
Informatik Arbeitsblatt Nr. 8 inf11 15.05.2023

Aufgabe 18
Der Algorithmus ÄGYPTISCHE MULTIPLIKATION verlangt die nicht-negativen ganzen

Zahlen a und b als Eingabe und ist durch folgendes Struktogramm gegeben:

Hinweis: Unter x // y verstehen wir den ganzzahligen Quotient bei der

Division von x durch y; der Rest wird in Python mit x % y berechnet.

a) Bestätige anhand der Trace-Tabelle aus der Lösung von Aufgabe 4 der Kursar-

beit: Die Beziehung

a  b = x  y + z
 ist offensichtlich Schleifeninvariante, d. h. diese Beziehung ist vor und nach

jedem Schleifendurchlauf erfüllt und damit invariant gegenüber Schleifen-

durchläufen (Auf den strengen Beweis verzichten wir hier; hierzu bedarf es des

Beweisverfahrens „Vollständige Induktion“.).

b) Begründe, daß der Algorithmus für jede zulässige Eingabe terminiert; zeige,

daß bei Terminierung mit z das Produkt der eingegebenen Zahlen a und b

ausgegeben wird.

c) Codiere und teste den Algorithmus in Python.

Aufgabe 19 Fibonacci-Folge

Für n  {0, 1, 2, 3, } läßt sich die Fibonacci-Folge rekursiv definieren:

 Rekursionsanfang: fibo(0) = 0
 fibo(1) = 1

 Rekursionsvorschrift: fibo(n) = fibo(n1) + fibo(n2) falls n > 1

(In Worten: für n > 1 erhält man das n-te Folgenglied als Summe der beiden vo-

rangehenden Folgenglieder.)

a) Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf, wel-

ches nach Eingabe von n den Wert fibo(n) ausgibt (oder: alle Werte fibo(0), .

. . , fibo(n)); implementiere auch eine Variable z, welche die Anzahl der

Funktionsaufrufe ermittelt und ausgibt.

 2

 Bestimme auch den Zeitbedarf, den die Berechnung von fibo(n) erfordert.

 Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller

Komplexität, denn die Anzahl z der Funktionsaufrufe wächst exponentiell mit

n; bei n = 38, 39, 40, . . nimmt die Berechnung bereits sehr viel Zeit in An-

spruch.

b) Wenn man lru_cache des Python-Moduls functools nutzt, läßt sich die

Laufzeit erheblich verbessern (hier werden bereits berechnete Werte in einem
cache zwischengespeichert); allerdings kommt man mit lru_cache bei der

Berechnung der Ackermann-Funktion (Aufgabe 20) wegen derer ungeheuren

Rekursionstiefe kaum weiter: acker(3,9) läßt sich noch berechnen,

bei acker(3,10) oder acker(4,n), n>0, ist Schluß.

c) Schreibe und teste ein imperativ formuliertes Python-Programm, z. B. indem

die Werte der Fibonacci-Folge in einem array (also einer Liste a) mit den Kom-

ponenten a[0], a[1], , a[n] abgelegt werden (setze a[0] = 0 und a[1] =

1). Vergleiche die Laufzeit mit dem funktional formulierten Algorithmus aus a).

Aufgabe 20 Ackermann-Funktion

Für m, n  {0, 1, 2, 3, } ist die Ackermann-Funktion f wie folgt definiert:

 Rekursionsanfang: (1) f(0,n) = n+1

 Rekursionsvorschrift: (2) f(m,0) = f(m-1, 1)
 (3) f(m,n) = f(m-1, f(m,n-1))

a) Man erhält: f(0,0) = 1, f(0,1) = 2, f(0,2) = 3, f(1,0) = f(0,1) = 2

Berechne f(2,0); f(1,1); f(1,2); f(3,0).

b) Schreibe den Algorithmus zur Berechnung der Ackermann-Funktion als Py-

thon-Programm mit rekursivem Funktionsaufruf.

 Implementiere eine Zählvariable z, um die Anzahl der Funktionsaufrufe be-

stimmen; ermittle auch den Zeitbedarf zur Laufzeit.

 Berechne f(3,7); f(3,8); f(4,0); f(3,8); f(3,9); f(4,1); f(4,2)

 Bemerkung:

 Die Ackermann-Funktion ist eine berechenbare Funktion, allerdings

 übersteigt deren ungeheure Rekursionstiefe sehr schnell die Möglichkeiten ei-

nes jeden auch noch so leistungsfähigen Computers!

Anhang: Implementierung einer Zählvariablen z am Beispiel Fakultät

