Informatik
infl1 06.02.2023

Definition:

Unter einem Algorithmus verstehen wir ein aus endlich vielen Anweisun-
gen bestehendes allgemeines Verfahren, welches eine Klasse von Proble-
men in endlich vielen Schritten 16st.

Ein Algorithmus laBt sich, unabhangig von der
jeweils verwendeten Programmiersprache, als
FluBdiagramm (spater auch: Struktogramm)
darstellen und verdeutlichen.

Eingabe

Y

Verarbeitung

F

Ausgabe

1. Lineare Algorithmen

Unter einem linearen Algorithmus verstehen wir einen Algorithmus, bei dem
die nacheinander auszufiihrenden Anweisungen sich langs eines einzigen Pfades
aneinanderreihen; insbesondere enthélt ein linearer Algorithmus keine Pro-
grammverzweigungen.

Aufgabe 1 (Quaderberechnung)

Eingabedaten: Lange a, Breite b, H6he ¢
Verarbeitung: Berechnung des Volumens V und der Oberflache O
Ausgabe: Volumen V, Oberflache O

Aufgabe 2 (Zinseszins)

Wenn ein Anfangskapital kO zu einem jahrlichen Zinssatz p % Uber einen Zeit-
raum von n Jahren mit Zinseszins angelegt wird (der Zinsbetrag wird also am En-
de eines jeden Jahres dem zu verzinsenden Kapital zugeschlagen), ermittelt der
Algorithmus , Zinseszins" das Endkapital k nach n Jahren.

(Bemerkung: In entsprechender Weise 1aBt sich die Entwicklung des Preisindex
nach n Jahren bestimmen, wenn die jahrliche Inflationsrate p % betragt.)

Aufgabe 3 (,Promillerechner™)

Dieser Algorithmus ermittelt einen groben Schatzwert fir die Blutalkoholkonzen-
tration.

Eingabedaten:

V = Volumen des Getrdnks in Litern

p = Volumenanteil in % des Alkohols im Getrank
m = Gewicht (Masse) der Person in kg
Ausgabedaten:

K = Blutalkohol-Konzentration in Promille

Berechnungsvorschrift: K=10-V-p/(m-0.7)

Lésung zu Aufgabe 2

Eingabe

Anfangskapital kO
Zinsfuss p
Laufzeit n

FluBdiagramm:

k =KkO - (1+:5)"

3

Ausgabe

Endkapital k

Programmtext in Python:

t;. zinseszins.py - FifInformatik_2022-23/info11/zinseszins.py (3.8.6)

File Edit Format Run Options Window Help
Zinseszins

Mit "#' eingeleitete Zellen bilden einen Kommentar,
der auf den Programmablauf keinen Einflufl hat.

Eingabe

kO=float (input('Anfangskapital =)

'
p=float (input('Zinsfuf = '};
n=float (input('Laufzeit = "))
Verarbeitung

k=k0* (1+p/100) **n

¢ Ausgabe

Die folgende Anweisung erzeugt eine Leerzeile,
1st aber auch wverzichtbar.

print ()

Ausgabe des Ergebnisses auf viele Nachkommastellen

print ('Kapital nach ',n,' Jahren = ', k)

Runden des Ergebnisses auf 2 Nachkommastellen und Ausgabe
print ('Kapital nach ',n,"' Jahren = ',round(k, 2),' Euro')

\

Wenn wir nach Eingabe des Programmtextes im ,IDLE"-Editor den Button ,Run"
anklicken, 6ffnet sich ein Kontextmenue, und wir starten das Programm durch
Klick auf ,Run Module".

Nachdem man bestatigt hat, den eventuell geanderten Programmtext zu spei-
chern, offnet sich die ,Python Shell*, in der man die Eingaben macht und in der
dann die Ausgabe des Ergebnisses oder der Ergebnisse erfolgt.

