Informatik
infl12 08.10.2020

Definition:

Unter einem Algorithmus verstehen wir ein aus endlich vielen Anweisun-
gen bestehendes allgemeines Verfahren, welches eine Klasse von Proble-
men in endlich vielen Schritten 16st.

Wir beschreiben einen Algorithmus, unabhangig von der Programmiersprache, in
der er codiert wird, durch ein FluBdiagramm oder ein Struktogramm (,Nassi-
Shneiderman®-Diagramm).

1. Lineare Algorithmen

Wenn bei der Abarbeitung eines Algorithmus die einzelnen Anweisungen sich
langs eines einzigen Pfades aneinanderreihen, sprechen wir von einem linearen
Algorithmus; insbesondere gibt es hier keine Verzweigungen. Beispiel: Zinses-
zinsberechnung.

Allgemeines FluBdiagramm FluBdiagramm des Algorithmus
eines Algorithmus: ~Zinseszins™:
Eingabe
. Anfangskapital kD
Eingabe Zinsfuss p
Laufzeit n

Verarbeitung

k = kO « (1+55)"

Ausgabe

r

Ausgabe

Endkapital k

2. Verzweigte Algorithmen

Ein Algorithmus, bei dessen Abarbeitung unterschiedliche Anweisungsblécke
durchlaufen werden kénnen, heilt verzweigter Algorithmus; dabei entscheidet die
Abfrage einer Bedingung (in Form einer booleschen Variablen oder eines boole-
schen Ausdrucks) darliber, welcher Zweig durchlaufen wird.

Beispiel:
Der Algorithmus ,QuadEquation®, der die Losungsmenge einer quadratischen
Gleichung bestimmt.

2

Der Ablauf ergibt sich aus einem FluBdiagramm oder einem Struktogramm (bei
letzterem fehlt die Abfrage b=0):

Eingabe a, b, c

- - - +

k4

x1=(-b + D¥?)/(2a)

x = -b/(2a) x2=(-b - D?)/(2a)
l ,
/ Ausgabe x // / Ausgabe x1, x2 /
Eingabea, b, ¢
+ a=0 i
Alusgabe D:=b*b - 4*a*c

"nicht quadratisch” i D=0 -

Alsgabe " D=0 B
"keine Losung” x:= -b/(2*a) x1:=(-b + sqri(D))/(2*a)
Ausgabe Xx2:=(-b - sgri(D))(2*a)

X Alsgabe

x1; %2

Quelltext des Algorithmus QuadEquation in Python codiert:

L&
File Edit Format Run Options Window Help
“”-Ael;a:_szhe Fleichungen™
"Eingabe der Koeffizienten"
print ("Eingabe der Koeffizienten der Gleichung a®*
a=float {(input ("a = ™"})
b=float {input ("b = "}
c=float {(input ("c = ™})
print ()
print ("Loesungen:™)
"Verarbeitung der Daten und Ausgabe der Loesungen™
ifa=—0=0
print (["nicht quadratisch™)

if D < O:
print {("keine Lo

sung!™)
elif D =— O:

x = -b/(2*%a)

print {("x = ",Xx)

{(-b + D** (1/2))/ (2*a)
x2 = (-b - D**(1/2)}/(2%a)
print {("x1 = ",x1)
print ("xZ2 = ",x2)

3. Schleifen

Soll ein Anweisungsblock innerhalb eines Algorithmus mehrmals durchlaufen wer-
den, sprechen wir von einer Schleife; der wiederholt durchlaufene Anweisungs-
block heiBt auch Schleifenrumpf. Wenn die Anzahl der Durchldaufe einer Schleife a
priori (von vorneherein) feststeht, 1aBt sich eine for- oder while-Schleife ver-
wenden; hat z. B. die Abfrage einer Bedingung (in Form eines Booleschen Aus-
drucks) innerhalb des Schleifenrumpfs EinfluB auf die Anzahl der Durchlaufe,

kommt nur die while-Schleife in Frage.

Struktogramme:

Ln: 38 Col 0

while Bedingung fori=1...n

Schleifenrumpf Schleifenrumpf

Der Algorithmus ,Quadratzahlen® gibt die Quadrate der ganzen Zahlen aus dem
Intervall [a, b] aus:

Quellcode in Python, realisiert mit einer while-Schleife:

File Edit Format Run Options Window Help

Tabelle Quadratzahlen (while-Schleife)

i = Bchleifenindex

2 = kKleinste ganze Zahl, deren Quadrat berechnet wird

b = grosste ganze Zahl, deren Quadrat berechnet wird

print {'In welchem Bereich =o0ll das Quadrat berechnet werden?'})
a=int (input ['untere Grenze = '))

b=int (input {'obere Grenze = '})

print ()

