
Prinzipien zur Formulierung eines Algorithmus 

 
Imperativer Ansatz 
 

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal, Java oder 

Python) besteht aus einer Folge von ausführbaren Anweisungen, die in der vorge-

gebenen Reihenfolge nacheinander abgearbeitet werden.  
 

Wesentliche Kontrollstruktur: Iteration (realisiert als for- oder while-Schleife) 

 
Funktionaler Ansatz 
 

Die Formulierung des Quellcodes orientiert sich der inneren, in der Regel mathe-

matischen Struktur eines Algorithmus.  
 

Wesentliche Kontrollstruktur: Rekursion 

 

 

Definition:  

Eine Prozedur (Teilprogramm, Subroutine) oder eine Funktion heißt rekursiv, 

wenn deren Anweisungsblock mindestens einen Aufruf von sich selbst enthält. 

 
Bei beiden Ansätzen ist durch eine Abbruchbedingung sicherzustellen, daß der 

Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu 

einem Ergebnis führt.  

 

 

Beispiel 1: Die Fakultätsfunktion (engl.: factorial; Aufgabe 10) 
 

Wir ordnen jeder natürlichen Zahl n, n  0, die Zahl n! (lies: n-Fakultät) zu: 
 

0! = 1 

n! = 1  2  . . . . . .  n        falls n > 0 

 

Berechnung von n! gemäß imperativem Ansatz 
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Berechnung von n! gemäß funktionalem Ansatz 
  

 Die Funktion    n   fact(n)    läßt sich rekursiv definieren: 
 

 Rekursionsanfang:     fact(0)  =  1 

 Rekursionsvorschrift: fact(n) =  n  fact(n–1) ,     falls   n > 0 

 

 
 

 

 

Beispiel 2:  Der Algorithmus ggT (größter gemeinsamer Teiler) 
 

Nach Eingabe zweier natürlicher Zahlen a und b bestimmt ggT die größte ganze 

Zahl, durch die sich a und b jeweils ohne Rest teilen lassen. 

 

a)  Imperativer Ansatz, formuliert als iterativer Algorithmus 

 („Euklidischer Algorithmus“) 
 Struktogramm: 
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b)  Funktionaler Ansatz, formuliert als rekursiv definierte Funktion 

 

 Die Funktion    (a, b)   ggT(a,b)    läßt sich rekursiv definieren: 

 

 Rekursionsanfang:     ggT(a,a) = a 

 

 Rekursionsvorschrift: ggT(a,b) = ggT(a–b, b) ,     falls   a > b 
    

   ggT(a,b) = ggT(a, b–a) ,     falls   b > a 

 
 
Aufgabe:  

Realisiere den Algorithmus ggT als iteratives und als rekursives Python-

Programm; vergleiche die Laufzeiten. 

 

 

 

 

Beispiel 3: Die Hofstadter-Funktion 
 

Die Funktion hof ist rekursiv definiert, n  {1, 2, 3, . . . . . } : 

 

Rekursionsanfang:     hof(1)  = 1 

  hof(2) = 1 
 

Rekursionsvorschrift: hof(n) = hof( n - hof( n - 1)) + hof( n - hof( n - 2 )) , n>2 

 

Aufgabe:  

Codiere den Algorithmus hofstadter 

a) rekursiv, 

b) iterativ 

jeweils in Python; vergleiche insbesondere die Laufzeiten! 

 

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld; in Python: Liste), in 

dem bereits berechnete Funktionswerte gespeichert werden. 

 

   

 

Aufgabe 14 

Der Algorithmus GAUSS, der nach Eingabe einer natürlichen Zahl n die Summe 

der Zahlen 1, . . . , n ermittelt, läßt sich sowohl imperativ als auch funktional 

programmieren (vgl. Aufgabe 9). 

Ergreife diese beiden Möglichkeiten, indem jeweils ein Python-Quelltext erstellt 

wird (imperativ: Implementierung einer for- oder while-Schleife, mit Strukto-

gramm; funktional: Implementierung einer rekursiv definierten Funktion) 

 

 

Aufgabe 15 

Eingabe: natürliche Zahl k, k > 0;  

Ausgabe: Summe der ersten k ungeraden Zahlen (vgl. Aufgabe 12) 

 

Rekursive Formulierung: 

 

Rekursionsanfang:     summe(1)  =  1 

Rekursionsvorschrift: summe(k)  =  summe(k – 1)  +  2k – 1     falls   k > 1 

 

Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf! 

 
13.04.2023 