Informatik infll 13.02.2023

Definition: Ein Anweisungsblock besteht aus einer Folge zusammengehéren-
der Anweisungen, die nacheinander ausgefiuhrt werden.
Ein Anweisungsblock, der innerhalb einer Schleife wiederholt wird,
heiBt Schleifenrumpf.
Den zu einer Funktion gehdérenden Anweisungsblock nennen wir
auch Funktionsrumpf.

Bemerkungen: - Anweisungsblécke kédnnen auch ineinander verschachtelt sein.

- In Python wird ein Anweisungsblock durch Einrlicken des Pro-
grammtextes gekennzeichnet (hier ist also auf die korrekte
Formatierung des Programmtextes zu achten!).

2. Verzweigte Algorithmen

Ein verzweigter Algorithmus enthalt mindestens eine Fallunterscheidung, so
daB je nach Ausgang der Fallunterscheidung verschiedene Anweisungsbldcke
durchlaufen werden.

Aufgabe 4

Mit dem Body-Mass-Index (BMI) kann man abschatzen, ob jemand Normalge-
wicht hat. Der BMI ist eine dimensionslose Zahl (also ohne MaBeinheit) und be-
rechnet sich wie folgt:

BMI = gewicht / (groesse * groesse)

mit

gewicht = MaB3zahl der Masse in kg
groesse = MaBzahl der KérpergréBe in m
Beispiel:

Mit Masse = 70 kg und KdrpergréBe = 1,80 m erhalt man
BMI=70/(1,80*1,80) =70/ 3,24 ~ 21,6.

Far BMI < 19 gilt man als untergewichtig, fir BMI > 26 als Ubergewichtig; Nor-
malgewicht verbindet man mit 19 < BMI < 26.

Der Algorithmus BodyMassIndex soll folgendes leisten:

Nach Eingabe des Gewichts (in kg) und der GréBe (in m) wird BMI (auf eine De-
zimale gerundet) berechnet und ausgegeben, dariberhinaus erfolgt die Informa-
tion, ob man als normal-, unter- oder bergewichtig gilt.

Konzipiere ein
a) FluBdiagramm, b) Struktogramm, c) Python-Programm!

Aufgabe 5 (Mobilfunkrechnung)

Der Betreiber eines Mobilfunknetzes hat folgende Tarifgestaltung:

Monatliche Grundgeblihr (einschlieBlich 100 Gesprachsminuten): 8 €;
flr die nachsten, Gber 100 Minuten hinausgehenden Gesprachsminuten sind 5 ct
je Minute zu entrichten.

Formuliere einen Algorithmus als

FluBdiagramm, Struktogramm, Pythonprogramm,

um nach Eingabe der Anzahl x der monatlichen Gesprachsminuten den Rech-
nungsbetrag b zu bestimmen.

Informatik 11 27.02.2023

Numerischen Datentypen: float und integer
(float: Gleitkommazahlen oder Dezimalzahlen; integer: ganze Zahlen)

>>> print (11 / 6) Quotient zweiler ganzer Zahlen
1.8333333333333333

>>> print (2 ** 0.5) Wurzel aus 2
1.4142135623730951

>>> print (27 / 4) Quotient zweiler ganzer Zahlen

6.75

>>> print (27 // 4) ganzzahliger Quotient (27 : 4 = 6 Rest 3)
6

>>> print (27 % 4) Rest bei ganzzahliger Division

3

>>> print (7 * 12) Produkt ganzer Zahlen

84

>>> print (0.8 * (=7.5)) Produkt zweier Kommazahlen

-6.0

Datentyp boolean

Eine Boolesche Variable oder ein Boolescher Ausdruck (Term) nimmt nur zwei Werte an:
True oder False
(abkirzend: 1 oder 0, ja oder nein; in Python sind True oder False zu verwenden!)

