Prinzipien zur Formulierung eines Algorithmus

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal, Java oder
Python) besteht aus einer Folge von ausfihrbaren Anweisungen, die in der vorge-
gebenen Reihenfolge nacheinander abgearbeitet werden.

Wesentliche Kontrollstruktur: Iteration (realisiert als for- oder while-Schleife)

Funktionaler Ansatz

Die Formulierung des Quellcodes orientiert sich der inneren, in der Regel mathe-
matischen Struktur eines Algorithmus.

Wesentliche Kontrollstruktur: Rekursion

Definition:
Eine Prozedur (Teilprogramm, Subroutine) oder eine Funktion hei3t rekursiv,
wenn deren Anweisungsblock mindestens einen Aufruf von sich selbst enthalt.

Bei beiden Ansatzen ist durch eine Abbruchbedingung sicherzustellen, daB der
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu
einem Ergebnis flhrt.

Beispiel 1: Die Fakultiatsfunktion (engl.: factorial; Aufgabe 10)
Wir ordnen jeder natlirlichen Zahl n, n > 0, die Zahl n! (lies: n-Fakultat) zu:

or=1
nl=1-2....... -n fallsn >0

Berechnung von n! gemafB imperativem Ansatz
# Fakultaet iterativ

# Eingabe
n = int(input('n = "))

# Verarbeltung

n == 0:
fact =1
1 =1 # Initialisierung des Schleifenindex 1
fact = 1 # Anfangswert der Variablen fac
i <= n:

fact = fact * 1
i =1+ 1

# Ausgabe
print (n,'! = ', fact)



Berechnung von n! gemaB funktionalem Ansatz

Die Funktion n — fact(n) 138t sich rekursiv definieren:

1
n-fact(n-1), falls n>0

Rekursionsanfang: fact(0)
Rekursionsvorschrift: fact(n)

# Fakultaet rekursiwv

# Eilngabe
n = int(input('n = "))

# Definition der Funktion factorial
factorial (x):
o

X::
1

¥ * factorial(x - 1)

# Funktionsaufruf
fact = factorial (n)

# Rusgabe
print (n,'! = ',fact)

Beispiel 2: Der Algorithmus ggT (groBter gemeinsamer Teiler)

Nach Eingabe zweier natlrlicher Zahlen a und b bestimmt ggT die groBte ganze
Zahl, durch die sich a und b jeweils ohne Rest teilen lassen.

a) Imperativer Ansatz, formuliert als iterativer Algorithmus
(,Euklidischer Algorithmus")
Struktogramm:

Eingabe a, b

while (a>0 AND b>0)

Ausgabe a Ausgabe b




b) Funktionaler Ansatz, formuliert als rekursiv definierte Funktion
Die Funktion (a, b) » ggT(a,b) 138t sich rekursiv definieren:
Rekursionsanfang: ggT(a,a) = a

Rekursionsvorschrift: ggT(a,b) = ggT(a-b, b), falls a>b
ggT(a,b) = ggT(a, b-a), falls b>a

Aufgabe:
Realisiere den Algorithmus ggT als iteratives und als rekursives Python-
Programm; vergleiche die Laufzeiten.

Beispiel 3: Die Hofstadter-Funktion

Die Funktion hof ist rekursiv definiert, n € {1, 2, 3, . . . .. ¥
Rekursionsanfang: hof(1) =1
hof(2) =1

Rekursionsvorschrift: hof(n)

hof( n - hof( n - 1)) + hof(n-hof(n-2)), n>2

Aufgabe:
Codiere den Algorithmus hofstadter
a) rekursiv,
b) iterativ
jeweils in Python; vergleiche insbesondere die Laufzeiten!

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld; in Python: Liste), in
dem bereits berechnete Funktionswerte gespeichert werden.

Aufgabe 14

Der Algorithmus GAuUss, der nach Eingabe einer natilirlichen Zahl n die Summe
der Zahlen 1, ..., n ermittelt, |aBt sich sowohl imperativ als auch funktional
programmieren (vgl. Aufgabe 9).

Ergreife diese beiden Mdéglichkeiten, indem jeweils ein Python-Quelltext erstellt
wird (imperativ: Implementierung einer for- oder while-Schleife, mit Strukto-
gramm; funktional: Implementierung einer rekursiv definierten Funktion)

Aufgabe 15
Eingabe: natlrliche Zahl k, k > 0;
Ausgabe: Summe der ersten k ungeraden Zahlen (vgl. Aufgabe 12)

Rekursive Formulierung:

1
summe(k - 1) + 22k-1 falls k>1

Rekursionsanfang: summe(1)
Rekursionsvorschrift: summe(k)

Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf!
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