
Binäre Suche (BinarySearch)

Als Datenstruktur legen wir das aus den n Komponenten a[0], , a[n-1]
bestehende Array a zugrunde, für dessen Komponenten die Ordnungsrelationen <, >, ≤, ≥, =
definiert sind.
Nach Zuweisung eines Wertes an die Variable value werden das sortierte Array a und value der
Funktion binarysearch übergeben; binarysearch entscheidet, ob es in der sortierten Liste
mit a[0] ≤ ≤ a[n-1] einen Index i gibt mit a[i] = value; falls dies zutrifft,
liefert binarysearch den Booleschen Wert True, andernfalls den Wert False.

Python-Quelltext:

 2

Durchführung des Algorithmus für ein aus 32 Zufallszahlen bestehendes Array a:

n = len(a) = Anzahl der Datenelemente = 32

Quelliste:

[77, 26, 19, 54, 29, 20, 38, 38, 1, 94, 83, 53, 90, 17, 66, 79, 43, 36, 11, 57, 52, 99, 68, 20, 32, 27, 7, 46, 91, 75, 54, 78]

a[0] a[1] a[2] a[3] …. …. …. …. …. …. a[30] a[31]

77 26 19 54 …. …. …. …. …. …. 54 78

sortierte Liste a:

[1, 7, 11, 17, 19, 20, 20, 26, 27, 29, 32, 36, 38, 38, 43, 46, 52, 53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99]

a[0] a[1] a[2] …. …. a[15] a[16] a[17] a[18] …. a[30] a[31]

1 7 11 …. …. 46 52 53 54 …. 94 99

Bemerkung: Jede Teilliste der Liste a ist ebenfalls sortiert.

gesuchter Wert: value = 76

1. Aufruf der Funktion binarysearch

Die sortierte Liste a und value werden mit dem Aufruf binarysearch(a,value) der Funktion
binarysearch übergeben; binarysearch übernimmt das Array a als lokales Array array.

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 32//2 = 16

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[16] = 52
Wegen 76 > 52 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 15 Komponenten bestehenden Teilliste „rechts“ von a[16] fortzusetzen, also in der Liste

[53, 54, 54, 57, 66, 68, 75, 77, 78, 79, 83, 90, 91, 94, 99]

a[17] a[18] …. …. …. a[30] a[31]

53 54 …. …. …. 94 99

2. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch(array[len(array)//2 + 1:],value)
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0, 1, , 14:

a[0] a[1] …. a[6] a[7] a[8] …. a[13] a[14]

53 54 …. 75 77 78 …. 94 99

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 15//2 = 7

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[7] = 77
Wegen 76 < 77 nimmt der Boolesche Term value < midvalue den Wert True an; folglich ist die Suche in
der aus 7 Komponenten bestehenden Teilliste „links“ von a[7] fortzusetzen, also in der Liste

[53, 54, 54, 57, 66, 68, 75]

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

53 54 54 57 66 68 75

3. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch(array[:len(array)//2],value)

 3

(beachte: (value < midvalue)hat den Wert True) werden die vorstehende Teilliste und value

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0, 1, , 6:

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

53 54 54 57 66 68 75

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 7//2 = 3

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[3] = 57
Wegen 76 > 57 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 3 Komponenten bestehenden Teilliste „rechts“ von a[3] fortzusetzen, also in der Liste

[66, 68, 75]

a[4] a[5] a[6]

66 68 75

4. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch(array[len(array)//2 + 1:],value)
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
den Indices 0, 1, 2:

a[0] a[1] a[2]

66 68 75

1. Schritt:
BinarySearch bestimmt den mittleren Index des Arrays: len(a)//2 = 3//2 = 1

2. Schritt:
Wert der Komponente in der Mitte des Arrays: midvalue = a[len(a)//2] = a[1] = 68
Wegen 76 > 68 nimmt der Boolesche Term value < midvalue den Wert False an; folglich ist die Suche
in der aus 1 Komponente bestehenden Teilliste „rechts“ von a[1] fortzusetzen, also in der Liste

[75]

a[2]

75

5. Aufruf der Funktion binarysearch

Mit dem rekursiven Aufruf
binarysearch(array[len(array)//2 + 1:],value)
(beachte: (value < midvalue)hat den Wert False) werden die vorstehende Teilliste und value

der Funktion binarysearch übergeben; binarysearch verarbeitet diese Teilliste als lokales array mit
dem Index 0:

a[0]

75

Da wegen 75 ≠ 76 der Boolesche Term array[0] != value den Wert True annimmt und da die Länge
des übergebenen Arrays den Wert 1 hat, erhält die Boolesche Konjunktion

len(array) == 1 and array[0] != value

den Wert True; folglich liefert die Funktion binarysearch den Wert False, und der Algorithmus bricht
ab mit der Ausgabe: „76 wurde nicht gefunden“.

 4

Aufwandsbetrachtung:

Die erfolglose Suche (wie im oben durchgeführten Beispiel) in einem aus n Komponenten
bestehenden Array erfordert eine maximale Anzahl von Aufrufen der Funktion binarysearch;
dagegen endet eine erfolgreiche Suche, sobald der Boolesche Term midvalue == value den
Wert True annimmt.

O. B. d. A. nehmen wir an, daß n eine Potenz von 2 ist, d. h. es gibt eine ganze nicht negative Zahl
k mit n = 2k.

Wir überlegen, wie viele Teilungen und damit wie viele Aufrufe von binarysearch im „worst case“
benötigt werden, bis man zu einem Array mit 1 Komponente gelangt:

n k
Maximale Anzahl der Aufrufe

binarysearch
1 0 1
2 1 2
4 2 3
8 3 4
16 4 5
32 5 6
64 6 7
n log2(n) 1 + log2(n)

Wegen n = 2k gilt k = log2(n); damit folgt für die maximale Anzahl A der Aufrufe von
binarysearch:

A = 1 + log2(n)

Für große Werte von n kann man den Summand 1 vernachlässigen, so daß in guter Näherung gilt:

A  log2(n)

Da die Rechenzeit der Anzahl der benötigten Aufrufe der rekursiv formulierten Funktion
binarysearch folgt, hat der Algorithmus „Binäre Suche“ logarithmische Komplexität.

12.04.2021

