
Binäre Suche (BinarySearch)  
 
Als Datenstruktur legen wir das aus den n Komponenten a[0], . . . . , a[n-1] 
bestehende Array a zugrunde, für dessen Komponenten die Ordnungsrelationen <, >, ≤, ≥, = 
definiert sind. 
Nach Zuweisung eines Wertes an die Variable value werden das sortierte Array a und value der 
Funktion binarysearch übergeben; binarysearch entscheidet, ob es in der sortierten Liste 
mit a[0] ≤ . . . . ≤ a[n-1] einen Index i gibt mit a[i] = value; falls dies zutrifft, 
liefert  binarysearch den Booleschen Wert True, andernfalls den Wert False. 
 
Python-Quelltext: 
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Durchführung des Algorithmus für ein aus 32 Zufallszahlen bestehendes Array a: 
 
n = len(a) = Anzahl der Datenelemente = 32 
 
Quelliste: 
 
[77, 26, 19, 54, 29, 20, 38, 38, 1, 94, 83, 53, 90, 17, 66, 79, 43, 36, 11, 57, 52, 99, 68, 20, 32, 27, 7, 46, 91, 75, 54, 78] 
 

a[0] a[1] a[2] a[3] …. …. …. …. …. …. a[30] a[31] 

77 26 19 54 …. …. …. …. …. …. 54 78 
  
 
sortierte Liste a: 
 
[1, 7, 11, 17, 19, 20, 20, 26, 27, 29, 32, 36, 38, 38, 43, 46, 52, 53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99] 
 

a[0] a[1] a[2] …. …. a[15] a[16] a[17] a[18] …. a[30] a[31] 

1 7 11 …. …. 46 52 53 54 …. 94 99 
 
Bemerkung: Jede Teilliste der Liste a ist ebenfalls sortiert. 
  
gesuchter Wert: value = 76 
 
 
1. Aufruf der Funktion binarysearch 
 

Die sortierte Liste a und value werden mit dem Aufruf binarysearch(a,value) der Funktion 
binarysearch übergeben; binarysearch übernimmt das Array a als lokales Array array. 
 
1. Schritt:  
BinarySearch bestimmt den mittleren Index des Arrays:  len(a)//2 = 32//2 = 16 
 
2. Schritt: 
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[16] = 52 
Wegen 76 > 52 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche 
in der aus 15 Komponenten bestehenden Teilliste „rechts“ von a[16] fortzusetzen, also in der Liste 
 

[53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99] 
 

a[17] a[18] …. …. …. a[30] a[31] 

53 54 …. …. …. 94 99 
 
 
 
2. Aufruf der Funktion binarysearch 
 

Mit dem rekursiven Aufruf  
binarysearch(array[len(array)//2 + 1:],value)  
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value 

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit 
den Indices 0, 1, . . . . , 14: 
 

a[0] a[1] …. a[6] a[7] a[8] …. a[13] a[14] 

53 54 …. 75 77 78 …. 94 99 
 
1. Schritt:  
BinarySearch bestimmt den mittleren Index des Arrays:  len(a)//2 = 15//2 = 7 
 
2. Schritt: 
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[7] = 77 
Wegen 76 < 77 nimmt der Boolesche Term value < midvalue den Wert True an; folglich ist die Suche in 
der aus 7 Komponenten bestehenden Teilliste „links“ von a[7] fortzusetzen, also in der Liste 
 

[53, 54, 54, 57, 66, 68, 75] 
 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] 

53 54 54 57 66 68 75 
 
 
 
3. Aufruf der Funktion binarysearch 
 

Mit dem rekursiven Aufruf  
binarysearch(array[:len(array)//2],value)  
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(beachte: (value < midvalue)hat den Wert True) werden die vorstehende Teilliste und value 

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit 
den Indices 0, 1, . . . . , 6: 
 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] 

53 54 54 57 66 68 75 
 
1. Schritt:  
BinarySearch bestimmt den mittleren Index des Arrays:  len(a)//2 = 7//2 = 3 
 
2. Schritt: 
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[3] = 57 
Wegen 76 > 57 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche 
in der aus 3 Komponenten bestehenden Teilliste „rechts“ von a[3] fortzusetzen, also in der Liste 
 

[66, 68, 75] 
 

a[4] a[5] a[6] 

66 68 75 
 
 
 
4. Aufruf der Funktion binarysearch 
 

Mit dem rekursiven Aufruf  
binarysearch(array[len(array)//2 + 1:],value)  
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value 

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit 
den Indices 0, 1, 2: 
 

a[0] a[1] a[2] 

66 68 75 
 
1. Schritt:  
BinarySearch bestimmt den mittleren Index des Arrays:  len(a)//2 = 3//2 = 1 
 
2. Schritt: 
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[1] = 68 
Wegen 76 > 68 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche 
in der aus 1 Komponente bestehenden Teilliste „rechts“ von a[1] fortzusetzen, also in der Liste 
 

[75] 
 

a[2] 

75 
 
 
 
5. Aufruf der Funktion binarysearch 
 
Mit dem rekursiven Aufruf  
binarysearch(array[len(array)//2 + 1:],value)  
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value 

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit 
dem Index 0: 
 

a[0] 

75 
 
Da wegen 75 ≠ 76 der Boolesche Term array[0] != value den Wert True annimmt und da die Länge 
des übergebenen Arrays den Wert 1 hat, erhält die Boolesche Konjunktion 
 

len(array) == 1  and  array[0] !=  value   
 

den Wert True; folglich liefert die Funktion binarysearch den Wert False, und der Algorithmus bricht 
ab mit der Ausgabe: „76 wurde nicht gefunden“. 
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Aufwandsbetrachtung: 
 
Die erfolglose Suche (wie im oben durchgeführten Beispiel) in einem aus n Komponenten 
bestehenden Array erfordert eine maximale Anzahl von Aufrufen der Funktion binarysearch; 
dagegen endet eine erfolgreiche Suche, sobald der Boolesche Term   midvalue == value   den 
Wert  True  annimmt. 
 
O. B. d. A. nehmen wir an, daß n eine Potenz von 2 ist, d. h. es gibt eine ganze nicht negative Zahl 
k mit n = 2k. 
 
Wir überlegen, wie viele Teilungen und damit wie viele Aufrufe von binarysearch im „worst case“ 
benötigt werden, bis man zu einem Array mit 1 Komponente gelangt: 
 

n k 
Maximale Anzahl der Aufrufe 

binarysearch 
1 0 1 
2 1 2 
4 2 3 
8 3 4 
16 4 5 
32 5 6 
64 6 7 
n log2(n) 1 + log2(n) 

 
Wegen n = 2k gilt k = log2(n); damit folgt für die maximale Anzahl A der Aufrufe von 
binarysearch: 
 

A = 1 + log2(n) 
 
 
Für große Werte von n kann man den Summand 1 vernachlässigen, so daß in guter Näherung gilt: 
 

A  log2(n) 
 

Da die Rechenzeit der Anzahl der benötigten Aufrufe der rekursiv formulierten Funktion 
binarysearch folgt, hat der Algorithmus „Binäre Suche“ logarithmische Komplexität. 
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