Insbesondere sind folgende Terme Boolesche Ausdriicke, deren Wert sich auch einer
Variablen zuweisen |aBt:

8>5 hat den Wert True

7 == hat den Wert False

71=8 hat den Wert True

X hat den Wert True nach der Wertzuweisung x = 7 < 12
X hat den Wert False nach der Wertzuweisung x = (0 == 6)

Wir definieren die Verknipfungen and und or sowie die Operation not jeweils Uber eine
Wahrheitstafel:

a b aorb a b a and b a not a
False | False False False False False False True
False True True False True False True False
True False True True False False
True True True True True True

Datentyp character (Zeichen)

>>> x = 'a' >>> zeichen = '&'
>>> print (x) >>> print (zeichen)
a &

Datentyp string (Zeichenkette)

>>> name = 'Kopernikus'
>>> print (name)
Kopernikus

Informatik infll 23.02.2023

Lésung zu Aufgabe 5:
a) Struktogramm

Eingabe der Anzahl x der Gesprachsminuten

x <= 100

ja nein
betrag = 8 betrag = 8 + (x - 100)*0.05

Ausgabe betrag

b) Python-Quelltext:

Monatsrechnung Mobilfunk
Verzweigter Algorithmus
Bufgabe Nr. 5

'Eingabe’
X = int(input('Anzahl der Gespraechsminuten = '}))

'Verarbeitung'
if x <= 100:

betrag = 8
else:

betrag = 8 + (x - 100)*0.05
'Ausgabe’
print ()

print ('Rechnungsbetrag bei',x, 'Minuten:',betraqg, 'Euro')

Struktogramm zu Aufgabe 4:

Eingabe: gewicht (in kg), groesse (in m)

bmi = gewicht / (groesse * groesse)

bmi < 19
ja nein
Ausgabe: "Untergewicht" bmi <= 26
ja nein
Ausgabe: "Normalgewicht" [Ausgabe: "Ubergewicht"

Arbeitsauftrag: Schreibe einen Python-Quelltext und teste das Programm!

Aufgabe 6

Gegeben sei folgender Telefontarif:

Monatliche Grundgebihr: 8 € (einschlieBlich 100 Gesprachsminuten). Flr die Gber
das Freikontingent hinausgehenden nachsten 200 Minuten werden 3 ct/min be-
rechnet, dariberhinausgehende Minuten kosten 5 ct/min.

Formuliere den Algorithmus als Struktogramm und Python-Programm.

Zusammenfassung: Verzweigte Algorithmen

Beachte: In Python wird ein Anweisungsblock durch Einrticken des Programm-
textes gekennzeichnet.

Im folgenden verstehen wir unter condition einen Booleschen Term (der auch
nur aus einer Booleschen Variablen bestehen kann), der die Werte True oder

False annimmt. In Struktogrammen kennzeichnen wir True auch durch, + '
oder ,ja’, False durch ,-"' oder , nein’.

Einseitige Auswahl

condition
True False
Block1
Block?2
Zweiseitige Auswahl
condition
True False
Block1 Block2
Block3

Formulierung in Python:

if condition:

if condition:

Blockl Blockl
Block?2 else:
Block?2
Block3
Mehrstufige Auswahl
condition1
True False
condition2
Trie False
Block1
Block?2 Block3
Block4

Formulierung in Python:

if conditionl:

Blockl

else:

if condition2:

Block?2

else:

Block3

Block4

if conditionl:

Blockl

elif condition2:

Block?2

else:

Block3

Block4

Aufgabe 7 (Quadratische Gleichungen)

Spezifikation des Algorithmus QuadEquation:

Nach Eingabe der Koeffizienten a, b, c der allgemeinen quadratischen Gleichung
ax? + bx + ¢ = 0 ermittelt der QuadEquation die L6sungsmenge und gibt diese
aus.

FluBdiagramm:

Eingabe a, b, c

-

Il
=

d

h® - dac

5

/,&usgabEx/
keine
Lésung

<F x1=(-h + DY?)/(2a)
= _b/(2 X2

=(-b - D'?)/(2a)

L i
/ﬂausgabEH/ /ﬂ.usgabe x1, x2 /

a) Erstelle ein Struktogramm.

keine
Ldsung

b) Schreibe und teste ein Python-Programm.

