Informatik Arbeitsblatt Nr. 8 infl1 15.05.2023

Aufgabe 18 .
Der Algorithmus AGYPTISCHE MULTIPLIKATION verlangt die nicht-negativen ganzen
Zahlen a und b als Eingabe und ist durch folgendes Struktogramm gegeben:

Eingabe a

Eingabe b

X =a

y=Dhb

z=10

while x = 0

+ X ungerade —
Z=Z+Yy
x=x//2
y=y+y
Ausgabe z

Hinweis: Unter x // y verstehen wir den ganzzahligen Quotient bei der
Division von x durch y,; der Rest wird in Python mit x % y berechnet.

a) Bestatige anhand der Trace-Tabelle aus der Lésung von Aufgabe 4 der Kursar-
beit: Die Beziehung
a-b= x-y + z
ist offensichtlich Schleifeninvariante, d. h. diese Beziehung ist vor und nach
jedem Schleifendurchlauf erfillt und damit invariant gegenlber Schleifen-
durchlaufen (Auf den strengen Beweis verzichten wir hier; hierzu bedarf es des
Beweisverfahrens ,Vollstandige Induktion™.).

b) Begriinde, daB der Algorithmus flr jede zulassige Eingabe terminiert; zeige,
daB bei Terminierung mit z das Produkt der eingegebenen Zahlen a und b
ausgegeben wird.

c) Codiere und teste den Algorithmus in Python.

Aufgabe 19  Fibonacci-Folge

Firne {0,1,2,3,..... } 1aBt sich die Fibonacci-Folge rekursiv definieren:
Rekursionsanfang: fibo(0) =0
fibo(1) =1
Rekursionsvorschrift: fibo(n) = fibo(n-1) + fibo(n-2) fallsn>1

(In Worten: fiir n > 1 erhédlt man das n-te Folgenglied als Summe der beiden vo-
rangehenden Folgenglieder.)

a) Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf, wel-
ches nach Eingabe von n den Wert fibo(n) ausgibt (oder: alle Werte fibo(0), .
. ., fibo(n)); implementiere auch eine Variable z, welche die Anzahl der
Funktionsaufrufe ermittelt und ausgibt.



Bestimme auch den Zeitbedarf, den die Berechnung von fibo(n) erfordert.

Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller
Komplexitédt, denn die Anzahl z der Funktionsaufrufe wachst exponentiell mit
n; bein = 38, 39, 40, . . nimmt die Berechnung bereits sehr viel Zeit in An-
spruch.

b) Wenn man 1lru_cache des Python-Moduls functools nutzt, 1aBt sich die
Laufzeit erheblich verbessern (hier werden bereits berechnete Werte in einem
cache zwischengespeichert); allerdings kommt man mit 1ru_cache bei der
Berechnung der Ackermann-Funktion (Aufgabe 20) wegen derer ungeheuren
Rekursionstiefe kaum weiter: acker(3,9) IaBt sich noch berechnen,
bei acker(3,10) oder acker(4,n), n>0, ist SchluB.

functools 1lru_cache

n
=z

int({input('n = "})
O

Blru cache (maxsize=64)
fibo(n) :

c) Schreibe und teste ein imperativ formuliertes Python-Programm, z. B. indem
die Werte der Fibonacci-Folge in einem array (also einer Liste a) mit den Kom-
ponenten a[0], a[1], . . . ., a[n] abgelegt werden (setze a[0] = 0 und a[1] =
1). Vergleiche die Laufzeit mit dem funktional formulierten Algorithmus aus a).

Aufgabe 20 Ackermann-Funktion
Firm,ne{0,1,2,3,..... } ist die Ackermann-Funktion f wie folgt definiert:
Rekursionsanfang: (1) f(o,n) = n+1
Rekursionsvorschrift: (2) f(m,0) = f(m-1,1)
(3) f(m,n) = f(m-1, f(m,n-1))

a) Man erhdlt: f(0,0) =1, f(0,1) =2, f(0,2) =3, f(1,0)=f(0,1)=2
Berechne f(2,0); f(1,1); f(1,2); f(3,0).

b) Schreibe den Algorithmus zur Berechnung der Ackermann-Funktion als Py-
thon-Programm mit rekursivem Funktionsaufruf.
Implementiere eine Zahlvariable z, um die Anzahl der Funktionsaufrufe be-
stimmen; ermittle auch den Zeitbedarf zur Laufzeit.

Berechne f(3,7); f(3,8); f(4,0); f(3,8); f(3,9); f(4,1); f(4,2)

Bemerkung:

Die Ackermann-Funktion ist eine berechenbare Funktion, allerdings
Uibersteigt deren ungeheure Rekursionstiefe sehr schnell die Méglichkeiten ei-
nes jeden auch noch so leistungsféhigen Computers!

Anhang: Implementierung einer Zahlvariablen z am Beispiel Fakultat

z =20 z =20
n = int(input('n = ")) n = int(input('n = "))
factorial (x): n == n == 1: fact =1
z :
z +=1 fact =1
X == 0: 1 i=2
: ®x * factorial(z - 1) i <= n:
print (n,'! = ',factorial(n)) z =z + 1
print ('# Aufrufe:',z) fact = fact * i
i=1+1
print(n,'! = ', fact)

print ('# Schleifendurchliufe:', z)



