Prinzipien zur Erstellung eines Programms

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal oder Python)
besteht aus einer Folge von ausfiihrbaren Anweisungen, die in der vorgegebenen
Reihenfolge abgearbeitet werden.

In Maschinensprache (Assembler) geschriebene Programme verfolgen stets den
imperativen Ansatz, die elementaren (Maschinen-)Befehle werden nacheinander
ausgeflhrt.

Wesentliche Kontrollstruktur: Iterationen (for-, while-Schleife)

Funktionaler Ansatz

Der Quellcode bedient sich mathematischer Funktionen, durch die ein Algorithmus
beschrieben wird.

Wesentliche Kontrollstruktur: Rekursion

Definition:
Eine Prozedur (Teilprogramm) oder eine Funktion heiBt rekursiv, wenn ihr
Anweisungsteil mindestens einen Aufruf von sich selbst enthélt.

Bei beiden Ansatzen ist durch eine Abbruchbedingung sicherzustellen, daB der
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu
einem Ergebnis flhrt.

Beispiel 1
Der Algorithmus ggT (gréBter gemeinsamer Teiler)

Nach Eingabe zweier natlrlicher Zahlen a und b bestimmt ggT die gréBte ganze
Zahl, durch die sich a und b jeweils ohne Rest teilen lassen.

a) Imperativer Ansatz, formuliert als iterativer Algorithmus
(,Euklidischer Algorithmus")
Struktogramm:

Eingabe a, b

while (a>0 AND b=>0)

Ausgabe a Ausgabe b

b) Funktionaler Ansatz, formuliert als rekursiv definierte Funktion
Die Funktion (a, b) » ggT(a,b) 1aBt sich rekursiv definieren:
Rekursionsanfang: ggT(a,a) = a

Rekursionsvorschrift: ggT(a,b) = ggT(a-b, b), falls a>b
ggT(a,b) = ggT(a, b-a), falls b>a

Aufgabe:
Realisiere den Algorithmus ggT als iteratives und als rekursives Python-
Programm; vergleiche die Laufzeiten.

Beispiel 2
Die Funktion ,Fakultat™ (englisch: Factorial)

Die Funktion fact ordent jeder natirlichen Zahl n das Produkt
n'=1.2.......- n zu; definitionsgeman gilt: 0! = 1.

a) Imperativer Ansatz

Formuliere den Algorithmus iterativ (for- oder while-Schleife) als
Struktogramm und als Python-Programm

b) Funktionaler Ansatz

Die Funktion n — fact(n) |aBt sich rekursiv definieren:

1

Rekursionsanfang: fact(0)

n-fact(n-1), falls n>0

Rekursionsvorschrift: fact(n)

Formuliere die Funktion fact als rekursives Python-Programm!

Beispiel 3
Die Hofstadter-Funktion
Die Funktion hof ist rekursiv definiert, n € {1, 2, 3, b
Rekursionsanfang: hof(1) =1
hof(2) =1

Rekursionsvorschrift: hof(n) = hof(n - hof(n-1)) + hof(n-hof(n-2)), n>2

Aufgabe:
Codiere den Algorithmus hofstadter
a) rekursiv,
b) iterativ
jeweils in Python; vergleiche insbesondere die Laufzeiten!

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld), in dem bereits
berechnete Funktionswerte gespeichert werden.

27.10.2020