Informatik infl1 10.03.2023

Lésung zu Aufgabe 7:
a) Struktogramm (Jakob)

- Eingabe a, b, ¢

' D<0
A._.A4......,..+....x:_x/b
D=0
‘Keine-
Lésung
N o S
x=-b/(2a) .l B - PR [|
R N Keine Ausgabe
-Lbésung - - - s
c28
Ausgabe X1
JAusgabe X
Ausgabe X2
Aufgabe:

Man Uberzeuge sich, daB3 das folgende Python-Programm gemaB obenstehendem
Struktrogramm aufgebaut ist.

b) Python-Quelltext:
Quadratische Gleichungen

'Eingabe der Koeffizienten'

print ("Quadratische Gleichung:

FT} }
FT} }
FT} }

a=float (input("a =
b=float (input ("b
c=float (input("c =
print ()

print ("Loesungsmenge:")

a*x*2 + b*x + c = 0")

'"Verarbeitung der Daten und Ausgabe der Loesungen'

if a ==
print ("Gleichung nicht quadratisch")
1f b!=0:
print ("xz =",-c/b)
else:

print ("keine Loesung!")

D = b**2 - 4*a*c

if D < 0:

print ("keine Loesung!™)

else:
1T D == 0:
X = -b/(2*a)
print ("x =",x)

else:

x1 = (-b + D**(1/2))/(2%a)
(b -

X2 =
print ("zl =",xl)
print ("z2 =",x2)

3. Algorithmen mit Wiederholungen

D**(1/2))/(2*a)

Wenn ein Anweisungsblock innerhalb eines Algorithmus wiederholt auszufiihren
ist, verwenden wir eine Schleife (engl.: loop) als Kontrollstruktur; der zu wieder-
holende Anweisungsblock heif3t auch Schleifenrumpf.

Die Programmiersprache Python kennt die (kopfgesteuerte) while-Schleife und die

for-Schleife; in anderen Sprachen (z. B. Java, Pascal, C++) sind auch auch fuB-
gesteuerte Schleifen (repeat-Schleife) implementiert.

while-Schleife

Syntax einer while-Schleife in Python:

while condition: while condition:
Anweisungl
Anweisung?2 25&
Anweisung3

Dabei ist condition ein Boolescher Term; der aus einer Anweisung oder meh-
reren Anweisungen bestehende Schleifenrumpf A wird nur dann ausgefihrt,
falls condition den Wert True hat.

Beachte: Der Schleifenrumpf ist durch Einriicken des Programmtextes kenntlich
zu machen!

Aufgabe 8 (Quadratzahltabelle)
Formuliere einen Algorithmus, welcher nach Eingabe einer naturlichen Zahl n die

Quadrate der Zahlen 1, , h berechnet und ausgibt.
n = int(input('n = ")) Eingaben
) Zuweisung eines Anfangswerts an die
1 =1 Zahlvariable i (oder: Schleifenindex i)
i <= n:

q=1%*1

print(i, "*2 =',q) Schleifenrumpf
i=1+1
Aufgabe 9

Formuliere einen Algorithmus a) als Struktogramm, b) als Python-Programm,
welcher nach Eingabe einer natiirlichen Zahl n, n > 0, die Summe der
Zahlen 0,, n berechnet und ausgibt.

Lésung:

a) Struktogramm:

Eingabe n

i=1 Initialisierung des Schleifenindex i
summe =0 Initialisierung der Variablen summe
while i <=n Abfrage des Booleschen Terms

i<=n

summe = summe + |

Schleifenrumpf
i=i+1

Ausgabe: 0+ ... +n

b) Quellcode in Python:
Nach Eingabe einer natiirlichen Zahl n wird die
Summe der Zahlen 0, . . . , n berechnet und ausgegeben

n = int(input('n = "))

'Initialisierung des Schleifenindex 1i°'
i=1

'Initialisierung der Variablen summe'’

summe = 0
i <= n:
summe = summe + 1
i=1+1
print ('Summe der Zahlen 0 , . . . ,',n,' =',summe)
Bemerkungen:

- Der Schleifenindex i heiBt auch Zahlindex oder Zahler.