Initialisierung des Schleifenindicis i
i=a

while-loop

while i<=b:
print (i, '*2 = ',i%**32)
i=i+l
alternativ: i += i

Lm: 19 Col 0

Quellcode in Python, realisiert mit einer for-Schleife:

File Edit Format Run Options Window Help

Tabelle Quadratzahlen (for-Schleife)

i = Schleifenindex

2 = kKleinste ganze Zahl, deren Quadrat bherechnet wird
b = grdsste ganze Zahl, deren Quadrat berechnet wird

print {'In welchem Bereich so0ll das Quadrat berechnet werden?')
nze = ")}

a=int {input { "untere Gre

b=int (input ['obere Grenze = '}})

print ()

|

for-loop

for i in rangef{a,b+l}):
printG{i; "3 = M;iw*3])

Lm: 11 Cok

Ausgabe der Quadratzahlen:

File Edit 5hell Debug Options Window Help

Python 3.8.6 (tags/v3.8.6:db455249, Sep 23 2020, 15:52:53
} [MSC v.18927 &4 bit (AMD&4)}] on win3Zz2

Type "help®™, "copyright™, "credits™ or "license()"™ for m
ore information.

FrF

= RESTART: F:\Informatik 2020\GK inf 2020-21\MS512%\Quadr
atzahlen while-Schleife.py

In welchem Bereich so0ll das Quadrat berechnet werden?
untere Grenze = 11

ocbere Gremze = 18
3 B3 et S e i |
L& a2a= 144
13 ~2 = 1493
14 ~2 = 19¢&
15 *2 = 2235
le "2 = 25L&
17 ~2 = 28B4
1g ~2 = 324
19 ~2 = 36l
FrF

Lm: 18 Col 4

6

Quadratwurzel aus einer positiven reellen Zahl

Der Algorithmus ,Wurzelberechnung" approximiert Ya fiir eine positive reelle
Zahl a. Die Iteration bricht ab, sobald der Abstand zweier aufeinanderfolgender
Folgenglieder kleiner als eine einzugebende Fehlerschranke d wird.

Der Abbruch erfolgt, sobald die Boolesche Variable condition innerhalb des
Schleifenrumpfs den Wert False erhalt, was eintritt, wenn abs(y - z) kleiner als
d wird.

Anmerkung:
Der hier vorgestellte Algorithmus stitzt sich darauf, daB die Folge {x;} mit

a . . .
Xi+1= %(Xi +—), Xo=a, gegen Ja konvergiert; dies sei hier ohne
Xi

Beweis und ohne néhere Begrindung mitgeteilt.

I]:. *sgrt_while-loop_mit_abbruchbedingung.py - F:/Informatik_2020/...

File Edit Format Run Options Window Help

print {'Eingabe des Radikanden:')

B =)

Die Iteration bricht ab, sobald der Abstand

zweier aufeinanderfolgender Iterationen kleiner als d wizd
print {'Eingabe Fehlerschranke d:')

d = float [(input('d = '})

Verarbeitung und &
condition = True #
X = a *
while condition:

Startwert; alternativ: x = 1

zZ =X

x = 0.5%({x + a/x)

¥y = X

print (x)

condition = {(abs{y - z) >= d)

Ln: 19 Col: 8

on 3.8.6 Shel

File Edit Shell Debug Options Window Help

Python 3.8.6 (tags/v3.8.6:db4552%, Sep 23 2020, 15:52:53) [MSC v.1927 64 bit (AMD&4)]
on win32

Type "help®, "copyright™, "credits™ or "license ()™ for more information.

x>

= RESTART: F:/Informatik 2020/GK_inf 2020-21/M5512/sqgrt while-loop mit abbruchbedingu
ng.py

Eingabe des Radikanden:

a = 85

Eingabe Fehlerschranke d:

d = 0.0001

43.0

22 .4B8372083023255
13.134051610110387
9.802E885441165137
9.236901144433745
9.219560764417094
©9.21554445730731

x>

= RESTART: F:/Informatik 2020/GK_inf 2020-21/M5512/sqgrt while-loop mit abbruchbedingu
ng.py

Eingabe des Radikanden:

a = 85

Eingabe Fehlerschranke d:
d = 0.0000000000001

43.0

22.488372093023255
13.134051610110387
0.802885441165137
.2365901144433745
.219560764417094
.21854445730731
.2159544457292887
.219544457292887

x>

= RESTART: F:/Informatik 2020/GK_inf 2020-21/MS5512/sqgrt_while-loop mit_ abbruchbedingu
ng.py

Eingabe des Radikanden:

a = 25

Eingabe Fehlerschranke d:
d = 0.00000000000001

w oo oo oo

13.0
T.461538461538462
5.406026962727994
5.015247601944E858
5.0000231782535948
5.000000000053722
=
=

Ln: 48 Cok 4

