Rekursionstiefe und Anzahl der Funktionsaufrufe
am Beispiel der Hofstadter-Funktion

Quellcode in Python:

def hof (x):
if x == 1:
return 1
elif x ==
return 1
elif x > 2:
return hof(x - hof(x - 1)) + hof(x - hof(x - 2)

endwert = int (input ('Bis zu welchem Wert soll Hofstadter berechnet werden? '))
n=1
while n <= endwert:

y = hof (n)
print ('hof (',n,"') =',y)
n+=1
h(l) = 1
1 Aufruf Rekursionstiefe = 1
h(2) =1
1 Aufruf Rekursionstiefe = 1
h(3) = h(3 — h(2)) + h(3 - h(l)) & 2-fache Verschachtelung
1 1 1 <& # Aufrufe
= h(3 - 1) + h(3 - 1)
= h(2) + h(2)
1 1 <& # Aufrufe
=1 + 1
=2
5 Aufrufe Rekursionstiefe = 2
h(4) = h(4 — h(3)) + h(4 - h(2))
1 5 1 <& # Aufrufe
= h(4 - 2) + h(3)
= h(2) + h(3)
1 5 <& # Aufrufe
13 Aufrufe insgesamt
= h(4 - h(3)) + h(4 - h(2))
= h(4 - (h(3 — h(2)) + h(3 = h(l))) + h(3)
= h(4 - (h(3 -— h(2)) + h(3 = h(1))) + h(3 = h(2)) + h(3 - h(1))
— _
—
3-fache Verschachtelung
= h(4 - (h(3 - 1) + h(3 - 1)) + h(3 = 1) + h(3 - 1)
= h(4 - (h(2) + h(2)) + h(2) + h(2)
=h(4 - (1 + 1)) +1 + 1
h(2) + 1 + 1
1 +1 + 1
=3

Rekursionstiefe = 3