- Da die als Boolescher Term formulierte Bedingung (hier: i <= n) vor Ein-
tritt in den Schleifenrumpf abgefragt wird, handelt es sich bei der while-
Schleife um eine kopfgesteuerte Schleife.

Aufgaben:
- Schreibe obenstehendes Struktogramm als FluBdiagramm.

- Verfolge gedanklich die Arbeitsschritte, die der Algorithmus nach der Ein-
gabe von 0, 1, 2, 3 jeweils ausfluhrt.

Trace

Anhand einer Trace-Tabelle kénnen wir fir bestimmter Eingabewerte tberpriifen,
ob der Algorithmus das Verlangte leistet; ein Trace liefert somit eine erste Infor-
mation dariber, ob der Algorithmus korrekt ist.

Beachte: Ein Trace ersetzt nicht einen allgemeinen Korrektheitsbeweis.

In einer Tabelle notieren wir die Werte aller Variablen, Konstanten und Boole-
schen Terme (wir verwenden dieselben Variablennamen wie in obenstehendem
Struktogramm). Solange der Term i <= n den Wert True hat, erfolgt ein weite-
rer Schleifendurchlauf; der Algorithmus bricht ab, sobald der Term 1 <= n den
Wert False annimmt, denn es gibt dann keinen weiteren Schleifendurchlauf.
Nach Abbruch wird der Wert der Variablen summe (hier: 15) ausgegeben.

Trace fur den Eingabewert n = 5
Abklrzung: SD = Schleifendurchlauf

n i summe i<=n
vor dem 1. SD 5 1 0 True
vor dem 2. SD 5 2 1 True
vor dem 3. SD 5 3 3 True
vor dem 4. SD 5 4 6 True
vor dem 5. SD 5 5 10 True

nach dem 5. SD 5 6 15 False

Aufgabe 10

Formuliere den Algorithmus FAKULTAT unter Verwendung einer while-Schleife
a) als Struktogramm,

b) als Python-Programm,

welcher nach Eingabe einer natlirlichen Zahl n, n > 1, das Produkt der

Zahlen 1,, n berechnet und ausgibt.
Anmerkung:
Man schreibtauch n!'=1.-2.3. -n (Lies: n-Fakultat).
Beispiele: 6! = 720 13! = 6 227 020 800
Ergénzung:

DefinitionsgemdaB gilt: 0! = 1. Erweitere den Algorithmus so, daB fiir die Ein-
gabe n = 0 der Wert 1 ausgegeben wird.

c) Erstelle eine Trace-Tabelle fiir n = 5.

Informatik 11 20.03.2023

range-Anweisung

Die range-Anweisung definiert einen Bereich ganzer Zahlen.

range (10) definiert den Bereich 0, 1, ..., 9
range (4,21) definiert den Bereich 4, 5, ..., 20
range (4,21,3) definiert den Bereich 4, 7, 10, ..., 16, 19

range (-4, 3) definiert den Bereich -4, -3, -2,-1,0,1, 2

Allgemein gilt:

range (start, stop)
definiert den Bereich start,..... , stop-1 ganzer Zahlen,

range (start, stop, step)
definiert den Bereich start, ..., stop-1 mit der Schrittweite step.

Erstellen einer Liste ganzer Zahlen

a = list(range(4,13)) erzeugt die Liste

[4, 5, 6, 7, 8, 9, 10, 11, 12];

die (in diesem Fall 9) Elemente dieser Liste nennen wir auch Komponenten, auf
die man mit a[0], a[1], ..., a[8] zugreifen kann.

Bemerkung: Unter einem Feld oder einem array verstehen wir eine Folge von
Variablen gleichen Typs; mit vorstehendem Beispiel haben wir also
ein array a ganzer Zahlen erzeugt mit den Komponenten

alo], al1], ..., a[8].

