) 
print() 



for i in range(0,r): 
    print(a[i]) 
 
 
# Definition der Funktion sort 
 
def sort(x): 
    j = 0 
    while j <= n-2: 
        for i in range(j+1,len(x)):   
            if x[i] < x[j]: 
                 temp = x[j] 
                 x[j] = x[i] 
                 x[i] = temp 
        j +=1 
    return x   # kann auch weggelassen werden 
 
 
# Aufruf der auf das array a anzuwendenden Funktion sort 
# mit Ermittlung des Zeitbedarfs zur Laufzeit 
 
start = time.time() 
 
sort(a) 
 
end = time.time() 
 
 
# Ausgabe der sortierten Liste  
 
print() 
print('Sortierte Liste:') 
print() 
 
for i in range(0,r): 
    print(a[i]) 
 
print() 
print('Zeitaufwand zum Sortieren von',n,'Elementen: {:7.3f} 
s'.format(end-start)) 
 
 
 
 
Die Variante mit der auf das Array a anzuwendenden Funktion sort ist 
insofern flexibel, als daß man einen externen Programmierer mit der Aufgabe 
betrauen kann, eine Funktion zu konzipieren, die, angewandt auf ein array a, 
den Sortiervorgang übernimmt (in der professionellen Softwareentwicklung 
ist es üblich, ein komplexes Problem in Teilprobleme zu zerlegen); z. B. läßt 
sich der folgende Code mit Erfolg verwenden  
(Quelle: https://en.wikipedia.org/wiki/Talk:Selection_sort#Implementations ): 
 



 
 
def selectionsort(list): 
    for passesLeft in range(0,len(list)-1,+1): 
        min   = passesLeft         
        for index in range(passesLeft+1,len(list),+1): 
            if (list[index]<list[min]): 
                min = index 
        list[min],list[passesLeft]=list[passesLeft],list[min]         
    return list 
 
 
 
Ersetze einfach die Funktion sort(x) durch selectionsort(list), der Aufruf 
lautet dann natürlich selectionsort(a) statt sort(a). 
 
selectionsort scheint etwas effizienter zu laufen als sort. (Grund?) 
 
 
 
 
Selbstverständlich läßt sich der Programmcode auch ohne eine Funktion 
sort(x) formulieren (zwei ineinander verschachtelte Schleifen): 
 
 
 
 
from random import randint 
import time 
 
n = int(input('Laenge des arrays: ')) 
print() 
 
a = list(range(1,n+1)) 
 
for i in range(0,n): 
    a[i] = randint(1,1000000) 
 
r = int(input('Wieviele Elemente sollen angezeigt werden? ')) 
print() 
for i in range(0,r): 
    print(a[i]) 
 
 
# Sortieren: 
 
start = time.time() 
 
j = 0 
while j <= n-2: 
        for i in range(j+1,len(a)):   



            if a[i] < a[j]: 
                 temp = a[j] 
                 a[j] = a[i] 
                 a[i] = temp 
        j +=1 
 
end = time.time() 
 
 
 
print() 
print('Sortierte Liste:') 
print() 
 
for i in range(0,r): 
    print(a[i]) 
 
print() 
print('Zeitaufwand zum Sortieren von',n,'Elementen: {:7.3f} 
s'.format(end-start)) 
 
 
 
 
Ausblick: 
 
 
Der Algorithmus „Sortieren durch direkte Auswahl“ kann hinsichtlich seines 
zeitlichen Aufwands, der quadratisch (also insbesondere polynomial) mit der 
Anzahl n der zu sortierenden Datensätze wächst, noch als effizient gelten; 
allerdings erfordert das Sortieren von 100 000 Zufallszahlen bereits eine 
Rechenzeit in der Größenordnung von 10 – 20 min (je nach Rechner), so daß 
sich die Frage nach einem effizienteren Algorithmus stellt.  
 
Tatsächlich arbeiten quicksort oder mergesort wesentlich effizienter. Ihr 
könnt gerne mal das Python-Programm  
 
https://kalle2k.lima-
city.de/computerscience/Informatik_13/MergeSort_final.py.txt 
 
 
downloaden und ausprobieren; ein absoluter Anfänger in Python hatte sich 
einzelne Python-Teilcodes im Netz zusammengesucht und zu einem 
Algorithmus „mergesort“, der Zufallszahlen sortiert, zusammengebunden. 
 
 

Selbach 
26.01.2021 



Aufgabenblatt Nr. 4                    inf12                          26.01.2021 
 
 
 
10. Die Hofstadter-Funktion ist rekursiv definiert (n natürliche Zahl): 
 
 Rekursionsanfang:     hof(1) = 1 
  hof(2) = 1 
 

 Rekursionsvorschrift:  hof(n) = hof[n  hof(n  1)] + hof[n  hof(n  2)],  n>2 
 
 Formuliert man den Algorithmus zur Berechnung der Hofstadter-Funktion als 

Python-Programm mit rekursivem Funktionsaufruf, haben wir die Erfahrung 
gemacht, daß die Rechenzeit für große Werte von n sehr schnell wächst; der 
Grund ist die mit n sehr schnell wachsende Anzahl gleichzeitig aktiver Aufrufe 
der Funktion hof.  

 
 Dieses ungünstige Laufzeitverhalten läßt sich umgehen, indem man den 

Algorithmus zur Berechnung der Hofstader-Funktion iterativ formuliert. 
 
 Vorschlag zur iterativen Formulierung: 
 Definiere ein array a mit den Komponenten a[0], a[1], a[2], . . . . . .  und 

setze a[0] = hof(1) = 1, a[1] = hof(2) = 1.  
Den weiteren Komponenten a[2], a[3], . . .  werden in dieser Reihenfolge die 
Werte hof(3), hof(4), . . . .   zugewiesen. 

 
 Konzipiere und teste das iterativ formulierte Python-Programm!  
 
 
 
 

11. Zusatzaufgabe:  
 
 Die Fibonacci-Folge {ai} ist wie folgt definiert: 
 
 a1  =   a2  =  1 
    
 an  =  an-1  +  an-2    für n  3 
 
 Schreibe und teste ein Python-Programm zur Berechnung der Fibonacci-

Folge. 
 
 
 
12. Der als Python-Programm formulierte Algorithmus 

sorting_by_direct_selection.py.txt auf  
https://kalle2k.lima-city.de/computerscience/Informatik_12/sorting/  
sortiert ein array von Zufallszahlen aufsteigend, d. h. die sortierte Liste 
beginnt mit dem kleinsten Element. 

 
 Modifiziere das Programm so, daß das Sortieren absteigend erfolgt. 
 
 
 
 
  


