
Aufgabenblatt Nr. 6 inf12 10.03.2021

15. MergeSort

 In dem paper MergeSort_final.pdf (08.03.2021) wurde die Funktion f(n)
hergeleitet, welche in Abhängigkeit von n die Anzahl der Aufrufe der Funktion
sort angibt; wegen f(n) = 2n  1 wächst f(n) linear mit n und daher
erheblich schwächer als der Aufwand A(n).

 Aufgabe: Finde in entsprechender Weise einen Funktionsterm für die
Funktion g(n), welche die Anzahl der Aufrufe der Funktion merge in
Abhängigkeit von n bestimmt.

 Hinweis: Auch hier beschränke man sich auf Werte von n, die sich als
Zweierpotenz schreiben lassen (n = 1, 2, 4, 8,). Fertige für n = 2 und
n = 8 jeweils eine Baumstruktur an gemäß folgendem Beispiel (n = 4):

Die Pfeile bedeuten hier: „wird gemischt“; z. B. werden die sortierten
Teillisten {a[0], a[1]} und {a[2], a[3]} vermöge merge(0,1,3) zur sortierten
Liste {a[0], a[1], a[2], a[3]} gemischt.

16. Implementiere in dem in Python geschriebenen Quelltext mergesort.py

Zählvariablen z und y, welche zur Laufzeit des Algorithmus die Anzahl der
Aufrufe der Funktion sort und der Funktion merge ermitteln; bestätige auf
diese Weise die Ergebnisse, die für f(n) und g(n) gefunden wurden.

Bemerkung:
Bei MergeSort hat der Rechenaufwand A(n), um eine Liste mit n Komponenten zu
sortieren, wegen A(n)  n  log2(n) eine linear-logarithmische Komplexität; da die
Anzahl der rekursiven Funktionsaufrufe linear mit n wächst, hat der zur Laufzeit
des Algorithmus benötigte Speicher lineare Komplexität.