Beispiele (ausgeflihrt in der Python-shell):

>>> list(range(1,9))

[1I 2’ 3’ 4’ 5’ 6’ 7’ 8]
>>> a = list(range(-5,25,3))
>>> print(a)

[-5, -2, 1, 4, 7, 10, 13, 16, 19, 22]
>>> print(a[0])

-5

>>> print(a[3])

4

>>> print(a[9])

22

For-Schleife

Das Python-Programm

n = int(input('n = "))
for i in range(1l,n):
print (i)

print (i*i)

liefert nach Eingabe der natiirlichen Zahl n die Zahlen 1, 2, . . ., n-1 und deren
Quadrate; probiert es aus!

Syntax einer for-Schleife in Python:

for i in range(start, stop): for i in range(start, stop):
Anweisungl
Anweisung?2 A
Anweisung3

Arbeitsauftrage:

1. Schreibe und teste ein Python-Programm, um die Siebener-Reihe auszugeben
(also die Zahlen 7, 14, 21, .. .).

2. Erstelle (siehe screenshot) den Python-Programmtext zur Berechnung der

Summe 1 + . . . + n und teste das Programm mit unterschiedlichen
Eingaben.

l}. Summe_for-loop.py - F/Informatik_2020/GK_inf_2020-21/M...

File Edit Format Run Options Window Help

Summe 1 + + @

for-Schleife

n = int{input({'n = "})

sum = 0 # Initialisierung der Summe

for i in range(l,n+l):

sum = sum 4+ i
print {('Summe der Zahlenm 1, . . . ,',n,'" = ',sum)
Ln: 13 Cok 0
Aufgabe 11

Formuliere den Algorithmus FAKULTAT, der nach Eingabe einer natlirlichen Zahl n,
n > 0, den Wert n! liefert, unter Verwendung einer for-Schleife als

a) Struktogramm,

b) Python-Programm!

C) Erstelle eine Trace-Tabelle fir n = 4.

Aufgabe 12

Formuliere und teste ein Python-Programm, welches nach Eingabe der naturli-
chen Zahl k, k > 1, die Summe der ersten k ungeraden nattirlichen Zahlen be-
stimmt, und zwar unter Verwendung einer for-Schleife.

Informatik infll 13.04.2023

Lésungen zu Aufgabe 12
a) while-Schleife
Struktogramm:

Eingabe k

summe = 1

summand = 1

|=2

while i <=k

summand = summand + 2

summe = summe + summand

=i+

Ausgabe summe

Trace fur k = 6:

k i summand | summe i<=k
‘{‘_’;‘D'em 6 2 1 1 True
yor Cem 6 3 3 4 True
‘;‘_’;gem 6 4 5 9 True
Xf’;gem 6 5 7 16 True
;?rschem 6 6 9 25 True
gf‘g’l‘)dem 6 7 11 36 False

Quellcode Python:
k = int(input('k = "))

while 1 <= k:
summand = summand + 2
summe = summe + summand
i=14+1

print ('Summe der ersten',k, 'ungeraden Zahlen ="', summe)

b) for-Schleife
Struktogramm:
Eingabe k

summe =1

summand =1
for 1=2 to Kk

summand = summand + 2

summe = summe + summand

Ausgabe summe

Quellcode Python:
k = int(input('k = "))

summe = 1

summand = 1

for 1 in range(2,k+1):
summand = summand + 2
summe = summe + summand

print ('Summe der ersten',k, 'ungeraden Zahlen =', summe)

Aufgabe 13
Flr jede natirliche Zahl n, n > 0, und jede reelle Zahl a, a = 0, ist folgender Algo-
rithmus als Struktogramm gegeben:

Eingabe a; n

b:=a; u:=n; p:=1;

while u=0

u ungerade

p:=p*b

u:=u div 2
b:=b*b

Lusgabe p

a) Schreibe und teste den Python-Quelltext zu vorstehendem Struktogramm.
b) Erstelle eine Trace-Tabelle firn =7, a = 2.
c) Erstelle eine Trace-Tabelle flir n = 18.

