Aufgabenblatt Nr. 4 inf13 15.02.2021

6. Fibonacci-Folge

Firne{0,1,2,3,..... } 1aBt sich die Fibonacci-Folge rekursiv definieren:
Rekursionsanfang: fibo(0) =0

fibo(1) =1
Rekursionsvorschrift: fibo(n) = fibo(n-1) + fibo(n-2) fallsn > 1

(In Worten: fiir n > 1 erhalt man das n-te Folgenglied als Summe der beiden
vorangehenden Folgenglieder.)

a)

b)

Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf,
welches nach Eingabe von n den Wert fibo(n) ausgibt (oder: alle Werte
fibo(0), . . ., fibo(n)); implementiere auch eine Variable z, welche die An-
zahl der Funktionsaufrufe ermittelt.

Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller
Komplexitét, denn die Anzahl z der Funktionsaufrufe wadchst exponentiell
mit n; bein = 38, 39, 40, . . nimmt die Berechnung bereits sehr viel Zeit
in Anspruch.

Zeige: Fir die Anzahl z(n) der Funktionsaufrufe gilt

Rekursionsanfang: z(0)=2z(1)=1

Rekursionsvorschrift: z(n) = 1 + z(n-1) + z(n-2) fallsn>1
Hinweis: Erstelle fiir fibo(2), fibo(3), fibo(4) jeweils ein Baumdiagramm,

so wie es flr die Aufrufe von sort in dem paper ,mergesort_update.pdf"
gemacht wurde.

c) Wenn man lru_cache des Python-Moduls functools nutzt, 1&Bt sich

d)

die Laufzeit erheblich verbessern (hier werden bereits berechnete Werte in
einem cache zwischengespeichert); allerdings kommt man mit 1ru_cache
bei der Berechnung der Ackermann-Funktion wegen derer ungeheuren Re-
kursionstiefe kaum weiter: acker(3,9) laBt sich noch berechnen, bei
acker(3,10) oder acker(4,n), n>0, ist SchluB.

functools 1imj 1lru cache

n =-dnt{input{Tn.= 1))
z =10

@lru cache (maxsize=64)
Fibo{n}) -

Schreibe und teste ein iterativ formuliertes Python-Programm, z. B.
indem die Werte der Fibonacci-Folge in einem array mit den
Komponenten a[0], a[1],, a[n] abgelegt werden

(setze a[0] = O und a[1] = 1).

7. SelectionSort

Der Algorithmus sorting_by_direct_selection.py (enthalten im zip-Archiv
MergeSort_update.zip) hat noch Optimierungspotential hinsichtlich des Zeit-
bedarfs zum Sortieren einer als array gegebenen Liste. Hierzu IaBt sich die
Funktion min (x, j) in geeigneter Weise modifizieren; ergreife diese Mdglich-
keit!

Allerdings dndert diese Optimierung nichts an der quadratischen Komplexitat
des Algorithmus.

8. MergeSort
In dem paper mergesort_update.pdf (zip-Archiv MergeSort_update.zip)

wurde die Funktion f(n) ermittelt, welche die Anzahl der Aufrufe der Funktion
sort angibt.

Finde in entsprechender Weise einen Funktionsterm und eine Funktionalglei-
chung fir die Funktion g(n), welche die Anzahl der Aufrufe der Funktion
merge angibt.

Hinweis:
Erstelle Baumdiagramme firn =2, n =4, n =8

Baum-Diagramm fir n = 4:

al[o0] a[1] al2] a[3]
merge(0,0,1) merge(2,2,3)
merge(0,1,3)
g(4) = 3

Implementiere im Quelltext von mergesort.py eine weitere Zahlvariable y,
welche die Anzahl der Aufrufe von merge ermittelt.

Aufgabenblatt Nr. 4 inf13 Lésungen 20.02.2021

Aufgaben 6.a), 6.c):

n = int {input{'n = '}} from functools import lru_ cache
=f fib(n): n = int{input({'n = "})
Jlobal =
z +=1 @lru cache (maxsize=1000)
f n < 2:
return n def fib(n):
n fib{n-1) + fib(n-2) Jlobal =
2 +1
- i in range {(n+l): if n € 2:
z =0 return n
print {"fib(",i, ") = ", fib{i)}} return fib{n-1) + fib{n-2)
print {'# Aufrufe: ', =)
print {) for i in range{n+l):
2 =0
print{'fib{',i,"'}) = ', fibL{i})
print ('# Aufrufe: ', =)
print ()
Aufgabe 6.b): f(n) = fibo(n); ., —>» " bedeutet: ,ruft auf®
f(2) f(3)
f(0) f(1) f(1) f(2)
f(4) f(0) f(1)
f(2) f(3)
f(0) f(1) f(1) f(2)
f(0) f(1)
z(0)=2z(1)=1
z(2)=1+2z(0)+2z(1)=1+1+1=3
z(3)=1+z(1)+z2)=1+1+3=5
z(4)=1+2(2)+2z3)=1+3+5=9
z(5)=1+2(3)+2z(4)=1+5+9=15

