Arbeitsauftrag GK inf12 fir 24.11.2020

In héheren Programmiersprachen (wie Python) ist die Mdglichkeit implementiert,
Funktionen, auch rekursiv formulierte Funktionen, zu definieren. Dabei verstehen
wir unter einer Funktion ein Unterprogramm (Prozedur), welches nach der
Ubergabe von Daten einen Funktionswert an das aufrufende Programm zuriickgibt.
Der zur Funktion gehérende Anweisungsblock heiBt auch Funktionsrumpf (in
Python wird der Funktionsrumpf durch Einriicken des Programmtextes kenntlich
gemacht). Eine Funktion, deren Funktionsrumpf mindestens einen Aufruf ihrer
selbst enthalt, heiBt rekursiv (lat. recurrere, zurticklaufen).

Die Funktion summe (siehe Arbeitsauftrag flir 17.11.2020), die einer natirlichen
Zahlnmitn e {0, 1, 2,...} die Summe
O+...... + n zuordnet, 1aBt sich rekursiv wie folgt definieren:

Rekursionsanfang: summe(0) =0
Rekursionsvorschrift: summe(n) = n + summe(n-1) fallsn=>1

Realisierung von summe in Python:

l}. sum_rekursiv.py - FA\Informatik_20200GE_inf_2020-274M... =

File Edit Format Run Options Window Help

® Summs 0 + . - . - - + D" L]

=f summe [x):

return X + summe (x-1}

n = int {input{'n = '}}
print ("D + . « & « #',;n,"'" = " gumme{n))
L
Lm: 14 Colk 0
Erlauterungen:
summe (X) : Funktionskopf;
summe = Name der Funktion
x = lokale (nur innerhalb der Funktion verfligbare)
Variable

Nach dem Doppelpunkt folgt der durch Einrlicken kenntlich
gemachte Funktionsrumpf.

mit return wird der berechnete Funktionswert an das
aufrufende Programm (bergeben

Der Aufruf summe (n) (hier: innerhalb der print-Anweisung) bewirkt:
- Der aktuelle Wert der Variablen n wird der lokalen, nur innerhalb der
Funktion verfligbaren Variablen x zugewiesen

- Nach der (hier rekursiv erfolgenden) Berechnung wird der Funktionswert mit
return zuriickgegeben.

Beispiel (n = 100):

File Edit Shell Debug Options Window Help

Python 3.8.6 (tags/v3.8.6:db45529, Sep 23 2020, 15:52:53) [MSC v.1927 €4 bit (AMD&4
}] on win3z2

Type "help™, "copyright™, "credits" or "license ()" for more information.

RESTART: F:\Informatik 2020\GE_inf 2020-21\MSS12\Python apps\sum rekursiv.py =
= 100
ot ogl & iR 1ARn = 25050

L= = | Y,

Die rekursive Berechnung von summe (6) = s (6) |aBt sich wie folgt
verdeutlichen:

s(6) = 6 + s(5)
=6+ (5 + s(4))
=6+ (5+ (4 + s(3)))
=6+ (5+ (4 + (3 + s(2))))
=6+ (5+ (4 + (3 + (2 + s(1)))))
=6+ (5+ (4+ (3 + (2+ (1 + s(0))))))

mit s (0) ist der Rekursionsanfang erreicht, die Rekursion bricht ab.

Arbeitsauftrage fiir 24.11.2020:

1.) Erstelle den Programmtext flir die rekursive Berechnung von summe (n); man
orientiere sich an dem obenstehenden screenshot.

2.) Teste das Programm sowohl als iterativ (gemaB Ziffer 1 aus Arbeitsauftrag fir
17.11.2020) als auch als rekursiv definierten Algorithmus fir unterschiedliche
Werte von n; wahle auch n = 1000, 10000, 100000, 1000000. Was fallt auf?

3.) Die Fakultatsfunktion (eng.: factorial) 1aBt sich rekursiv definieren (vgl. das
Paper ,Funktionaler_und_Imperativer_Ansatz" vom 27.10.2020):

Rekursionsanfang: fact(0) 1

Rekursionsvorschrift: fact(n) = n-fact(n-1), falls n>0
Schreibe und teste ein Python-Programm, um die Fakultatsfunktion rekursiv zu
berechnen; vergleiche mit dem iterativ formulierten Algorithmus gemaB Ziffer
2 des Arbeitsauftrags fiir 17.11.2020.

4.) fakultativ: Aufgabe Nr. 5 aus Aufgabenblatt Nr. 2 vom 10.11.2020