Prinzipien zur Formulierung eines Algorithmus

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal, Java oder
Python) besteht aus einer Folge von ausfihrbaren Anweisungen, die in der vorge-
gebenen Reihenfolge nacheinander abgearbeitet werden.

Wesentliche Kontrollstruktur: Iteration (realisiert als for- oder while-Schleife)

Funktionaler Ansatz

Die Formulierung des Quellcodes orientiert sich der inneren, in der Regel mathe-
matischen Struktur eines Algorithmus.

Wesentliche Kontrollstruktur: Rekursion

Definition:
Eine Prozedur (Teilprogramm, Subroutine) oder eine Funktion hei3t rekursiv,
wenn deren Anweisungsblock mindestens einen Aufruf von sich selbst enthalt.

Bei beiden Ansatzen ist durch eine Abbruchbedingung sicherzustellen, daB der
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu
einem Ergebnis flhrt.

Beispiel 1: Die Fakultiatsfunktion (engl.: factorial; Aufgabe 10)
Wir ordnen jeder natlirlichen Zahl n, n > 0, die Zahl n! (lies: n-Fakultat) zu:

or=1
nl=1-2....... -n fallsn >0

Berechnung von n! gemafB imperativem Ansatz
Fakultaet iterativ

Eingabe
n = int(input('n = "))

Verarbeltung

n == 0:
fact =1
1 =1 # Initialisierung des Schleifenindex 1
fact = 1 # Anfangswert der Variablen fac
i <= n:

fact = fact * 1
i =1+ 1

Ausgabe
print (n,'! = ', fact)

Berechnung von n! gemaB funktionalem Ansatz

Die Funktion n — fact(n) 138t sich rekursiv definieren:

1
n-fact(n-1), falls n>0

Rekursionsanfang: fact(0)
Rekursionsvorschrift: fact(n)

Fakultaet rekursiwv

Eilngabe
n = int(input('n = "))

Definition der Funktion factorial
factorial (x):
o

X::
1

¥ * factorial(x - 1)

Funktionsaufruf
fact = factorial (n)

Rusgabe
print (n,'! = ',fact)

Beispiel 2: Der Algorithmus ggT (groBter gemeinsamer Teiler)

Nach Eingabe zweier natlrlicher Zahlen a und b bestimmt ggT die groBte ganze
Zahl, durch die sich a und b jeweils ohne Rest teilen lassen.

a) Imperativer Ansatz, formuliert als iterativer Algorithmus
(,Euklidischer Algorithmus")
Struktogramm:

Eingabe a, b

while (a>0 AND b>0)

Ausgabe a Ausgabe b

b) Funktionaler Ansatz, formuliert als rekursiv definierte Funktion
Die Funktion (a, b) » ggT(a,b) 138t sich rekursiv definieren:
Rekursionsanfang: ggT(a,a) = a

Rekursionsvorschrift: ggT(a,b) = ggT(a-b, b), falls a>b
ggT(a,b) = ggT(a, b-a), falls b>a

Aufgabe:
Realisiere den Algorithmus ggT als iteratives und als rekursives Python-
Programm; vergleiche die Laufzeiten.

Beispiel 3: Die Hofstadter-Funktion

Die Funktion hof ist rekursiv definiert, n € {1, 2, 3, ¥
Rekursionsanfang: hof(1) =1
hof(2) =1

Rekursionsvorschrift: hof(n)

hof(n - hof(n - 1)) + hof(n-hof(n-2)), n>2

Aufgabe:
Codiere den Algorithmus hofstadter
a) rekursiv,
b) iterativ
jeweils in Python; vergleiche insbesondere die Laufzeiten!

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld; in Python: Liste), in
dem bereits berechnete Funktionswerte gespeichert werden.

Aufgabe 14

Der Algorithmus GAuUss, der nach Eingabe einer natilirlichen Zahl n die Summe
der Zahlen 1, ..., n ermittelt, |aBt sich sowohl imperativ als auch funktional
programmieren (vgl. Aufgabe 9).

