Binare Suche (BinarySearch)

Als Datenstruktur legen wir das aus den n Komponentena[0], , a[n-1]
bestehende Array a zugrunde, fiir dessen Komponenten die Ordnungsrelationen <, >, <, =, =
definiert sind.

Nach Zuweisung eines Wertes an die Variable value werden das sortierte Array a und value der
Funktion binarysearch lUbergeben; binarysearch entscheidet, ob es in der sortierten Liste
mita[0] £ £ a[n-1] einenIndex i gibt mita[i] = walue; falls dies zutrifft,
liefert binarysearch den Booleschen Wert True, andernfalls den Wert False.

Python-Quelltext:

from random import randint

=10
n = int {input ("Anzahl der Datenelemente = '})
a = list (range(l,n+l})

for i in range{0,n}:
a[i]l= randint (1,100}

print {('Quelliste: '}
print (a)

Sortieren

j in range (0,n-1}):

min = a[jl

£ in range{(j+1,n):
al[il] < min:

min = a[il

afi]l = al[Jjl
a[j] = min

Hh #H=

=

print {'sortierte Liste: ')

print (a)

print ()

value = int (input ('gesuchte Zahl: "})

binarysearch liefert den Wert True, falls wvalue als Inhalt einer Eomponente
des Arrays array vorkommt,andernfalls liefert binarysearch den Wert False.

def binarysearch(array,value):
global =z
z += 1
print (array)
if array = [] or (len(array) = 1 and arrav[0] '= walue):

midvalue = arrav[leniarray)/ /2]
if midvalue = wvalue:

elif value < midvalue:
return binarysearch(array[:len({array)//2],value)

return binarysearch(array[len(array)//2 + 1:],values)

hufruf der Funktion binarysearch zur Suche von wvalue im Array a

if binarysearch(a,value) == True:
print (value, "wurde gefun

Durchfiihrung des Algorithmus fiir ein aus 32 Zufallszahlen bestehendes Array a:
n = len (a) = Anzahl der Datenelemente = 32

Quelliste:

[77, 26, 19, 54, 29, 20, 38, 38, 1, 94, 83, 53, 90, 17, 66, 79, 43, 36, 11, 57, 52, 99, 68, 20, 32, 27, 7, 46, 91, 75, 54, 78]

a[o0] a[i] a[2] a[3] a[30] | a[31]
77 26 19 54 54 78

sortierte Liste a:

[1,7,11,17, 19, 20, 20, 26, 27, 29, 32, 36, 38, 38, 43, 46, 52, 53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99]

a[o0] a[i] a[2] a[15] a[16] a[17] | a[18] a[30] a[31]
1 7 11 46 52 53 54 94 99

Bemerkung: Jede Teilliste der Liste a ist ebenfalls sortiert.

gesuchter Wert: value =76

1. Aufruf der Funktion binarysearch

Die sortierte Liste a und value werden mit dem Aufruf binarysearch (a,value) der Funktion
binarysearch lbergeben; binarysearch lGbernimmt das Array a als lokales Array array.

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 32//2 = 16

2. Schritt:

Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[l6] = 52

Wegen 76 > 52 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 15 Komponenten bestehenden Teilliste ,rechts™ von a[16] fortzusetzen, also in der Liste

[53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99]

a[17] a[18] a[30] a[31]
53 54 94 99

2. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf

binarysearch (array[len(array)//2 + 1:],value)

(beachte: (value < midvalue) hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch lbergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0, 1,, 14:

a[0] a[1] a[6] al7] a[8] a[13] al[14]
53 54 75 77 78 94 99

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 15//2 = 7

2. Schritt:

Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[7] = 77

Wegen 76 < 77 nimmt der Boolesche Term value < midwvalue den Wert True an; folglich ist die Suche in
der aus 7 Komponenten bestehenden Teilliste ,links" von a[7] fortzusetzen, also in der Liste

[53, 54, 54, 57, 66, 68, 75]

a[o] a[i1] a[2] a[3] a[4] a[s] a[é]
53 54 54 57 66 68 75

3. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch (array|[:1len(array)//2] ,value)

(beachte: (value < midvalue) hat den Wert True) werden die vorstehende Teilliste und value
der Funktion binarysearch lbergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0,1,, 6:

a[o] a[1] a[2] a[3] a[4] a[5] a[6é]
53 54 54 57 66 68 75

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 7//2

I
w

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[3] = 57

Wegen 76 > 57 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 3 Komponenten bestehenden Teilliste ,rechts" von a[3] fortzusetzen, also in der Liste

[66, 68, 75]
a[4] a[5] a[6]
66 68 75

4. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf

binarysearch (array[len(array)//2 + 1:],value)

(beachte: (value < midvalue) hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch ubergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices O, 1, 2:

a[0] a[1] a[2]
66 68 75
1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 3//2 =1
2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[l] = 68

Wegen 76 > 68 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 1 Komponente bestehenden Teilliste ,rechts" von a[1] fortzusetzen, also in der Liste

[75]

a[2]
75

5. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf

binarysearch (array[len(array)//2 + 1:],value)

(beachte: (value < midvalue) hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch ubergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
dem Index O:

a[0]
75

Da wegen 75 # 76 der Boolesche Term array[0] != value den Wert True annimmt und da die Lange
des Ubergebenen Arrays den Wert 1 hat, erhalt die Boolesche Konjunktion

len (array) == and array[0] != value

den Wert True; folglich liefert die Funktion binarysearch den Wert False, und der Algorithmus bricht
ab mit der Ausgabe: ,76 wurde nicht gefunden®.

Aufwandsbetrachtung:

Die erfolglose Suche (wie im oben durchgefiihrten Beispiel) in einem aus n Komponenten
bestehenden Array erfordert eine maximale Anzahl von Aufrufen der Funktion binarysearch;
dagegen endet eine erfolgreiche Suche, sobald der Boolesche Term midvalue == value den

Wert True annimmt.

0. B. d. A. nehmen wir an, daB n eine Potenz von 2 ist, d. h. es gibt eine ganze nicht negative Zahl
k mit n = 2%

Wir Uberlegen, wie viele Teilungen und damit wie viele Aufrufe von binarysearch im ,worst case®
bendtigt werden, bis man zu einem Array mit 1 Komponente gelangt:

Maximale Anzahl der Aufrufe
binarysearch

[Ny
o |® AINR| D

32
64
n log,(n) 1 + logy(n)

alunfhlw|NR|IO| X
N [PRWIN |-

Wegen n = 2¥ gilt k = log,(n); damit folgt fiir die maximale Anzahl A der Aufrufe von
binarysearch:

A =1 + log,(n)

Fir groBe Werte von n kann man den Summand 1 vernachlassigen, so daB in guter Naherung gilt:
A =~ log,(n)

Da die Rechenzeit der Anzahl der benétigten Aufrufe der rekursiv formulierten Funktion
binarysearch folgt, hat der Algorithmus ,Bindre Suche" logarithmische Komplexitat.

19
18
17
16
o Tineares Wachstum
14
13
12

1

logarithmisches Wachstum

> v o N =

400 800 1200 1600 2000 2400 2800 3200 3600

12.04.2021

