
Arbeitsauftrag GK inf12 für 08.01.2021

Ergänzungen und Vertiefungen zum Konzept “Rekursion”

Die funktionale Formulierung eines Algorithmus bedient sich der mathematischen
Struktur eines Problems; wesentliche Kontrollstruktur ist die Rekursion (Bekanntlich
heißt eine Funktion oder eine Prozedur (Teilprogramm) rekursiv, wenn sie
mindestens einen Aufruf ihrer selbst enthält.).

In höheren Programmiersprachen (Pascal, C++, Python) ist die Möglichkeit der
rekursiven Formulierung implementiert, was häufig eine sehr elegante Formulierung
eines Algorithmus gestattet.

Bei rekursiven Programmen kann es jedoch zu einem „stack overflow“ kommen,
wenn die Anzahl der gleichzeitig aktiven Aufrufe der Prozedur oder der Funktion zu
groß wird. In Python ist eine Rekursionstiefe von 1000 (oder 1024?) voreingestellt;
nach Import des sys-Moduls mittels

import sys

läßt sich über

sys.getrecursionlimit()

die aktuelle Rekursionstiefe ausgeben, und mit

sys.setrecursionlimit(a)

kann man die Rekursionstiefe auf den Wert a setzen.

Wir greifen noch mal die Funktion fact (siehe Beispiel 3 aus Arbeitsauftrag für
24.11.2020) auf, die jeder natürlichen Zahl n  {0, 1, 2, . . . } deren Falkultät
fact(n) zuordnet.

Python-Quelltext:

"factorial recursive"

import sys

print('Rekursionstiefe: ',sys.getrecursionlimit())
a=int(input('gewuenschte Rekursionstiefe: '))
sys.setrecursionlimit(a)
print('aktuelle Rekursionstiefe: ',sys.getrecursionlimit())
print()

def fact(x):
 global z
 z = z + 1
 if x == 0:
 return 1
 else:
 return x * fact(x - 1)

z = 0
n=int(input("n = "))
y = fact(n)
print (n,"! = ",y)
print('Anzahl der Aufrufe: ',z)

 2

Beachte:
Die Variablen n, z und y sind globale Variable; bei Aufruf fact(n) in der
drittletzten Zeile wird der Wert der Variablen n an die lokale Variable x der Funktion
fact übergeben (selbst wenn man innerhalb der Funktion fact die lokale Variable
x mit n bezeichnen würde, würde für dieses n ein eigener lokaler Speicherplatz
definiert).
Die globale Variable z zählt die Anzahl der Aufrufe der Funktion fact. Vor dem
ersten Aufruf von fact wird z auf 0 gesetzt (initialisiert), und bei jeder Abarbeitung
der Funktion fact wird z um 1 erhöht (inkrementiert). Die Anweisung global z
verhindert, daß z innerhalb der Funktion als neue lokale Variable verstanden wird.

Aufrufschema für fact(5) (nach http://www.saar.de/~awa/jrekursion.html):

Der grüne Pfeil bedeutet jeweils „ruft auf“, der rote „gibt zurück“; der
Rekursionsanfang fact(0)=1 erzwingt, daß der Algorithmus abbricht (terminiert).

Aufgabe:
Erstelle zur Berechnung der Hofstadter-Funktion und der Ackermann-Funktion
(Aufgabenblatt Nr. 2 vom 10.11.2020) jeweils einen Python-Programmtext, erweitert
um die Möglichkeit, die Rekursionstiefe anzupassen und die Anzahl z der Aufrufe zu
zählen und auszugeben; teste die Programme mit unterschiedlichen Werten.

Definition der Hofstadter-Funktion, die jeder natürlichen Zahl n1 den Wert hof(n)
zuordnet:

Rekursionsanfang: hof(1) = 1
 hof(2) = 1

Rekursionsvorschrift: hof(n) = hof[n  hof(n  1)] + hof[n  hof(n  2)] , n > 2

