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Aufgabe 18 
Der Algorithmus ÄGYPTISCHE MULTIPLIKATION verlangt die nicht-negativen ganzen 

Zahlen a und b als Eingabe und ist durch folgendes Struktogramm gegeben: 

 
Hinweis: Unter x // y verstehen wir den ganzzahligen Quotient bei der  

Division von x durch y; der Rest wird in Python mit  x % y berechnet. 

 

a) Bestätige anhand der Trace-Tabelle aus der Lösung von Aufgabe 4 der Kursar-

beit: Die Beziehung   

a  b =  x  y + z 
 ist offensichtlich Schleifeninvariante, d. h. diese Beziehung ist vor und nach 

jedem Schleifendurchlauf erfüllt und damit invariant gegenüber Schleifen-

durchläufen (Auf den strengen Beweis verzichten wir hier; hierzu bedarf es des 

Beweisverfahrens „Vollständige Induktion“.). 
 

b) Begründe, daß der Algorithmus für jede zulässige Eingabe terminiert; zeige, 

daß bei Terminierung mit z das Produkt der eingegebenen Zahlen a und b 

ausgegeben wird. 
 

c) Codiere und teste den Algorithmus in Python. 

 

 

Aufgabe 19     Fibonacci-Folge 
 

Für n  {0, 1, 2, 3, . . . . . } läßt sich die Fibonacci-Folge rekursiv definieren: 
 

 Rekursionsanfang: fibo(0) = 0 
  fibo(1) = 1 
 

 Rekursionsvorschrift: fibo(n) = fibo(n1) + fibo(n2)     falls n > 1 
 

(In Worten: für n > 1 erhält man das n-te Folgenglied als Summe der beiden vo-

rangehenden Folgenglieder.)  
 

a)  Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf, wel-

ches nach Eingabe von n den Wert fibo(n) ausgibt (oder: alle Werte fibo(0), . 

. . , fibo(n));  implementiere auch eine Variable z, welche die Anzahl  der 

Funktionsaufrufe ermittelt und ausgibt. 
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 Bestimme auch den Zeitbedarf, den die Berechnung von fibo(n) erfordert. 
  

 Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller 

Komplexität, denn die Anzahl z der Funktionsaufrufe wächst exponentiell mit 

n; bei n = 38, 39, 40, . .  nimmt die Berechnung bereits sehr viel Zeit in An-

spruch.  
 

b) Wenn man lru_cache des Python-Moduls functools nutzt, läßt sich die 

Laufzeit erheblich verbessern (hier werden bereits berechnete Werte in einem 
cache zwischengespeichert); allerdings kommt man mit lru_cache bei der 

Berechnung der Ackermann-Funktion (Aufgabe 20) wegen derer ungeheuren 

Rekursionstiefe kaum weiter: acker(3,9) läßt sich noch berechnen,  

bei acker(3,10) oder acker(4,n), n>0, ist Schluß.  
 

  
c) Schreibe und teste ein imperativ formuliertes Python-Programm, z. B. indem 

die Werte der Fibonacci-Folge in einem array (also einer Liste a) mit den Kom-

ponenten a[0], a[1], . . . . , a[n] abgelegt werden (setze a[0] = 0 und a[1] = 

1). Vergleiche die Laufzeit mit dem funktional formulierten Algorithmus aus a). 

 

Aufgabe 20     Ackermann-Funktion 

Für m, n  {0, 1, 2, 3, . . . . . }  ist die Ackermann-Funktion f wie folgt definiert: 
 

 Rekursionsanfang: (1)   f(0,n)  =  n+1 
 

 Rekursionsvorschrift: (2)   f(m,0)  =  f(m-1, 1) 
    (3)   f(m,n)  =  f(m-1,  f(m,n-1)) 
 

a) Man erhält:   f(0,0) = 1,   f(0,1) = 2,   f(0,2) = 3,    f(1,0) = f(0,1) = 2 

Berechne  f(2,0);   f(1,1);   f(1,2);   f(3,0). 
 

b) Schreibe den Algorithmus zur Berechnung der Ackermann-Funktion als Py-

thon-Programm mit rekursivem Funktionsaufruf.  

 Implementiere eine Zählvariable z, um die Anzahl der Funktionsaufrufe be-

stimmen; ermittle auch den Zeitbedarf zur Laufzeit. 
 

 Berechne  f(3,7);  f(3,8);  f(4,0);  f(3,8); f(3,9); f(4,1); f(4,2) 
 

 Bemerkung:   

 Die Ackermann-Funktion ist eine berechenbare Funktion, allerdings 

 übersteigt deren ungeheure Rekursionstiefe sehr schnell die Möglichkeiten ei-

nes jeden auch noch so leistungsfähigen Computers! 

 

Anhang: Implementierung einer Zählvariablen z am Beispiel Fakultät 

 


