
Binäre Suche Informatik 12 Januar 2022

Gegeben: Ein sortiertes Array a mit den n Komponenten a[0], , a[n-1]
Aufgabe: Entscheide, ob ein für die Variable value eingegebener Wert als Wert einer Komponente des Arrays a

vorkommt.

Beispiel

value = 13
n = len(a) = 10

Wir übergeben value und die Liste a[0], . . . , a[9] der Booleschen Funktion binarysearch,

welche a[0], . . . , a[9] als lokale Liste array[0], . . . , array[9] fortführt.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21

array[0] array [1] array [2] array [3] array [4] array [5] array [6] array [7] array [8] array [9]

3 4 5 5 7 8 11 13 19 21

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 5

2. Schritt:

midvalue = array[len(array)//2] = array[10//2] = array[5] = 8

Wir vergleichen value mit midvalue:

 2

Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!

Falls value < midvalue: suche in der Liste a[0], . . . , a[4] links von a[5]
Falls value > midvalue: suche in der Liste a[6], . . . , a[9] rechts von a[5]

hier: wegen 13 > 8 suchen wir in der Liste a[6], . . . , a[9]

Suche value in der Liste a[6], . . . , a[9]

a[6] a[7] a[8] a[9]

11 13 19 21

Diese Liste a[6], . . , a[9] und value übergeben wir der Booleschen Funktion binarysearch,

welche a[6], . . , a[9] als lokale Liste array[0], . . . , array[3] fortführt.

array[0] array[1] array[2] array[3]

11 13 19 21

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 4//2 = 2

2. Schritt:
midvalue = array[len(array)//2] = array[4//2] = array[2] = 19

Wir vergleichen value mit midvalue:

 3

Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!

Falls value < midvalue: suche in der Liste array[0], . . . , array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suchen wir in der Liste array[0], . . . , array[1]

Suche value in der Liste array[0], . . . , array[1]

array[0] array[1]

11 13

Diese Liste array[0], . . . , array[1] und value übergeben wir der Booleschen Funktion binarysearch,

welche array[0], . . . , array[1] als lokale Liste array[0], . . . , array[1] fortführt.

1. Schritt:
Wir bestimmen den mittleren Index des Arrays array: len(array)//2 = 2//2 = 1

2. Schritt:

midvalue = array[len(array)//2] = array[2//2] = array[1] = 13
Wir vergleichen value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!

Falls value < midvalue: suche in der Liste array[0] links von array[1]

Falls value > midvalue: suche in der leeren Liste [] rechts von array[1], dann: binarysearch gibt den Wert

False zurück; nicht gefunden!

hier: wegen 13 = value = midvalue = 13: binarysearch gibt den Wert True zurück; gefunden!

 4

Der Booleschen Funktion binarysearch werden das aus n Komponenten bestehende

sortierte Feld a (in Python: Liste) und der zu suchende Wert value übergeben;

binarysearch liefert den Wert True, falls eine Komponente von a mit value

übereinstimmt, andernfalls den Wert False.

Die Variable z ermittelt die Anzahl der Aufrufe von binarysearch.

Quelltext in Python:

.
z = 0
.

def binarysearch(array,value):
 global z
 z += 1

 print(array)
 if array == [] or (len(array) == 1 and array[0] != value):

 return False
 else:
 midvalue = array[len(array)//2]

 if midvalue == value:
 return True

 elif value < midvalue:
 return binarysearch(array[:len(array)//2],value)
 else:

 return binarysearch(array[len(array)//2 + 1:],value)

Aufruf der Funktion binarysearch:

binarysearch(a,value)

Komplexität des Algorithmus binarysearch:

Die Komplexität und damit der Rechenaufwand A(n) wird wesentlich bestimmt durch die
Anzahl z der Aufrufe der rekursiv definierten Funktion binarysearch; o. B. d. A. sei n

eine Potenz von 2, d. h. n = 2k mit k = 0, 1, 2, 3,

Beachte: die maximale Anzahl von Aufrufen (worst case) kann insbesondere dann

auftreten, falls die Suche ergebnislos ist.

k = 0  n = 1 ; die Liste a hat die Komponente a[0].

k = 3  n = 8 ; die Liste a hat die Komponenten a[0], a[1], , a[7].

k = 4  n = 16 ; die Liste a hat die Komponenten a[0], a[1], , a[15].

 5

Eine Verdopplung von n impliziert höchstens einen weiteren Aufruf von binarysearch !

Offensichtlich gilt:

z  k + 1

Wegen n = 2k  k = log2(n) folgt:

z  1 + log2(n)

Somit hat der Algorithmus binarysearch logarithmische Komplexität:

A(n)  log2(n)

Modifikation des Algorithmus binarysearch:
Wie modifizieren die rekursive Funktion binarysearch wie folgt: binarysearch liefert

den booleschen Wert False, falls value in der Liste a nicht gefunden wird, andernfalls

den Index index derjenigen Komponente der Liste a, deren Inhalt mit demjenigen von

value übereinstimmt.

Die Gesamtliste a, der zu suchende Wert value sowie die Indices begin und end sind an

die Funktion binarysearch zu übergeben, so daß binarysearch

die Teilliste a[begin] , , a[end] durchsucht.

Beachte: index wird innerhalb des Funktionsrumpfs als globale Variable definiert.

z = 0

.

def binarysearch(array, value, begin, end):
 global index
 global z

 z += 1
 print(array[begin:end+1])

 if begin > end: return False
 middle = (begin + end) // 2
 print('mittleres Element: a[',middle,'] = ',array[middle])

 if array[middle] == value:
 index = middle

 elif array[middle] < value:
 return binarysearch(array, value, middle + 1, end)
 else:

 return binarysearch(array, value, begin, middle - 1)

Aufruf der Funktion binarysearch zur Suche von value in der sortierten Liste

a[0], , a[n-1]:

binarysearch(a, value, 0, len(a)-1)

