
Prinzipien zur Erstellung eines Programms

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal oder Python)
besteht aus einer Folge von ausführbaren Anweisungen, die in der vorgegebenen
Reihenfolge abgearbeitet werden.
In Maschinensprache (Assembler) geschriebene Programme verfolgen stets den
imperativen Ansatz, die elementaren (Maschinen-)Befehle werden nacheinander
ausgeführt.

Wesentliche Kontrollstruktur: Iterationen (for-, while-Schleife)

Funktionaler Ansatz

Der Quellcode bedient sich mathematischer Funktionen, durch die ein Algorithmus
beschrieben wird.

Wesentliche Kontrollstruktur: Rekursion

Definition:
Eine Prozedur (Teilprogramm) oder eine Funktion heißt rekursiv, wenn ihr
Anweisungsteil mindestens einen Aufruf von sich selbst enthält.

Bei beiden Ansätzen ist durch eine Abbruchbedingung sicherzustellen, daß der
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu
einem Ergebnis führt.

Beispiel 1
Der Algorithmus ggT (größter gemeinsamer Teiler)

Nach Eingabe zweier natürlicher Zahlen a und b bestimmt ggT die größte ganze
Zahl, durch die sich a und b jeweils ohne Rest teilen lassen.

a) Imperativer Ansatz, formuliert als iterativer Algorithmus
 („Euklidischer Algorithmus“)
 Struktogramm:

 2

b) Funktionaler Ansatz, formuliert als rekursiv definierte Funktion

 Die Funktion (a, b)  ggT(a,b) läßt sich rekursiv definieren:

 Rekursionsanfang: ggT(a,a) = a

 Rekursionsvorschrift: ggT(a,b) = ggT(a–b, b) , falls a > b

 ggT(a,b) = ggT(a, b–a) , falls b > a

Aufgabe:
Realisiere den Algorithmus ggT als iteratives und als rekursives Python-
Programm; vergleiche die Laufzeiten.

Beispiel 2
Die Funktion „Fakultät“ (englisch: Factorial)

Die Funktion fact ordent jeder natürlichen Zahl n das Produkt
n! = 1  2   n zu; definitionsgemäß gilt: 0! = 1.

a) Imperativer Ansatz

 Formuliere den Algorithmus iterativ (for- oder while-Schleife) als

Struktogramm und als Python-Programm

b) Funktionaler Ansatz

 Die Funktion n  fact(n) läßt sich rekursiv definieren:

 Rekursionsanfang: fact(0) = 1

 Rekursionsvorschrift: fact(n) = n  fact(n-1) , falls n > 0

 Formuliere die Funktion fact als rekursives Python-Programm!

Beispiel 3
Die Hofstadter-Funktion

Die Funktion hof ist rekursiv definiert, n  {1, 2, 3, } :

Rekursionsanfang: hof(1) = 1
 hof(2) = 1

Rekursionsvorschrift: hof(n) = hof(n - hof(n - 1)) + hof(n - hof(n - 2)) , n>2

Aufgabe:
Codiere den Algorithmus hofstadter

a) rekursiv,
b) iterativ

jeweils in Python; vergleiche insbesondere die Laufzeiten!

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld), in dem bereits
berechnete Funktionswerte gespeichert werden.

 27.10.2020

