
Rekursionstiefe und Anzahl der Funktionsaufrufe
am Beispiel der Hofstadter-Funktion

Quellcode in Python:

def hof(x):
 if x == 1:
 return 1
 elif x == 2:
 return 1
 elif x > 2:
 return hof(x - hof(x - 1)) + hof(x - hof(x - 2))

endwert = int(input('Bis zu welchem Wert soll Hofstadter berechnet werden? '))
n = 1
while n <= endwert:
 y = hof(n)
 print('hof(',n,') =',y)
 n += 1

h(1) = 1

1 Aufruf Rekursionstiefe = 1

h(2) = 1

1 Aufruf Rekursionstiefe = 1

h(3) = h(3 – h(2)) + h(3 – h(1))  2-fache Verschachtelung
 1 1 1  # Aufrufe
 = h(3 – 1) + h(3 – 1)
 = h(2) + h(2)
 1 1  # Aufrufe
 = 1 + 1
 = 2

5 Aufrufe Rekursionstiefe = 2

h(4) = h(4 – h(3)) + h(4 – h(2))
 1 5 1  # Aufrufe
 = h(4 – 2) + h(3)

 = h(2) + h(3)
 1 5  # Aufrufe

13 Aufrufe insgesamt

 = h(4 – h(3)) + h(4 – h(2))
 = h(4 – (h(3 – h(2)) + h(3 – h(1))) + h(3)
 = h(4 – (h(3 – h(2)) + h(3 – h(1))) + h(3 – h(2)) + h(3 – h(1))

 3-fache Verschachtelung

= h(4 – (h(3 – 1) + h(3 – 1)) + h(3 – 1) + h(3 – 1)
= h(4 – (h(2) + h(2)) + h(2) + h(2)
= h(4 – (1 + 1)) + 1 + 1
= h(2) + 1 + 1
= 1 + 1 + 1
= 3

Rekursionstiefe = 3