Ergreife diese beiden Mdéglichkeiten, indem jeweils ein Python-Quelltext erstellt
wird (imperativ: Implementierung einer for- oder while-Schleife, mit Strukto-
gramm; funktional: Implementierung einer rekursiv definierten Funktion)

Aufgabe 15
Eingabe: natlrliche Zahl k, k > 0;
Ausgabe: Summe der ersten k ungeraden Zahlen (vgl. Aufgabe 12)

Rekursive Formulierung:

1
summe(k - 1) + 22k-1 falls k>1

Rekursionsanfang: summe(1)
Rekursionsvorschrift: summe(k)

Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf!

13.04.2023

Informatik infll 20.04.2023

Aufgabe 16
Nach Eingabe einer reellen Zahl a und einer natirlichen Zahl n, n > 0, berechnet
der Algorithmus POTENZ den Wert a" und gibt diesen aus.

a) Formuliere den Potenzierungsalgorithmus iterativ (wahlweise while- oder for-
Schleife) als Struktogramm und Python-Programm.
Implementiere eine Zahlvariable z, um die Anzahl der Schleifendurchlaufe zu
bestimmen und auszugeben.

b) Vergleiche den Potenzierungs-Algorithmus aus Aufgabe 13 mit dem Algorith-
mus aus 16.a) hinsichtlich der Anzahl der benétigten Schleifendurchlaufe.

c) Wegen a" = a- a™* und a® = 1 |48t sich die Potenz als rekursive Funktion f
definieren, die jedem n den Wert a" zuordnet:

Rekursionsanfang: f(0) =1

Rekursionsvorschrift: f(n) = a- f(n-1) fallsn >0
Beispiel:

a=7,n=4

f4)=7"=7-72=7-7-7D=7-(7-(7-7Y)) =7-(7-(7-(7-7%)) =
7-(7-(7-(7-1) =7-(7-(7-7)) =7-(7-49) =7-343 = 2401

Formuliere ein Python-Programm zur Berechnung von a" mit rekursivem Funk-
tionsaufruf!

Nachtrag: Losungen zu Aufgabe 13
a)
Potenz a*n iterativ (Rufgabe 13)

a = float(input('a = "))
n = int(input('n = "))

b = a
1 =n
p=1
u > 0:
us%s 2 !'= 0:
u=u-1
p=p*hb
u=u/ 2
b b *b
print ()

print (a,'~',n,"' =',p)

b) Trace fira=2,n=7

u
a n b u P ungerade u>0
Wl 2 7 2 7 1 + +
1. SD
vor dem 2 7 4 3 2 + +
2.SD
vor dem 2 7 16 1 8 + +
3.SD
nach dem
3. SD 2 7 256 0 128 - -
c) Trace firn = 18
a n b u u u>20
P ungerade
vor dem a 18 a 18 1 - +
1. SD
vor dem a 18 a? 9 1 + +
2.SD
vor dem 4 2
3. SD a 18 a 4 a - +
vor dem a 18 a8 2 a’ - +
4. SD
vor dem 16 2
5. SD a 18 a 1 a + +
nach dem 32 18
5 SD a 18 a 0 a - -
Vermutung:

Fir eine reelle Zahl a und eine natlrliche Zahl n, n > 0, berechnet der Algorith-
mus die Potenz a" und gibt deren Wert aus.

Ausblick:
Die vorgenannte Vermutung IaBt sich auch streng beweisen; hierzu zeigt man,
daB die Beziehung

p- bY = a"
vor und nach jedem Schleifendurchlauf erfillt, also invariant gegeniber Schlei-
fendurchldaufen ist (eine solche Beziehung heiBt Schleifeninvariante).

Da wahrend jedem Schleifendurchlauf entweder u halbiert wird, falls u gerade ist,
oder u - 1 halbiert wird, falls u ungerade ist, nimmt u nach endlich vielen Schlei-
fendurchlaufen den Wert 0 an, und der Algorithmus terminiert (u>0 ist False, falls
u=0 ist).

Sobald u den Wert 0 annimmt, folgt wegen b® = 1 aus der Schleifeninvariante:
p=a"

