Arbeitsauftrag GK inf12 fiir 08.01.2021

Ergdanzungen und Vertiefungen zum Konzept “Rekursion”

Die funktionale Formulierung eines Algorithmus bedient sich der mathematischen
Struktur eines Problems; wesentliche Kontrollstruktur ist die Rekursion (Bekanntlich
heiBt eine Funktion oder eine Prozedur (Teilprogramm) rekursiv, wenn sie
mindestens einen Aufruf ihrer selbst enthélt.).

In héheren Programmiersprachen (Pascal, C++, Python) ist die Méglichkeit der
rekursiven Formulierung implementiert, was haufig eine sehr elegante Formulierung
eines Algorithmus gestattet.

Bei rekursiven Programmen kann es jedoch zu einem ,stack overflow" kommen,
wenn die Anzahl der gleichzeitig aktiven Aufrufe der Prozedur oder der Funktion zu
groB wird. In Python ist eine Rekursionstiefe von 1000 (oder 1024?) voreingestellt;
nach Import des sys-Moduls mittels

import sys

[&Bt sich Uber

sys.getrecursionlimit ()

die aktuelle Rekursionstiefe ausgeben, und mit
sys.setrecursionlimit (a)

kann man die Rekursionstiefe auf den Wert a setzen.

Wir greifen noch mal die Funktion fact (siehe Beispiel 3 aus Arbeitsauftrag fir

24.11.2020) auf, die jeder natlirlichen Zahl n € {0, 1, 2, . . . } deren Falkultat
fact(n) zuordnet.

Python-Quelltext:

"factorial recursive"
import sys

print ('Rekursionstiefe: ',sys.getrecursionlimit())

a=int (input ('gewuenschte Rekursionstiefe: '))
sys.setrecursionlimit (a)

print ('aktuelle Rekursionstiefe: ', sys.getrecursionlimit())
print ()

def fact(x):

global =z
z =z + 1
if x == 0:
return 1
else:
return x * fact(x - 1)
z =0
n=int (input("n = "))
y = fact(n)
print (n,"! = ",vy)

print ('Anzahl der Aufrufe: ', z)



Beachte:

Die Variablen n, z und y sind globale Variable; bei Aufruf fact (n) in der
drittletzten Zeile wird der Wert der Variablen n an die lokale Variable x der Funktion
fact lGbergeben (selbst wenn man innerhalb der Funktion fact die lokale Variable
x mit n bezeichnen wiirde, wiirde flir dieses n ein eigener lokaler Speicherplatz
definiert).

Die globale Variable z zahlt die Anzahl der Aufrufe der Funktion fact. Vor dem
ersten Aufruf von fact wird z auf 0 gesetzt (initialisiert), und bei jeder Abarbeitung
der Funktion fact wird z um 1 erhéht (inkrementiert). Die Anweisung global z
verhindert, daB z innerhalb der Funktion als neue lokale Variable verstanden wird.

Aufrufschema fur fact(5) (nach http://www.saar.de/~awa/jrekursion.html ):

Der griine Pfeil bedeutet jeweils ,ruft auf”, der rote ,gibt zurlick"; der
Rekursionsanfang fact(0)=1 erzwingt, daB der Algorithmus abbricht (terminiert).

Aufrufschema fiir fac(3)

= 120 Rekursionstiefe 0
5% fac(4) = 5%24 1

t

e fac(3) =4%6 S 2
V! 2
3*fac(2) = 3x9 3% :
2 £
2% fac(]g = 2% 0
J 5

1* fac{0)=1*1

g

Aufgabe:

Erstelle zur Berechnung der Hofstadter-Funktion und der Ackermann-Funktion
(Aufgabenblatt Nr. 2 vom 10.11.2020) jeweils einen Python-Programmtext, erweitert
um die Mdglichkeit, die Rekursionstiefe anzupassen und die Anzahl z der Aufrufe zu
zahlen und auszugeben; teste die Programme mit unterschiedlichen Werten.

Definition der Hofstadter-Funktion, die jeder natiirlichen Zahl n>1 den Wert hof(n)
zuordnet:

Rekursionsanfang: hof(1) =1
hof(2) = 1

Rekursionsvorschrift: hof(n) = hof[n - hof(n - 1)] + hof[n - hof(n-2)], n> 2