allgemein:

z(n) =1+ z(n-1) + z(n-2) fallsn>1

Aufgabe 6.d):

n = int {input{'n = '})
a = list({range {0,2)})
a[fo] = 0
afl] = 1
3 o e S [
.
i<= mn:
a.append{a[i-1] + a[i-2])
il =
- 1 in range (n+l):
print {'fib{',i,"} = ',al[il)
Aufgabe 7.:
Die Funktion min (x, j) ermittelt in dem array x[j], , x[n-1] das

kleinste Element und weist es der Komponente x[j] zu. In der urspringlichen
Version von min (x,j) werden die Inhalte der Komponenten x[j] und x[i]
immer dann unter Verwendung des Zwischenspeichers temp ausgetauscht, so-
bald x[1i] kleiner als x[j] ist (j < i < n-1); folglich finden u. U. sehr viele
solcher swap-Operationen statt, die unndétig viel Rechenzeit beanspruchen.
Patriks Vorschlag: Nachdem man durch sukzessives Vergleichen den Index k des
kleinsten Elements bestimmt hat, wird der swap-Vorgang nur einmal ausgefihrt.
(Praktische Versuche zeigen, daB man durch diese Optimierung mit einer Halbie-
rung des Zeitbedarfs zum Sortieren eines arrays rechnen kann.)

E min(x,3j): def min{x,j):
or i in range (j+1,len{x)}: E=3j
" x[i] < =[i]: minimom = x[k]

temp = x[]j] for 1 in range {(j+1,len(x}):

x[31] = x[1] if %[1i] < minimum:

x[i] = temp minimum = x[1i]

E=4a

x[k] = x[3j]
x[j] = minimum

Aufgabe 8.: Baumdiagramm fiir n=8

af[o] a[1] a[2] a[3] al4] a[5] a[6]
merge(0,0,1) merge(2,2,3) mergel(4,4,5) merge(6,6,7)
a[o] a[1] a[2] a[3] a[4] als] al6] al7]
merge{0,1,3) merge{4,5,7)
alol al1l a[2] al3] a[4] a[5] ale] a[7]

\ /

merge(0,3,7)
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]
g(1) =0

g(n)=1+4+2.g(n/2) falls n=2% k>1
g(n)=n-1

Eigenschaften der rekursiv definierten Fibonacci-Folge {f(n)}_,

(1) (0

)y=0, f(1)=1
(2) f(n) =

f(n-1) + f(n-2) fallsn > 1

1. Die Folge {f(n)} ist streng monoton wachsend fiir n > 1.

Beweis:
f(n+1) - f(n) = f(n-1) > 0 fallsn>1

2. Behauptung: f(n) < 2" =1,.2" fallsn>1

Beweis: f(n) = f(n-1) + f(n-2) < 2-f(n-1) wegen der Monotonie
<2.2-f(n-2) =2?.f(n-2)
< 2°.f(n-3)

< 2" f(n-(n-1)) = 2" . f(1) = 2!
3. Behauptung: f(n) > %2 - (¥2)" fallsn > 2
Beweis: n sei gerade mitn =2m, m>1

f(2m) = f(2m-1) + f(2m-2)
>2.f(2m-2) = 2'.f(2(m-1)) wegen der Monotonie
> 2.2 f(2m-4) = 2% . f(2(m-2))
> 2°. f(2(m-3))

> 2™ f(2(m=(m-1))) = 2™ . f(2) = 2™
mit m = n/2 folgt:
f(n) > 2"27"1= 15.2"2 = 1. (42)"

4. Folglich erhalten wir fiir f(n) die Abschatzung
. (V2)" < f(n) < % .2" falls n > 2

Die Fibonacci-Folge wachst exponentiell mit n.

5. Das exponentielle Wachstum [aBt sich auch an der fir die Fibonacci-Folge
geltenden Formel von Moivre-Binet ablesen:

o (55 (55)

Fir groBe Werte von n kann man den Subtrahend gegenliber dem Minuend
vernachlassigen.

6. Berechnet man die Fibonacci-Folge mit der rekursiv formulierten Funktion fib,

erhdlt man fir die Anzahl z(n) der Aufrufe von fib:
z(0)=2z(1)=1
z(n) =1+ z(n-1) + z(n-2) , n>1

Wegen z(n) > f(n) wachst auch z(n) exponentiell mit n.

