Aufgabenblatt Nr. 6 inf12 10.03.2021

15. MergeSort

16.

In dem paper MergeSort_final.pdf (08.03.2021) wurde die Funktion f(n)
hergeleitet, welche in Abhdangigkeit von n die Anzahl der Aufrufe der Funktion
sort angibt; wegen f(n) = 2n - 1 wachst f(n) linear mit n und daher

erheblich schwacher als der Aufwand A(n).

Aufgabe: Finde in entsprechender Weise einen Funktionsterm fir die
Funktion g(n), welche die Anzahl der Aufrufe der Funktion merge in
Abhangigkeit von n bestimmt.

Hinweis: Auch hier beschrénke man sich auf Werte von n, die sich als
Zweierpotenz schreiben lassen (n =1, 2,4,8,.....). Fertige fiirn = 2 und
n = 8 jeweils eine Baumstruktur an gemaB folgendem Beispiel (n = 4):

alo] a[1] alz] al3]
merge(0,0,1) merge(2,2,3)
al[o] a[1] al2] a[3]
merge{0,1,3)

al[0] af[1] a[2] a[Z]

Die Pfeile bedeuten hier: ,wird gemischt®; z. B. werden die sortierten
Teillisten {a[0], a[1]} und {a[2], a[3]} vermdge merge(0,1,3) zur sortierten
Liste {a[0], a[1], a[2], a[3]} gemischt.

Implementiere in dem in Python geschriebenen Quelltext mergesort.py
Zahlvariablen z und y, welche zur Laufzeit des Algorithmus die Anzahl der
Aufrufe der Funktion sort und der Funktion merge ermitteln; bestatige auf

diese Weise die Ergebnisse, die fur f(n) und g(n) gefunden wurden.

Bemerkung:

Bei MergeSort hat der Rechenaufwand A(n), um eine Liste mit n Komponenten zu
sortieren, wegen A(n) ~n -logx(n) eine linear-logarithmische Komplexitdt; da die
Anzahl der rekursiven Funktionsaufrufe linear mit n wéachst, hat der zur Laufzeit
des Algorithmus bendétigte Speicher lineare Komplexitét.

